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Abstract
We consider a weak viscoelastic Kirchhoff plate model with time-varying delay in the
boundary. By using a suitable energy and Lyapunov function, we obtain a decay rate
for the energy, which depends on the behavior of g and α.
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1 Introduction
The equation which describes the small vibration of a thin homogeneous, isotropic plate
of uniform thickness h is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρhutt – ρh

 �utt + D()�u –
∫ t

 D′(t – s)�u(s) ds = f , in � × (,∞),

u = ∂u
∂ν

= , on � × (,∞),

Bu – B(
∫ t

 D′(t – s)u(s) ds) = –ν · m, on � × (,∞),

Bu – h


∂utt
∂ν

– B(
∫ t

 D′(t – s)u(s) ds) = – ∂η·m
∂η

, on � × (,∞),

(.)

where � is an open bounded set of R with a sufficiently smooth boundary � = � ∪ �.
Here, � and � are closed and disjoint. Let us denote by ν = (ν,ν) the external unit
normal vector to �, and let us denote by η = (–ν,ν) the unit tangent vector positively
oriented on �. The differential operators B and B are given by

Bu = �u + ( – μ)Bu and Bu =
∂�u
∂ν

+ ( – μ)
∂Bu
∂η

and the operators B and B are defined by

Bu = νν
∂u
∂x ∂y

– ν

∂u
∂y – ν


∂u
∂x ,

Bu =
(
ν

 – ν

) ∂u
∂x ∂y

+ νν

(
∂u
∂y –

∂u
∂x

)

.
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The constants in the above equations have the following physical meanings: ρ is mass
density, D is flexural rigidity, μ ∈ (, 

 ) is Poisson’s ratio, m is distribution of external force,
m · ν is a bending moment about the normal vector, m · η is a bending moment about the
tangent vector and f is vertical loading on the faces of the plate. For simplicity, we assume
that the bending moments about both the tangent and the normal vectors are zero. To
simplify equation (.), we make the change of variable t → t

√
D()/ρh in the time scale

and we take γ = h/, g(t) = D′(t) for any t > ; with these notations the initial boundary
value problem (.) is equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

utt – γ�utt + �u –
∫ t

 g(t – s)�u(s) ds = , in � × (,∞),

u = ∂u
∂ν

= , on � × (,∞),

Bu – B(
∫ t

 g(t – s)u(s) ds) = , on � × (,∞),

Bu – γ ∂utt
∂ν

– B(
∫ t

 g(t – s)u(s) ds) = , on � × (,∞).

(.)

Rivera et al. [] showed exponential and polynomial decay of the solutions to viscoelastic
plate equation (.). They considered a relaxation function satisfying

–cg(t) ≤ g ′(t) ≤ –cg(t),  ≤ g ′′(t) ≤ cg(t),

for some positive constant ci, i = , , . The uniform stabilization of Kirchhoff plates with
linear or nonlinear boundary feedback was investigated by several authors [–].

It is well known that delay effects often arise in many practical problems because these
phenomena depend not only on the present state but also on the past history of the system.
In recent years, the behavior of solutions for the PDEs with time delay effects has become
an active area of research; see, for instance, [–] and the references therein. Datko et al.
[] proved that a small delay in a boundary control is a source of instability. To stabilize
a system involving delay terms, additional control terms will be necessary. Nicaise and
Pignotti [] considered the following wave equation with a linear damping and delay term
inside the domain:

utt – �u + μut + μut(t – τ ) = .

They obtained some stability results in the case  < μ < μ. It is also showed in the case
μ ≥ μ that there exists a sequence of arbitrary small (or large) delays such that instabili-
ties occur. Moreover, the same results were proved when both the damping and the delay
acted on the boundary. Kirane and Said-Houari [] investigated the following linear vis-
coelastic wave equation with a linear damping and a delay term

utt – �u +
∫ t


g(t – s)�u(s) ds + μut + μut(t – τ ) = , (.)

where μ and μ are positive constants. They showed that its energy was exponentially
decaying when μ ≤ μ. Dai and Yang [] improved the results of [] under weaker con-
ditions. They also obtained an exponential decay results for the energy of problem (.)
in the case μ = . Furthermore, Nicaise and Pignotti [] considered the following wave
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equation with time-dependent delay term:

utt – �u + μut + μut
(
t – τ (t)

)
= ,

where τ (t) >  is the time-varying delay, μ and μ are real numbers with μ > . They
analyzed the exponential stability result under the condition

|μ| <
√

 – dμ, (.)

where d is a constant such that τ ′(t) ≤ d < , ∀t > . Liu [] investigated the viscoelastic
wave equation (.) with time-varying delay term under condition (.).

The stability result of viscoelastic wave equations without time delay has been stud-
ied by many authors. Cavalcanti et al. [] established an exponential rate of decay for a
viscoelastic wave equation under the condition –ξg(t) ≤ g ′(t) ≤ –ξg(t), t ≥ , for some
positive constant ξi, i = , . Later, this assumption was relaxed by several authors. Berrimi
and Messaoudi [] proved exponential and polynomial decay rates under the condition
g ′(t) ≤ –ξgp(t), t ≥ ,  ≤ p < 

 , for a positive constant ξ . Messaoudi [] considered the
following weak viscoelastic equation:

utt – �u + α(t)
∫ t


g(t – s)�u(s) ds = , (.)

where α and g are positive nonincreasing functions defined on R
+. Under some assump-

tions on the relaxation function g and the potential α, the author obtained a general decay
result which depends on the behavior of g and α. For more results on weak viscoelastic
equations, we can refer to [–] and the references therein.

Recently, Yang [] showed the existence and energy decay of solutions for the following
Euler-Bernoulli equation with a delay:

utt + �u –
∫ t


g(t – s)�u(s) ds + μut + μut(t – τ ) =  (.)

under some restrictions on μ and μ. The author proved an exponential decay results
for the energy in two cases (μ �=  or μ = ). Moreover, the stability of partial differential
equations with time delay effects has been discussed by many authors [–].

Then, a natural problem is what would happen when a delay term occurs in (.). Mo-
tivated by these results [, , , ], we consider a decay rate of the solutions for the
following weak viscoelastic Kirchhoff plate equations (.) with time-varying delay in the
boundary:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(x, t) – γ�utt(x, t) + �u(x, t) – α(t)
∫ t

 g(t – s)�u(x, s) ds = , in � × (,∞),

u(x, t) = ∂u(x,t)
∂ν

= , on � × (,∞),

Bu(x, t) – B(α(t)
∫ t

 g(t – s)u(x, s) ds) = , on � × (,∞),

Bu(x, t) – γ ∂utt (x,t)
∂ν

– B(α(t)
∫ t

 g(t – s)u(x, s) ds)

= μut(x, t) + μut(x, t – τ (t)), on � × (,∞),

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �,

ut(x, t) = f(x, t), (x, t) ∈ � × [–τ (), ),

(.)
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where μ is a positive constant, μ is a real number, τ (t) >  represents the time-varying
delay, g and α are real functions satisfying some conditions to be specified later.

When the viscoelastic term is modulated by a time-dependent coefficient α(t), we prove
an energy decay result of the solutions for weak viscoelastic Kirchhoff plate equations (.)
in the case μ �=  or μ = , respectively. In order to achieve this goal, we need a restriction
of the size between the parameter μ and the kernel g .

The paper is organized as follows. In Section , we give some preparations for our con-
sideration and our main results. In Section , we study an energy decay of the solutions
for problem (.). By introducing suitable energy and Lyapunov functionals, we obtain a
decay estimate for the energy, which depends on the behavior of both α and g .

2 Preliminaries
In this section, we introduce some material needed in the proof of our result and state the
main result. We denote

(u, v) =
∫

�

uv dx, (u, v)� =
∫

�

uv d�.

For simplicity, we denote ‖ · ‖L(�) and ‖ · ‖L(�) by ‖ · ‖ and ‖ · ‖� , respectively. To study
the existence of solution of system (.), we introduce the following spaces:

V =
{

u ∈ H(�) | u =  on �
}

, W =
{

u ∈ H(�)
∣
∣ u =

∂u
∂ν

=  on �

}

.

Let us define the following bilinear symmetric form:

a(u, v) =
∫

�

(
∂u
∂x

∂v
∂x +

∂u
∂y

∂v
∂y + μ

(
∂u
∂x

∂v
∂y +

∂u
∂y

∂v
∂x

)

+ ( – μ)
∂u
∂x ∂y

∂v
∂x ∂y

)

dx dy.

Based on the integration by parts formula, a simple calculation yields

(
�u, v

)
= a(u, v) + (Bu, v)� –

(

Bu,
∂v
∂ν

)

�

.

Since � �= ∅, we know that
√

a(u, u) is equivalent to the H(�) norm on W , that is,

c‖u‖
H(�) ≤ a(u, u) ≤ c̃‖u‖

H(�),

where c and c̃ are generic positive constants. The Sobolev imbedding theorem and a
trace estimate imply that for some positive constants Cp, Cs, C̃p and C̃s,

‖u‖ ≤ Cpa(u, u), ‖∇u‖ ≤ Csa(u, u),

‖u‖
� ≤ C̃pa(u, u) and ‖u‖

� ≤ C̃s‖∇u‖, ∀u ∈ W .
(.)

For the relaxation function g and the potential α, as in [], we assume that
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(H) g,α : R+ →R
+ are nonincreasing differentiable functions satisfying

g() > , l :=
∫ ∞


g(s) ds < ∞,

α(t) > ,  – α(t)
∫ t


g(s) ds ≥ l > , for t ≥ ,

(.)

and there exists a nonincreasing differentiable function ξ : R+ →R
+ satisfying

ξ (t) > , g ′(t) ≤ –ξ (t)g(t), for t ≥  (.)

and

lim
t→∞

–α′(t)
ξ (t)α(t)

= . (.)

Remark . Note that (H) implies limt→∞ –α′(t)
α(t) = .

Since the function g is continuous and positive, we obtain

∫ t


g(s) ds ≥

∫ t


g(s) ds := g >  (.)

for all t ≥ t > . This fact will be used subsequently in the proof of our main result.
As in [], for the time-varying delay, we assume that τ ∈ W ,∞([, T]) for T > , and

there exist positive constants τ, τ and d satisfying

 < τ ≤ τ (t) ≤ τ and τ ′(t) ≤ d <  for all t > , (.)

and that μ and μ satisfy

|μ| <
√

 – dμ. (.)

Let us introduce the function as in []

z(x,ρ, t) = ut
(
x, t – τ (t)ρ

)
, x ∈ �,ρ ∈ (, ), t > .

Then problem (.) is equivalent to
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(x, t) – γ�utt(x, t) + �u(x, t) – α(t)
∫ t

 g(t – s)�u(x, s) ds = , in � × (,∞),

τ (t)zt(x,ρ, t) + ( – τ ′(t)ρ)zρ(x,ρ, t) = , in � × (, ) × (,∞),

u(x, t) = ∂u(x,t)
∂ν

= , on � × (,∞),

Bu(x, t) – B(α(t)
∫ t

 g(t – s)u(x, s) ds) = , on � × (,∞),

Bu(x, t) – γ ∂utt (x,t)
∂ν

– B(α(t)
∫ t

 g(t – s)u(x, s) ds)

= μut(x, t) + μz(x, , t), on � × (,∞),

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �,

z(x, , t) = ut(x, t), on � × (,∞),

z(x,ρ, ) = f(x, –ρτ ()), (x,ρ) ∈ � × (, ).

(.)
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We can prove the existence of weak solution by making use of the classical Faedo-Galerkin
method. Then, using elliptic regularity and second order estimates, we can show the reg-
ularity of the solution. We state a well-posedness result without a proof here (see [, ,
, ]).

Lemma . Let (.) and (.) be satisfied and g , α satisfy (H). If (u, u) ∈ W × V , f ∈
L(� × (, )) and T > , then there exists a unique weak solution (u, ut) ∈ C([, T]; W ×V )
of problem (.). Moreover, if (u, u) ∈ (W ∩ H(�)) × (V ∩ H(�)), f ∈ H(� × (, )),
then the solution of (.) has the following regularity:

u ∈ C([, T]; W ∩ H(�)
) ∩ C([, T]; V ∩ H(�)

)
.

Inspired by [, ], we define a modified energy functional as

E(t) :=


‖ut‖ +

γ


‖∇ut‖ +




(

 – α(t)
∫ t


g(s) ds

)

a(u, u)

+
α(t)


g�∂u +

ζ



∫ t

t–τ (t)
eλ(s–t)∥∥ut(s)

∥
∥

�
ds,

where ζ and λ are positive constants satisfying

|μ|√
 – d

< ζ < μ –
|μ|√
 – d

and λ <

τ

log
ζ
√

 – d
|μ| . (.)

Note that this choice of ζ is possible from assumption (.).
The main result of this paper is the following.

Theorem . Let (.) be satisfied and g , α satisfy (H). Assume that either one of the
following two conditions holds:

(i)  < |μ| <
√

 – dμ,
(ii) μ = ,  < |μ| < μ and α(t)ξ (t) > ξ, ∀t ≥ t.

Then there exist positive constants k and K such that, for any solution of problem (.), the
energy satisfies

E(t) ≤ Ke–k
∫ t

t
α(s)ξ (s) ds, ∀t ≥ t, (.)

where μ and ξ are positive constants given by (.) and (.), respectively.

3 General decay of solutions
In this section we show a general decay rate. To simplify calculation, in our analysis we
introduce the following notation:

(g ∗ u)(t) =
∫ t


g(t – s)u(s) ds,

(g�u)(t) :=
∫ t


g(t – s)

∥
∥u(t) – u(s)

∥
∥ ds,

(
g�∂u

)
(t) :=

∫ t


g(t – s)a

(
u(t) – u(s), u(t) – u(s)

)
ds.
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We give some estimates related to the convolution operator. By the symmetry of a(·, ·) and
direct calculations, we shall see that

α(t)a(g ∗ u, ut) = –
α(t)


g(t)a(u, u) +

α(t)


g ′�∂u +
α′(t)


g�∂u

–
α′(t)



(∫ t


g(s) ds

)

a(u, u)

–



d
dt

[

α(t)g�∂u – α(t)
(∫ t


g(s) ds

)

a(u, u)
]

, (.)

and

a(g ∗ u, u) ≤ 
(∫ t


g(s) ds

)

a(u, u) +



g�∂u. (.)

To prove our result, we need to introduce the following auxiliary functionals:

�(t) =
∫

�

utu dx + γ

∫

�

∇ut∇u dx,

�(t) = –
∫

�

ut

∫ t


g(t – s)

(
u(t) – u(s)

)
ds dx

– γ

∫

�

∇ut

∫ t


g(t – s)

(∇u(t) – ∇u(s)
)

ds dx.

We divide the proof of Theorem . into two cases as follows.
Case :  < |μ| <

√
 – dμ.

First, we consider the functional

L(t) := NE(t) + εα(t)�(t) + εα(t)�(t), (.)

where ε and ε are positive constants. We easily get the following lemmas.

Lemma . For N >  large enough, there exist positive constants C and C such that

CE(t) ≤ L(t) ≤ CE(t), ∀t ≥ . (.)

Proof By applying Young’s inequality, the Cauchy-Schwarz inequality, (.) and (.), we
clearly have

∣
∣�(t)

∣
∣ ≤ 


‖ut‖ +

γ


‖∇ut‖ +

Cp + γ Cs

l

(

 – α(t)
∫ t


g(s) ds

)

a(u, u),

∣
∣�(t)

∣
∣ ≤ 


‖ut‖ +

γ


‖∇ut‖ +

(Cp + γ Cs)l


g�∂u,
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which gives us

∣
∣L(t) – NE(t)

∣
∣ ≤ α()


(ε + ε)‖ut‖ +

γα()


(ε + ε)‖∇ut‖

+
ε(Cp + γ Cs)l


α(t)g�∂u

+
ε(Cp + γ Cs)α()

l

(

 – α(t)
∫ t


g(s) ds

)

a(u, u)

≤ CE(t),

where C = max{α()(ε +ε), ε(Cp +γ Cs)l, ε(Cp+γ Cs)α()
l }. Choosing N >  large, we com-

plete the proof of Lemma .. �

Lemma . Let (.) and (.) be satisfied and g , α satisfy (H). Then, for all regular so-
lutions of problem (.), there exist positive constants α and α satisfying

E′(t) ≤ –α‖ut‖
� – α

∥
∥ut

(
t – τ (t)

)∥
∥

�
+

α(t)


g ′�∂u –
α′(t)



(∫ t


g(s) ds

)

a(u, u)

–
λζ



∫ t

t–τ (t)
eλ(s–t)∥∥ut(s)

∥
∥

�
ds. (.)

Proof Multiplying (.) by ut(t), we get the identity

d
dt

{


‖ut‖ +

γ


‖∇ut‖ +




a(u, u)
}

= –μ‖ut‖
� – μ

(
ut

(
t – τ (t)

)
, ut

)

�
+ α(t)a(g ∗ u, ut). (.)

Applying (.) to (.), we have

E′(t) = –μ‖ut‖
� – μ

(
ut

(
t – τ (t)

)
, ut

)

�

–
α(t)


g(t)a(u, u) +

α(t)


g ′�∂u +
α′(t)


g�∂u

–
α′(t)



(∫ t


g(s) ds

)

a(u, u) +
ζ


‖ut‖

�

–
ζ


e–λτ (t)( – τ ′(t)

)∥
∥ut

(
t – τ (t)

)∥
∥

�
–

λζ



∫ t

t–τ (t)
eλ(s–t)∥∥ut(s)

∥
∥

�
ds. (.)

From Young’s inequality, we obtain

–μ
(
ut

(
t – τ (t)

)
, ut

)

�
≤ |μ|


√

 – d
‖ut‖

� +
|μ|

√
 – d


∥
∥ut

(
t – τ (t)

)∥
∥

�
. (.)

By (.), we get

–
ζ


e–λτ (t)( – τ ′(t)

)∥
∥ut

(
t – τ (t)

)∥
∥

�
≤ –

ζ ( – d)
eλτ

∥
∥ut

(
t – τ (t)

)∥
∥

�
. (.)
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Combining (.)-(.) and (H), we have

E′(t) ≤ –
(

μ –
ζ


–

|μ|

√

 – d

)

‖ut‖
� –

(
ζ ( – d)

eλτ
–

|μ|
√

 – d


)
∥
∥ut

(
t – τ (t)

)∥
∥

�

+
α(t)


g ′�∂u –

α′(t)


(∫ t


g(s) ds

)

a(u, u) –
λζ



∫ t

t–τ (t)
eλ(s–t)∥∥ut(s)

∥
∥

�
ds.

By using condition (.), we obtain

α := μ –
ζ


–

|μ|

√

 – d
>  and α :=

ζ ( – d)
eλτ

–
|μ|

√
 – d


> ,

which implies the desired inequality (.). The proof is now complete. �

Lemma . Under assumption (.), the functional � satisfies the estimate

�′(t) ≤ –
l


a(u, u) + ‖ut‖ + γ ‖∇ut‖

+
α(t)


g�∂u +

μ
 C̃p

l
‖ut‖

� +
μ

C̃p

l
∥
∥ut

(
t – τ (t)

)∥
∥

�
. (.)

Proof By using (.) and (.), we get

�′(t) = ‖ut‖ + γ ‖∇ut‖ – a(u, u) + α(t)a(g ∗ u, u)

– μ(ut , u)� – μ
(
ut

(
t – τ (t)

)
, u

)

�

≤ ‖ut‖ + γ ‖∇ut‖ –
(

 – α(t)
∫ t


g(s) ds

)

a(u, u) +
α(t)


g�∂u

– μ(ut , u)� – μ
(
ut

(
t – τ (t)

)
, u

)

�
. (.)

From Young’s inequality and (.), we see that, for any η > ,

–μ(ut , u)� ≤ ηC̃p


a(u, u) +

μ


η
‖ut‖

� , (.)

–μ
(
ut

(
t – τ (t)

)
, u

)

�
≤ ηC̃p


a(u, u) +

μ


η

∥
∥ut

(
t – τ (t)

)∥
∥

�
. (.)

Combining (.), (.) and (.) with (.) and choosing η = l
C̃p

, we have (.). �

Lemma . Under assumption (.), the functional � satisfies the estimate

� ′(t) ≤ –
(∫ t


g(s) ds – δ

)

‖ut‖ – γ

(∫ t


g(s) ds – δ

)

‖∇ut‖

+ δ

(

 +
(

 – l


))

a(u, u) + δ‖ut‖
� + δ

∥
∥ut

(
t – τ (t)

)∥
∥

�

+
(

α(t) +


δ
+

μ
 C̃p

δ
+

μ
C̃p

δ

)(∫ t


g(s) ds

)

g�∂u

–
g()(Cp + γ Cs)

δ
g ′�∂u. (.)
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Proof Similarly, we find that

� ′(t) =
∫ t


g(t – s)a

(
u(t) – u(s), u(t)

)
ds

– α(t)
∫ t


g(t – s)a

(

u(t) – u(s),
∫ t


g(t – τ )u(τ ) dτ

)

ds

+ μ

∫ t


g(t – s)

(
u(t) – u(s), ut(t)

)

�
ds

+ μ

∫ t


g(t – s)

(
u(t) – u(s), ut

(
t – τ (t)

))

�
ds

– γ

∫ t


g ′(t – s)

(∇u(t) – ∇u(s),∇ut(t)
)

ds

–
∫ t


g ′(t – s)

(
u(t) – u(s), ut(t)

)
ds

– γ

(∫ t


g(s) ds

)

‖∇ut‖ –
(∫ t


g(s) ds

)

‖ut‖

:= I + · · · + I – γ

(∫ t


g(s) ds

)

‖∇ut‖ –
(∫ t


g(s) ds

)

‖ut‖. (.)

Now, we estimate the terms on the right-hand side of (.). Young’s inequality, (.) and
(.) give that

|I| ≤ δa(u, u) +


δ

(∫ t


g(s) ds

)

g�∂u,

|I| ≤ α(t)
(∫ t


g(s) ds

)

g�∂u + α(t)
∫ t


g(t – s)

∫ t


g(t – τ )a

(
u(t) – u(s), u(t)

)
dτ ds

≤ δ

(
 – l



)

a(u, u) +
(

α(t) +


δ

)(∫ t


g(s) ds

)

g�∂u,

|I| ≤ δ‖ut‖
� +

μ
 C̃p

δ

(∫ t


g(s) ds

)

g�∂u,

|I| ≤ δ
∥
∥ut

(
t – τ (t)

)∥
∥

�
+

μ
C̃p

δ

(∫ t


g(s) ds

)

g�∂u,

|I| ≤ γ δ‖∇ut‖ +
γ

δ

∫

�

(∫ t


g ′(t – s)

∣
∣∇u(t) – ∇u(s)

∣
∣ds

)

dx

≤ γ δ‖∇ut‖ –
g()γ Cs

δ
g ′�∂u,

|I| ≤ δ‖ut‖ +


δ

∫

�

(∫ t


g ′(t – s)

∣
∣u(t) – u(s)

∣
∣ds

)

dx ≤ δ‖ut‖ –
g()Cp

δ
g ′�∂u,

where δ > . From the above estimates, we obtain (.). �

Lemma . For t >  and sufficiently large N > , there exist k > , k >  and t ≥ t

such that

L′(t) ≤ –kα(t)E(t) + kα(t)g�∂u, ∀t ≥ t, (.)

where k and k depend on g.
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Proof By using (.) and Young’s inequality, we get

εα
′(t)�(t) + εα

′(t)�(t) ≤ –α′(t)‖ut‖ – α′(t)γ ‖∇ut‖ –
α′(t)ε




(Cp + γ Cs)a(u, u)

–
α′(t)ε




(Cp + γ Cs)
(∫ t


g(s) ds

)

g�∂u. (.)

Then, using (.), (.), (.), (.), (.) and (.), we have

L′(t) ≤ –α(t)
(

(g – δ)ε – ε +
α′(t)
α(t)

)

‖ut‖ – γα(t)
(

(g – δ)ε – ε +
α′(t)
α(t)

)

‖∇ut‖

– α(t)
{

lε


–

(

 +
(

 – l


))

δε

+
Nα′(t)
α(t)

(∫ t


g(s) ds

)

+
α′(t)ε


α(t)

(Cp + γ Cs)
}

a(u, u)

– α(t)
(

αN
α()

– δε –
μ

 C̃pε

l

)

‖ut‖
�

– α(t)
(

αN
α()

– δε –
μ

C̃pε

l

)
∥
∥ut

(
t – τ (t)

)∥
∥

�

+ α(t)
[
εα(t)



+
{

ε

(

α(t) +
 + (μ

 + μ
)C̃p

δ

)

–
α′(t)ε


α(t)

(Cp + γ Cs)
}(∫ t


g(s) ds

)]

g�∂u

+ α(t)
(

N


–
g()ε

δ
(Cp + γ Cs)

)

g ′�∂u –
λζN



∫ t

t–τ (t)
eλ(s–t)∥∥ut(s)

∥
∥

�
ds.

We first choose δ >  so small that

δ < min

{
g


,

lg

( + ( – l))

}

.

Then, we obtain

g – δ >



g and
δ

l

(

 +
(

 – l


))

<



g.

Hence δ is fixed, the choice of any two positive constants ε and ε satisfying

g


ε < ε <

g


ε

will make

(g – δ)ε – ε >  and
lε


–

(

 +
(

 – l


))

δε > .

As long as δ, ε and ε are fixed, we take N large enough such that

αN
α()

– δε –
μ

 C̃pε

l
> ,

αN
α()

– δε –
μ

C̃pε

l
> 
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and

N


–
g()ε

δ
(Cp + γ Cs) > .

Since limt→∞ –α′(t)
α(t) = , we can take t ≥ t sufficiently large so that

(g – δ)ε – ε +
α′(t)
α(t)

> ,

lε


–

(

 +
(

 – l


))

δε +
Nα′(t)
α(t)

(∫ t


g(s) ds

)

+
α′(t)ε


α(t)

(Cp + γ Cs) > .

Therefore, we get (.) for some positive constants k and k depending on g. �

Multiplying (.) by ξ (t) and using (.) and (.), we find that

ξ (t)L′(t) ≤ –kα(t)ξ (t)E(t) + kα(t)ξ (t)g�∂u

≤ –kα(t)ξ (t)E(t) – kα(t)g ′�∂u

≤ –kα(t)ξ (t)E(t) – k

(

E′(t) + α′(t)
(∫ t


g(s) ds

)

a(u, u)
)

, ∀t ≥ t.

From ξ ′(t) ≤ , (.) and the definition of E(t), we obtain

(
ξ (t)L(t) + kE(t)

)′ ≤ –kα(t)ξ (t)E(t) – kα
′(t)

(∫ t


g(s) ds

)

a(u, u)

≤ –
(

k +
kα

′(t)
lα(t)ξ (t)

(∫ t


g(s) ds

))

α(t)ξ (t)E(t), ∀t ≥ t.

By (.), we can choose t ≥ t such that k + kα′(t)
lα(t)ξ (t) (

∫ t
 g(s) ds) >  for t ≥ t. Let L(t) =

ξ (t)L(t)+kE(t), then from (.) we can see thatL(t) is equivalent to E(t). Then we deduce
that

L′(t) ≤ –kα(t)ξ (t)L(t), ∀t ≥ t,

for some positive constant k depending on g, α and ξ . Integrating this over (t, t), we get

L(t) ≤L(t)e–k
∫ t

t
α(s)ξ (s) ds, ∀t ≥ t.

Using the equivalence of L(t) and E(t) again, we have

E(t) ≤ Ke–k
∫ t

t
α(s)ξ (s) ds, ∀t ≥ t,

for some positive constant K depending on the initial data.
Case : μ = , |μ| > .
First, we define the Lyapunov function

F(t) := E(t) + εα(t)�(t) + εα(t)�(t), (.)

where ε and ε are positive constants.
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Similar to Case , from Lemma ., we can obtain, for ε, ε >  small enough,

βE(t) ≤ F(t) ≤ βE(t), ∀t ≥ , (.)

where β and β are positive constants. From Lemma ., we get

E′(t) ≤
(

ζ


+

|μ|

√

 – d

)

‖ut‖
� +

( |μ|
√

 – d


–
ζ ( – d)

eλτ

)
∥
∥ut

(
t – τ (t)

)∥
∥

�

+
α(t)


g ′�∂u –

α′(t)


(∫ t


g(s) ds

)

a(u, u)

–
λζ



∫ t

t–τ (t)
eλ(s–t)∥∥ut(s)

∥
∥

�
ds. (.)

Similar to Lemmas . and ., we have

�′(t) ≤ –
l


a(u, u) + C
(‖ut‖ + γ ‖∇ut‖ +

∥
∥ut

(
t – τ (t)

)∥
∥

�

)
+

α(t)


g�∂u, (.)

where C = max{, μ
C̃p
l } and

� ′(t) ≤ –(g – δ)‖ut‖ – γ (g – δ)‖∇ut‖

+ δ

(

 +
(

 – l


))

a(u, u) + δ
∥
∥ut

(
t – τ (t)

)∥
∥

�

+
(

α(t) +


δ
+

μ
C̃p

δ

)(∫ t


g(s) ds

)

g�∂u –
g()(Cp + γ Cs)

δ
g ′�∂u, (.)

respectively. By (.), (.)-(.) and (.), we obtain

F ′(t) ≤ α(t)
(

εC – (g – δ)ε –
α′(t)
α(t)

)

‖ut‖

+ γα(t)
(

εC – (g – δ)ε +
C̃s

α()γ

(
ζ


+

|μ|

√

 – d

)

–
α′(t)
α(t)

)

‖∇ut‖

+ α(t)
{(

 +
(

 – l


))

δε –
lε



–
α′(t)
α(t)

(∫ t


g(s) ds

)

–
α′(t)ε


α(t)

(Cp + γ Cs)
}

a(u, u)

+ α(t)
(

εC + δε +
( – d)
α()

( |μ|

√

 – d
–

ζ

eλτ

))
∥
∥ut

(
t – τ (t)

)∥
∥

�

+ α(t)
[
εα(t)



+
{

ε

(

α(t) +
 + μ

C̃p

δ

)

–
α′(t)ε


α(t)

(Cp + γ Cs)
}(∫ t


g(s) ds

)]

g�∂u

+ α(t)
(




–
g()ε

δ
(Cp + γ Cs)

)

g ′�∂u –
λζ



∫ t

t–τ (t)
eλ(s–t)∥∥ut(s)

∥
∥

�
ds.
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Now, we choose δ >  small enough such that

δ < min

{
g


,

lg

C( + ( – l))

}

. (.)

As long as δ is fixed, we take ε such that

 < ε <
δ

g()(Cp + γ Cs)
.

Then we get




–
g()ε

δ
(Cp + γ Cs) > . (.)

From the choice of δ, we have

g

C
<

g – δ

C
.

Then we select ε such that

gε

C
< ε <

(g – δ)ε

C
. (.)

By (.) and (.), we obtain

(

 +
(

 – l


))

δε –
lε


<  (.)

and

 < εC + δε < (g – δ)ε – εC. (.)

Now, we add a restriction condition on γ , that is, we suppose that

C̃s

 – d
< γ . (.)

Note that eλτ →  as λ → . Hence, if we take λ small enough, and from (.) and (.),
there exists a positive constant ζ such that

α()eλτ

 – d
(εC + δε) < ζ <

α()γ
C̃s

(
(g – δ)ε – εC

)
.

And then, we see that

ζ

eλτ
–

α()
 – d

(εC + δε) > 

and

α()γ
C̃s

(
(g – δ)ε – εC

)
– ζ > .
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If we choose |μ| >  such that

|μ| <
√

 – d
(

min

{
ζ

eλτ
–

α()
 – d

(εC + δε),
α()γ

C̃s

(
(g – δ)ε – εC

)
– ζ

})

=: μ, (.)

where μ depends on g, we find that

εC + δε +
( – d)
α()

( |μ|

√

 – d
–

ζ

eλτ

)

<  (.)

and

εC – (g – δ)ε +
C̃s

α()γ

(
ζ


+

|μ|

√

 – d

)

< . (.)

Consequently, from Remark ., (.), (.), (.), (.) and (.), there exist two
positive constants k and k such that, for t ≥ t,

F ′(t) ≤ –kα(t)E(t) + kα(t)g�∂u, ∀t ≥ t, (.)

where k and k depend on g. Multiplying (.) by ξ (t) and using (.), (.), (.) and
the definition of E(t), we get, for t ≥ t,

ξ (t)F ′(t) ≤ –kα(t)ξ (t)E(t) – kα(t)g ′�∂u

≤ –kα(t)ξ (t)E(t) – kE′(t) + kγα()
(
(g – δ)ε – εC

)‖∇ut‖

– kα
′(t)

(∫ t


g(s) ds

)

a(u, u)

≤ –kα(t)ξ (t)E(t) – kE′(t) + kα()
(
(g – δ)ε – εC

)
E(t)

–
kα

′(t)
l

(∫ t


g(s) ds

)

E(t).

By ξ ′(t) ≤ , we have, for t ≥ t,

(
ξ (t)F(t) + kE(t)

)′

≤ –
(

k –
kα()
α(t)ξ (t)

(
(g – δ)ε – εC

)
+

kα
′(t)

lα(t)ξ (t)

(∫ t


g(s) ds

))

α(t)ξ (t)E(t).

Now, we add a restriction condition on α and ξ , that is, we assume that

α(t)ξ (t) >
kα()

k

(
(g – δ)ε – εC

)
:= ξ, ∀t ≥ t. (.)

From (.), we can take t ≥ t such that k – kα()
α(t)ξ (t) ((g –δ)ε –εC)+ kα′(t)

lα(t)ξ (t) (
∫ t

 g(s) ds) > 
for t ≥ t. Hence, there exists a positive constant k such that

F ′(t) ≤ –kα(t)ξ (t)F (t), ∀t ≥ t,
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where F (t) = ξ (t)F(t) + kE(t). From (.), we can see that F (t) is equivalent to E(t).
Integrating this over (t, t) and using the equivalence of F (t) and E(t) again, we obtain
(.). Then, we complete the proof.

Example If g decays exponentially, ξ (t) = a and α(t) = b
+t + c, then (.) gives us

E(t) ≤ Ke–k(ab ln(+t)+act),

where a, b, c > .

4 Conclusions
In the present paper, we consider a decay rate of the solutions for weak viscoelastic Kirch-
hoff plate equations with time-varying delay in the boundary. By introducing suitable en-
ergy and Lyapunov functions, we obtain a decay estimate for the energy, which depends
on the behavior of both α and g . On the other hand, different from the previous literature,
we use the memory term instead of the damping term to control the delay term.
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