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1 Introduction
This paper is a continuation of the work by Grzegorczyk et al. [1]. We study the structure
of solutions to the Duffing oscillation equation of the form

Flx, i, ) =" +x+ ux® — Bsint =0, B>0,u+0, 1)

where F : C2[0,27] x R x R — C[0,27] and x(0) = x(27) = 0 applying some methods of
p-regularity theory [2-5].
We consider a special case of the general Duffing equation given by

x" + 84 +ax+ ux’ = Bcoswt, 2)

where the unknown function x = x(¢) is the displacement at time ¢, x" is the first deriva-
tive of x with respect to time, i.e., velocity, and x” is the second time-derivative of x, i.e.,
acceleration. The numbers §, o, 8, y and w are given constants.

In general, the Duffing equation does not admit an exact symbolic solution. However,
there are some approximate methods, i.e., expansion in a Fourier series, the Frobenius
method, numeric methods such as Euler’s and Runge-Kutta methods, the homotopy anal-
ysis method [6, 7]. In this paper we present a new approach, the so-called p-regularity
method, and show that this approximate method works well and is effective.

The Duffing equation is a degenerate problem since there exists #* such that it is a so-
lution, but Im F'(x*) # Y. The construction of p-regularity gives possibilities for solving
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such nontrivial problems. This paper shows how to determine the asymptotic solutions in
the case of degeneracy of order higher than two. In the work by Grzegorczyk et al. [1], the
authors studied the 2-regularity case. Now we examine 4-regularity.

2 The main results of p-regularity theory
The apparatus of p-regularity is a new tool for studying nonlinear problems. In this section,
we present some definitions, notations and theorems of p-regularity theory to be used in
what follows (see [1-5, 8, 9]).

This paper deals with the nonlinear problem

F(x) =0, (3)

where F is a sufficiently smooth mapping between Banach spaces X and Y. Apply p-
regularity theory to this equation.

Assume that x* € U C X, U is a neighborhood of the element x*. Suppose that there is
singularity at the point x*. Assume that the space ¥ can be decomposed into a direct sum
of subspaces

Y=Y®---®Y, @)

where Y7 = cl(ImF'(x*)) and Z; = Y. As Z; we use the closed complement of Y; in Y. Let
Py, : Y — Z, be the projector onto Z, along Y;. By Y, we denote the closure of a linear
span of the image of the quadratic mapping Pz, F”(x*)[-]*. Then, inductively,

Y; = cl(spanImPZl,F(i) (x*)[~]i) CZ, i=2,...p-1, (5)

where Z; is a closed complement of Y1 ®--- @ Y;_1,i = 2,...,p, with respect to Y, and Py, :
Y — Z, is a projector onto Z; along Y1 @ --- @ Y; 1, i = 2,...,p, with respect to Y. Finally,
Y, = Z,. The order p is the minimal number (if it exists) for which the decomposition (4)
holds. Define the mapping

fi:U—Y, filx) =TI;F(x), i=1,...,p, (6)

where I1; : Y — Y; is the projector onto Y; along Y1 ® - @Y, 1 @ Yiy ®--- @ Y,. Then
the mapping F can be represented as

F@x) =fil®) + -+ fp(x). (7)

Definition 1 The linear operator mapping X to ¥

Wy () = Wy (", ) = f{ () + £ () U]+ ) (@) T ®)
such that
W, ()x = Wy (x*, h)x = f} (x%)x + fy (&%) () + - - + /0 (%) [P, x€X, ©)

is called p-factor operator.



Medak and Tret'yakov Boundary Value Problems (2017) 2017:85 Page 3 of 9

Definition 2 A mapping F is called p-regular at x* along h (p > 1) if InW,(h) = Y (i.e,

the operator W, (/) is surjective).

Definition 3 The p-kernel of the operator W, (/) is defined as a set

H,(x*) = Ker’ W,(h) = {h € X : W,(h)[h] = 0}

- (B X F U 4 ()P + - () = ).

Note that

p
Ker? W, (h) = {ﬂ I(erij”i(i) (x*) }

i=1

Definition 4 A mapping F is called p-regular at x* (p > 1) if either it is p-regular along
every h € H,(x*)\{0} or H,(x*) = {0}.

Define the solution set for the mapping F as the set
M=M(x*) = {xeX:Fx)=F(x*) =0}, (10)
and let T,» M denote the tangent cone to the set M at the point x*, i.e.,

TM = {h eX:x*+eh+r(e)eM,

r(8)|| =o(e),e €[0,68],6 > 0}. (11)

The following theorem describes the tangent cone to the solutions sets of equation (3)

in the p-regular case.

Theorem 5 (Generalized Lyusternik theorem, [2]) Let X and Y be the Banach spaces, and
let the mapping F € CP(X,Y) be p-regular at x* € M. Then

T M = Hy(x"). (12)

Let us explain that here (for Banach spaces X and Y) F € C?(X,Y) meansthat F: X — Y

is p times continuously Frechét differentiable.

3 Solutions to the Duffing equation

Consider the oscillation Duffing equation
F(x, i, B) =" +x+ puax® — Bsint =0, B>0,u+0, (13)

where F: C?[0,27] x R x R — C[0,2x] and x(0) = x(27) = 0.
Note that for u = 0, 8 > 0, solutions of the above equation do not exist, but for g = 0,
there exists zero solution. We are interested in nontrivial solutions of this equation of

course. The following theorem holds.
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Theorem 6 For sufficiently small B > 0, the Duffing equation (1) has nontrivial solution
tangent to elements from the 4-kernel of the form

x(B,t) = ﬂ—j(d —'Bs1nt> (ﬁ%), (14)
21 \{ 31
B
Bi_ 1
W) =—m+o(B%), (15)
ﬁ 4
where L, B are fixed numbers for which the following conditions hold: 3} + []+] ,B | =

_=ﬁ(3%),,3=& arzafO<,B4 <1

Proof Inorder to apply the theory of p-regularity, let us put ﬂ% =« and go to an equivalent
equation of the form

Flx, ) =a" +x+ pux® —atsing = 0. (16)

Exactly now we show that the mapping F is 4-regular, and we will describe solutions. Of
course, x* = (0,0, 0) ais the trivial solution of the above equation. We have

EF (%, pa) = (l?;(x, u,a),f;(x, ), E, (%, )
dz
<d2+1+3ux 23, —da® smt> (17)

and

— — — — d2
F(0,0,0) = (F,(0,0,0),F,(0,0,0),F,(0,0,0)) = (ﬁ +1,0, o)

Note that Ker F. .(0,0,0) = {x € C*[0,27] : £ +x = 0}. The general solutions of the equa-
tionx” +x = 0 are x(¢) = ¢; cost + ¢y sint. Takmg into account the boundary conditions, we
obtain ¢; = 0, x(¢) = ¢y sint and Kerl?;(O, 0,0) = span{sin ¢}.

The image of the operator 1_3;(0, 0,0) is defined as follows:

ImF,(0,0,0) = {y€Cl0,27]: 3x € C*[0,27]F (0,0,0)x = y,%(0) = x(27) = 0}

= {y € C[0,27] : Ix € C*[0, 27 ]x" + x = y,%(0) = x(27) = 0}.

The general solution of the equation x” + x = y has the form
t t
x(t) = c1 oSt + ¢y sint — cost/ y(t)sintdrt + sint/ y(t)costdr.
0 0
In view of the boundary condition, we obtain ¢; =0 i fozn y(t)sintdr =0, then

2w
ImF,(0,0,0) = {yeC[0,2n]:/ y(r)sinrdT:O}
0

={y€C[0,27]: (y,sin¢) = 0,sint € Kerl?;(0,0, 0)}.
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One can easily show that the boundary value problem x” + x = sint, x(0) = x(27) = 0
does not have a solution. This implies that the operator f;(0,0,0) is not surjective and
ImF,(0,0,0) #C[0,27] = Y. Then Y = Y; @ Z,, where ¥; = ImF.,(0,0,0), Z, = Y;-.

The projector Py, : Y — Z; can be described as

1 1 2
Pz,y = —sint(y,sint) = — sintf y(r)sintdr, yeY.
T T 0

This implies that

Y, = span(Im P2, F'(0,0,0) [1%)

2
= span{y(t) eY:y(t) = %sint/‘o 1?”(0,0, 0)[2(1)]2 sint drt,z(t) € C2[0,271]}

C Z,.
Let us evaluate the second derivative of the mapping F
f”(x, W) = ((6,u,x, 3x2, 0), (3x2, 0, 0), (0, 0,-12a2sin t))
From this we obtain
—=/!
F (0,0,0)=0
and Y5 = {0}, Z5 = (Y; ® {0})'. We continue

1 1 2
Pz,y = —sint(y,sint) = — sint/ y(r)sintdr, yeY,
T b3 0

Ys = span(Impzst(O, 0,0)[-]%)

2

= span{y(t) eY:yt) = % sint/ 1_-"///(0, 0,0)[2('()]3 sint dt,z(t) € C?[0, 271]}
0

C Zs.
Let us evaluate the third derivative of the mapping F:

/1!

F (%, ) = (((611,6x,0)(6,0,0),(0,0,0)), ((6x,0,0),(0,0,0),(0,0,0)),

((0,0,0),(0,0,0), (0,0, —24a sint))).
From this
£"(0,0,0)=0

and Y3={0}iY =Y, ® {0} ® {0} ® Z4, Zs = (Y1 ® {0} ® {0})*. Next we have

1 1 2
Pz,y=—sint(y,sint) = — sint/ y(r)sintdr, yeY
T b3 0
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and
Y, = span(ImPZ4l_7(4)(0,0, 0)[-1%)

1 2w .
= span{y(t) eY:y(t)=— sint/ F(4)(0, 0, 0)[z(r)]4 sint dt,z(t) € C*[0, 2] }
T 0
Let us evaluate the fourth derivative:

F%, )

= ((((0,6,0),(6,0,0),(0,0,0)), ((6,0,0),(0,0,0),(0,0,0)),
((0,0,0),(0,0,0),(0,0,0))), (((6,0,0),(0,0,0),(0,0,0)),
((0,0,0),(0,0,0),(0,0,0)),((0,0,0),(0,0,0),(0,0,0))),
)

(((0,0,0),(0,0,0),(0,0,0)), ((0,0,0),(0,0,0),(0,0,0)

((0,0,0),(0,0,0),(0,0,-24sin?))))

’

-F*(0,0,0).
Note that f(s)(x,pc,a) =0, Zy = Y, and Pz,y = Iy,y. Therefore we will examine 4-
regularity.

Now let us take z(t) = (/y, 1y, he). For such a defined vector z(t), the following relation
holds:

F0,0,0)[2(0)]’ = (18/2h,,, 613,24 sinTh2),

F0,0,0)[z(1)]" = 24(K3h,, —sinth?),

(18)
(19)

and we can describe the subspace

24 2
Y, = span{y(t) €Y y(t)= — sint/ (K3h, —sinth})sint dr}
T 0
= span{sint} = Kerf;((), 0,0),

4-factor operator

Yu = (hy, hy, hg) € C*[0,27] x R x R

lI‘Jﬁl(h)[u] = \D4~((O: 0, 0)) (hx’ h;u hu))(hu’ ., hﬂ)

d*h, 1 . o 5 o .
=@ Tha+ —sint (18K hy by + 6H3h;, — 24 sinthyhg) sint dt
0

and the 4-kernel of 4-factor operator Wy (h)

Ker* W, (h) = {h = (hy, hy, ) € C?0,2n] x R x R:

d?h, 24 o
7 — smt/(; (K3h, —sinthy)sintdt = 0}.
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Taking into account the equations

2 3 2
/ sinftrdr = =m, / sinftdr =7
0 4 0

and the fact that 4, = zsint, since 4, € Kerf;(O, 0,0), we solve the following equation of

unknowns z, 11, hy:

24, 2 2
— sint[zShu/ sin* tdr - K} / sin® dr:| =0. (20)
0 0

T

From here 3z°h, — h%=0 and z = \J 37 Sy gor h, # 0. We assume here that ||k = || (A, hy,
hy)|| =1 (the vector 4 lies on a ball of radlus 1), where we define the norm || - || in the space
C?[0,27] as follows:

Vx € C*[0,2] x|l = sup |x(t|+ sup ’x t)’+ sup |x (21)

te0,27] te[0,27] te(0,2m

while the norm in the space R x R as ||(y,2)|| = |y| + |z|. We can accept the norm in the
space C2[0,27] x R x R as standard, i.e.,

|32 = lIxlic2o.0m + 002 | gy (22)

Then we describe the space Ker* W, (/) clearly as follows:

Ker* Wy (k) = {(3/ % sint, ,u,oz)} u {(csint, 0,0)} U {(O, W, O)}, {

where /1, equals \J 3 4"‘ sint, csint for c € R or 0.
At the end we w1ll examine the surjectivity of 4-factor operator on the 4-kernel. Note

X% /,L,Ol)” =1,

that vectors (csint,0,0) and (0, u,0) are solutions of the Duffing equation, then we are

3411 340t

interested in vectors of the form H = ( sint, i, ), where 3 + || + || = 1. So we

will verify whether
Vy € C[0,2x]3u = [hy, hy, hg € C20,27] x Rx R Wu(H)[u] =

We have

d*h, 1 o 4ot
V() u) = ——— +hy + — sint/ 18( 3 il sin® T uh,
dt? T 0 3u

4
o
+8— sin® thy — 24sin ra3hﬂ) sint dt
"

:y,

Using now Lemma 10, p.6 from [8], i.e., putting y = y4 = asint € Y4, we find the element
h, =bsint € Kerf;(o, 0,0). Namely, we obtain

1 2 4ot \? ot
— sint/ (18( y —) ubsin* r + 8— sin* v, — 24a3hf; sin? r) dt = asint.
s 0 3u M
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This implies b = 9;(51 +2403hg - %hk) and

«3/ 6a8

! 240hs - 20, ) s
M—W(a+ o ﬁ—7 k)smt.
The solutions of the above equation exist, hence 4-factor operator is a surjection on the
element H.

Summing up, we conclude from the generalized Lyusternic theorem: for x* = (0,0,0),
the tangent cone T,,.M to the solutions set M coincides with the kernel of the fourth
derivative of the mapping W,, i.e., with the set Hy(x*) = Ker* W (H). Thus there ex-
ist nontrivial solutions of the Duffing equation (1), and we can write them in the form
x(e,t) = x* + eH + r(e), with ||r(e)|| = o(e), for € € (0,8), where § > 0 is sufficiently small.

— 1
Z on 3.2 L 177+ (B =
Let B, 1t be fixed numbers such that the equation 3 7t [iz] + |8*| = 1 holds, where
1

Ll

1 _1
mw=u(B*), p=a*and 0 < B* < 1. Putting x* = (0,0,0), and & = BY we get formulas (14),

1
4

(15), and this finishes the proof of the theorem. O

=|

4 Conclusion

In this paper we used p-regularity theory to prove the existence of solutions of the nonlin-
ear Duffing equation and gave an approximate description of the solutions set. Compared
with the latter paper by Grzegorczyk et al. [1], where only 2-regularity was studied, the
results of the present paper allow one to study the regularity of higher order (4-regularity)
and apply it for seeking approximative solutions of nonlinear boundary value problems.
We showed that the method of p-regularity may have an effective application to the study
of solutions of advanced differential equations. This construction may be generalized for
investigation of the case p > 4.
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