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Abstract
This article deals with integral boundary value problems of the second-order
differential equations

{
u′′(t) + a(t)u′(t) + b(t)u(t) + f (t,u(t)) = 0, t ∈ J+,
u(0) =

∫ 1
0 g(s)u(s) ds, u(1) =

∫ 1
0 h(s)u(s) ds,

where a ∈ C(J), b ∈ C(J,R–), f ∈ C(J+ × R+,R+) and g,h ∈ L1(J) are nonnegative. The
result of the existence of two positive solutions is established by virtue of fixed point
index theory on cones. Especially, the nonlinearity f permits the singularity on the
space variable.

MSC: 34B15; 34B18
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1 Introduction
The aim of this article is to study the existence of two positive solutions to the follow-
ing nonlinear second-order differential equation involving integral boundary value con-
ditions:

{
u′′(t) + a(t)u′(t) + b(t)u(t) + f (t, u(t)) = , t ∈ J+,
u() =

∫ 
 g(s)u(s) ds, u() =

∫ 
 h(s)u(s) ds,

()

where a ∈ C(J), b ∈ C(J , R–), f ∈ C(J+ × R+, R+) and g, h ∈ L(J) are nonnegative, J = [, ],
J+ = (, ), R+ = [, +∞), R+ = (, +∞), R– = (–∞, ). Singularities of the nonlinearity f are
related to both t = ,  and u = .

Recently, there has been a considerable increase in the investigation of nonlocal bound-
ary value problems; see [–] for integer order and [–] for fractional differential
equations. Based on a specially constructed cone, the existence as well as nonexistence
results on positive solutions for the following second-order integral BVPs are obtained in
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an abstract space in Feng et al. []:

⎧⎪⎨
⎪⎩

u′′(t) + f (t, u(t)) = θ , t ∈ J+,
u() =

∫ 
 g(t)u(t) dt, u() = θ ,

or u() = , u() =
∫ 

 g(t)u(t) dt,

here f ∈ C([, ] × P, P), θ represents the zero element of E, and g is nonnegative and in-
tegrable. Also, in an abstract space, by the fixed point theorem of strict set contraction
operators, Zhang et al. [] obtained the existence results of solutions for some second-
order integral boundary value problems with the impulsive effect.

For general differential operator, when the nonlinearity f is continuous, Feng and Ge
[] studied multiple positive solutions for the following singular m-point boundary value
problems:

{
Lu = λw(t)f (t, u), t ∈ J+,
u′() = , u() =

∑m–
i= αiu(ξi),

here λ > , ξi ∈ (, ), αi ∈ R+ (i = , , . . . , m – ) are known constants and L represents the
linear operator

Lu := –u′′ – au′ + bu,

where a ∈ C(J) and b ∈ C(J , R+), f ∈ C(J × R+, R+), w ∈ C(J+, R+). As is well known, two,
three and multi-point BVPs may be looked upon as a special case of integral boundary
value problems. For integral conditions, with some so-called first eigenvalue of the re-
lated linear operator, Liu et al. [] formulated the existence results for BVP (). The whole
discussion relied on the fixed point index theorems. With the impulsive effect, under dif-
ferent combinations of super-linear and sub-linear condition on nonlinear term and the
impulses, some results of existence of multiple positive solutions as well as nonexistence
results for BVP () are obtained in Hao et al. [].

We attempt in this article to study the existence of two positive solutions of BVP ().
The interesting points focus on two aspects. First, singularities of the nonlinearity f are
related not only to the time but also to the space variables. Second, compared with [], the
method and conditions used to get result of multiple positive solutions are quite different
from that used in []. The integral of the nonlinearity on some special bounded set is
considered in this paper. The tools used to obtain the main result are fixed point index
theorems on cones. Obviously, the result obtained in this paper can be analogously given
for the Riemann-Stieltjes integral case after some minor modifications.

2 Preliminaries and several lemmas
Let ψ and ψ be the unique solution of the BVP

{
ψ ′′

 (t) + a(t)ψ ′
(t) + b(t)ψ(t) = ,

ψ() = , ψ() = ,
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and

{
ψ ′′

 (t) + a(t)ψ ′
(t) + b(t)ψ(t) = ,

ψ() = , ψ() = ,

respectively. By [], we know that ψ, ψ are strictly increasing and strictly decreasing on
J , respectively.

We adopt the following assumptions throughout this article.

(H) a ∈ C(J), b ∈ C(J , R–);
(H) g, h : J+ → R+ are integrable, and k > , k > , k > , where

k =  –
∫ 


ψ(s)g(s) ds, k =

∫ 


ψ(s)g(s) ds,

k =
∫ 


ψ(s)h(s) ds, k =  –

∫ 


ψ(s)h(s) ds,

k = kk – kk;

(H) f ∈ C(J+ × R+, R+);
(H) there exist three functions â, b̂ ∈ C(J+, R+), ĝ ∈ C(R+, R+) satisfying

f (t, u) ≤ â(t)̂g(u) + b̂(t), ∀t ∈ J+, u ∈ R+,

where, in addition,

â∗
r =

∫ 


H(t)̂a(t)̂gr(t) dt < +∞, b̂∗ =

∫ 


H(t)̂b(t) dt < +∞,

and

ĝr(t) = max
{̂

g(u) : γ (t)r ≤ u ≤ r
}

, ∀r > ,

here, γ (t) is defined in (), H(t) is defined in ();
(H) there exists a function ĉ ∈ C(J+, R+) satisfying

f (t, u)
ĉ(t)u

→ +∞ as u → +∞

uniformly for t ∈ J+, and in addition,

ĉ∗ =
∫ 


ĉ(t) dt < +∞;

(H) there exists a function d̂ ∈ C(J+, R+) satisfying

f (t, u)
d̂(t)

→ +∞ as u → +
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uniformly for t ∈ J+, and in addition,

d̂∗ =
∫ 


d̂(t) dt < +∞.

Lemma  ([]) Assume that (H) and (H) hold. Then, for any y ∈ C(J+) ∩ L(J), the BVP

{
u′′(t) + a(t)u′(t) + b(t)u(t) + y(t) = , t ∈ J+,
u() =

∫ 
 g(s)u(s) ds, u() =

∫ 
 h(s)u(s) ds,

()

has a unique solution u that can be expressed in the form

u(t) =
∫ 


H(t, s)y(s) ds, t ∈ J ,

where

H(t, s) = G(t, s)p(s) +
ψ(t)k + ψ(t)k

k

∫ 


G(τ , s)p(s)g(τ ) dτ

+
ψ(t)k + ψ(t)k

k

∫ 


G(τ , s)p(s)h(τ ) dτ , ()

p(t) = exp

(∫ t


a(s) ds

)
,

G(t, s) =

ρ

{
ψ(t)ψ(s),  ≤ t ≤ s ≤ ,
ψ(s)ψ(t),  ≤ s ≤ t ≤ ,

ρ = ψ ′
(). ()

Moreover, u(t) ≥  on J provided y ≥ .

By Remark . in [], we have

Lemma  [] Suppose that (H) and (H) hold, then, for any t, s ∈ J , we have

 ≤ G(t, s) ≤ G(s, s),  ≤ H(t, s) ≤H(s), ()

H(t, s) ≥ γ (t)H(s), ()

where γ (t) = min{ψ(t),ψ(t)}, t ∈ J and

H(s) = G(s, s)p(s) +
k + k

k

∫ 


G(τ , s)p(s)g(τ ) dτ +

k + k

k

∫ 


G(τ , s)p(s)h(τ ) dτ . ()

Let E = C(J) be the standard Banach space with the maximum norm and P be the typical
cone of nonnegative continuous functions in the form

P =
{

u ∈ E : u(t) ≥ γ (t)‖u‖, t ∈ J
}

.

Let Pmn = {u ∈ P, m ≤ ‖u‖ ≤ n}, Pr = {u ∈ P : ‖u‖ ≤ r} for n > m > , r > .
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First, we give an operator T : P \ {} → C(J) as follows:

(Tu)(t) =
∫ 


H(t, s)f

(
s, u(s)

)
ds, t ∈ J . ()

Lemma  If conditions (H) and (H) are satisfied, then, for any n > m > , T : Pmn → P is
a completely continuous operator.

Proof For any given u ∈ Pmn, we have m ≤ ‖u‖ ≤ n. From the construction of P, we have

γ (t)m ≤ u(t) ≤ n, ∀t ∈ J . ()

Clearly, for any n > m > , condition (H) means that

â∗
mn =

∫ 


H(t)̂a(t)̂gmn(t) dt < +∞, ()

where

ĝmn(t) = max
{̂

g(u) : γ (t)m ≤ u ≤ n
}

. ()

It follows from (), (H), (H) and Lemma  that

f
(
t, u(t)

) ≤ â(t)̂gmn(t) + b̂(t), ∀t ∈ J+, u ∈ Pmn, ()

and

(Tu)(t) =
∫ 


H(t, s)f

(
s, u(s)

)
ds

≤
∫ 


H(s)f

(
s, u(s)

)
ds

≤
∫ 


H(s)

[̂
a(s)̂gmn(s) + b̂(s)

]
ds

= â∗
mn + b̂∗, ∀t ∈ J , ()

which shows that T makes sense. According to Lemma , we have for any t ∈ J

(Tu)(t) =
∫ 


H(t, s)f

(
s, u(s)

)
ds

≤
∫ 


H(s)f

(
s, u(s)

)
ds.

Hence,

‖Tu‖ ≤
∫ 


H(s)f

(
s, u(s)

)
ds. ()
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At the same time, by Lemma  and (), we get

(Tu)(t) =
∫ 


H(t, s)f

(
s, u(s)

)
ds

≥ γ (t)
∫ 


H(s)f

(
s, u(s)

)
ds

≥ γ (t)‖Tu‖, ∀t ∈ J . ()

This indicates that T maps Pmn into P.
Next, we shall show the complete continuity of the operator T . Let un, ū ∈ Pmn, with

‖un – ū‖ →  (n → ∞); then limn→∞ un(t) = ū(t), t ∈ J . Let

(Tu)(t) = f
(
t, u(t)

)
, for any t ∈ J+, u ∈ Pmn,

(Tu)(t) =
∫ 


H(t, s)u(s) ds, for any t ∈ J+, u ∈ L(J).

By (H),

f
(
t, un(t)

) → f
(
t, ū(t)

)
(n → +∞), for any t ∈ J+. ()

Similar to (), for un, ū ∈ Pmn, one has

f
(
t, un(t)

) ≤ â(t)̂gmn(t) + b̂(t), f
(
t, ū(t)

) ≤ â(t)̂gmn(t) + b̂(t), ∀t ∈ J+.

Then one gets

∣∣f (t, un(t)
)

– f
(
t, ū(t)

)∣∣ ≤ ̂a(t)̂gmn(t) + ̂b(t) 
= σ (t) ∈ L(J). ()

The Lebesgue dominated convergence theorem together with () and () generates

lim
n→∞

∫ 



∣∣(Tun)(t) –
(
Tū(t)

)∣∣dt = .

That is to say T : Pmn → L(J) is continuous. Furthermore, the complete continuity of
the operator T : L(J) → C(J) can easily be verified by the Arzela-Ascoli theorem and
a standard discussion. Hence, by the property of compound operators we see that T =
T ◦ T : Pmn → C(J) is completely continuous. �

Lemma  ([]) Let E be a Banach space, P ⊂ E a cone in E. For r > , define Pr = {u ∈ P :
‖u‖ ≤ r}. Assume that T : Pr → P is a compact map such that Tu �= u for u ∈ ∂Pr = {u ∈ P :
‖u‖ = r}.

(i) If ‖u‖ ≤ ‖Tu‖, ∀u ∈ ∂Pr , then

i(T , Pr , P) = .

(ii) If ‖u‖ ≥ ‖Tu‖, ∀u ∈ ∂Pr , then

i(T , Pr , P) = .
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3 Main results
Theorem  Let conditions (H)-(H) be satisfied. Furthermore, there exists a constant r̂ > 
satisfying

â∗
r̂ + b̂∗ < r̂, ()

here, â∗̂
r and b̂∗ are given in (H). Then the BVP () admits at least two positive solutions

x∗ and x∗∗ such that  < ‖x∗‖ < r̂ < ‖x∗∗‖.

Proof From Lemma , we know that for any n > m > , the operator T maps Pmn into P
and is completely continuous. Next, we are in a position to show that T has two distinct
positive fixed points x∗, x∗∗ such that  < ‖x∗‖ < r̂ < ‖x∗∗‖.

From (H) we know there exists a constant r >  satisfying

f (t, u) >
(

γ 


∫ 





H
(




, s
)

ĉ(s) ds
)–

ĉ(t)u, ∀t ∈ J+, u ≥ r. ()

Let  < γ 


= mint∈[ 
 , 

 ]{ψ(t),ψ(t)} < . Choose

r > max

{
r

γ 


, r̂
}

. ()

For u ∈ ∂Pr , considering the definition of cone P, we have

u(t) ≥ γ (t)r ≥ γ 


r > r, ∀t ∈
[




,



]
. ()

So, we get from (), (), () that

(Tu)
(




)
=

∫ 


H

(



, s
)

f
(
s, u(s)

)
ds

>
(

γ 


∫ 





H
(




, s
)

ĉ(s) ds
)– ∫ 






H
(




, s
)

ĉ(s)u(s) ds

≥
(

γ 


∫ 





H
(




, s
)

ĉ(s) ds
)– ∫ 






H
(




, s
)

ĉ(s) ds · γ 


r = r, ()

i.e., ‖Tu‖ > ‖u‖, u ∈ ∂Pr . Therefore, by Lemma ,

i(T , Pr , P) = . ()

By condition (H), there exists a constant r >  satisfying

f (t, u) >
(∫ 






H
(




, s
)

d̂(s) ds
)–

d̂(t)̂r, ∀t ∈ J+,  < u < r. ()

Choose

 < r < min{r, r̂}. ()
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For u ∈ ∂Pr , we have

r > r = ‖u‖ ≥ γ 


r > , ∀t ∈ J+.

So, we get from () and () that

(Tu)
(




)
=

∫ 


H

(



, s
)

f
(
s, u(s)

)
ds

>
(∫ 






H
(




, s
)

d̂(s) ds
)– ∫ 






H
(




, s
)

d̂(s)̂r ds

≥
(∫ 






H
(




, s
)

d̂(s) ds
)– ∫ 






H
(




, s
)

d̂(s) ds · r̂ = r̂ > r, ()

i.e., ‖Tu‖ > ‖u‖, u ∈ ∂Pr . Therefore, by Lemma ,

i(T , Pr , P) = . ()

In a similar manner, for u ∈ ∂P̂r , by (H), Lemma  and (), we get

(Tu)(t) =
∫ 


H(t, s)f

(
s, u(s)

)
ds

≤
∫ 


H(s)f

(
s, u(s)

)
ds

≤
∫ 


H(s)

[̂
a(s)̂ĝr(s) + b̂(s)

]
ds

≤ â∗
r̂ + b̂∗ < r̂, ∀t ∈ J , ()

i.e., ‖Tu‖ < ‖u‖, u ∈ ∂P̂r . Therefore, by Lemma , we get

i(T , P̂r , P) = . ()

Now, the additivity of the fixed point index together with (), (), () implies that

i(T , Pr \ P̊̂r , P) = –

and

i(T , P̂r \ P̊r , P) = .

Hence, T has two fixed points x∗ and x∗∗ which belong to P̂r \ P̊r and Pr \ P̊̂r , respectively,
such that  < r < ‖x∗‖ < r̂ < ‖x∗∗‖ ≤ r. �

4 An example
Example  Consider the following second-order singular integral BVPs:

{
u′′(t) + u′(t) – u(t) + 

 √(–t)
(u + 

 √u ) + 
 √t(–t)

= ,  < t < ,
u() =

∫ 
 su(s) ds, u() =

∫ 
 su(s) ds.

()
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Conclusion BVP () admits at least two positive solutions x∗ and x∗∗ satisfying  <
‖x∗‖ <  < ‖x∗∗‖.

Proof Clearly, BVP () has the form (), in which a(t) ≡ , b(t) ≡ –, f (t, u) = 
 √(–t)

×
(u + 

 √u ) + 
 √t(–t)

, g(s) = s, h(s) = s. Obviously, f (t, u) permits singularities at t = , 
and u = .

Let ψ and ψ satisfy

{
ψ ′′

 (t) + ψ ′
(t) – ψ(t) = ,

ψ() = , ψ() = ,

{
ψ ′′

 (t) + ψ ′
(t) – ψ(t) = ,

ψ() = , ψ() = .

By a simple computation, we get

ψ(t) =


e – e–

(
et – e–t), ψ(t) =


e – e–

(
e–t – et–),

ρ =


e – e– , p(t) = et ,

k =  –
– 

 e– + 
 e – e–

e – e– = ., k =

 e– + 


e – e– = .,

k =
– 

 e– + 
 e + e–

e – e– = ., k =  –
e + 

 e– – 


e – e– = .,

k = kk – kk = . > ,

G(t, s) =


(e – e–)

{
(et – e–t)(e–s – es–),  ≤ t ≤ s ≤ ,
(es – e–s)(e–t – et–),  ≤ s ≤ t ≤ .

It is not difficult to see that  < G(t, s) < s and

H(s) = G(s, s)p(s) +
k + k

k

∫ 


G(τ , s)p(s)g(τ ) dτ +

k + k

k

∫ 


G(τ , s)p(s)h(τ ) dτ < s.

For any given r > , we can see that (H) is valid for â(t) = 
 √(–t)

, g(u) = u + 
 √u ,

b(t) = 
 √t(–t)

, and it follows from  ≤ 
(e–e–) t( – t) ≤ γ (t) ≤  that

â∗
r =

∫ 


H(t)̂a(t)̂gr(t) dt

<
∫ 


t


 √( – t)

(
r +

e – e–

 
√


(e–e–) t( – t)r

)
dt < +∞, ()

b̂∗ =
∫ 

 H(t)̂b(t) dt < .. Clearly, (H) and (H) hold for ĉ(t) = d̂(t) = 
 √(–t)

, and
c∗ = d∗ = .. Take r̂ = ; we have by ()

â∗
r̂ + b̂∗ <

∫ 


t


 √( – t)

(
 +

e – e–

 
√


(e–e–) t( – t)

)
dt + .

= . + . + . = . <  = r̂.

Consequently, () holds and our conclusion can be deduced from Theorem . �
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