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Abstract
In this paper, we consider a kind of neutral Rayleigh equation with singularity,

(x(t) – cx(t – δ))′′ + f (t, x′(t)) + g(t, x(t)) = e(t),

where g has a singularity at x = 0. By applications of coincidence degree theory, we
find that the existence of positive periodic solution for this equation.
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1 Introduction
More recently, some classical tools have been used to study periodic solution for Rayleigh
equation in the literature, including coincidence degree theory [–], the method of upper
and lower solutions [], the Manásevich-Mawhin continuation theorem [–], and the
time map continuation theorem [–].

From then on, the study of the existence of positive periodic solutions for Rayleigh equa-
tions with singularity has attracted many researchers’ attention [, ]. In , Wang and
Ma [] investigated the following singular Rayleigh equation:

x′′ + f
(
t, x′) + g(x) = p(t),

where g had a singularity at the origin, i.e., limx→+∞ g(x) = +∞. By applications of the limit
properties of time map, the authors found that the existence of periodic solution for this
equation. Afterwards, by using Manásevich-Mawhin continuation theorem, Lu, Zhong
and Chen [] discussed the existence of periodic solution for the following two kinds of
p-Laplacian singular Rayleigh equations:

(∣∣x′∣∣p–x′)′ + f
(
x′) – g∗

 (x) + g∗
 (x) = h(t)

and

(∣∣x′∣∣p–x′)′ + f
(
x′) + g∗

 (x) – g∗
 (x) = h(t),

where g, g : (, +∞) →R were continuous and g(x) was unbounded as x → +.
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In the above papers, the authors investigated several kinds of Rayleigh equations or sin-
gular Rayleigh equations. However, the study of the neutral Rayleigh equation with sin-
gularity is relatively rare. Motivated by [, ], we consider the neutral Rayleigh equation
with singularity

(
x(t) – cx(t – δ)

)′′ + f
(
t, x′(t)

)
+ g

(
t, x(t)

)
= e(t), (.)

where |c| �= , δ is a constant, e ∈ C[, T] and
∫ T

 e(t) dt = ; f is continuous functions de-
fined on R

 and periodic in t with f (t, ·) = f (t + T , ·), and f (t, ) = ; g : R × (, +∞) → R

is an L-Carathéodory function and g(t, ·) = g(t + T , ·), g(t, x) = g(x) + g(t, x), here g :
R × (, +∞) → R is an L-Carathéodory function, g(t, ·) = g(t + T , ·); g ∈ C((,∞);R)
has a strong singularity at the origin such that

∫ 


g(s) ds = –∞. (.)

By application of coincidence degree theory, we find the existence of positive periodic
solutions of (.). Our results improve and extend the results in [, ].

2 Preparation
In this section, we give some lemmas, which will be used in this paper.

Lemma . (see []) If |c| �= , then the operator (Ax)(t) := x(t)–cx(t –δ) has a continuous
inverse A– on the space

CT :=
{

x|x ∈ (R,R), x(t + T) – x(t) ≡ ,∀t ∈R
}

,

and satisfying

∣∣(A–x
)
(t)

∣∣ ≤ ‖x‖
| – |c|| ,

where ‖x‖ = maxt∈[,T] |x(t)|,∀x ∈ CT .

Lemma . (Gaines and Mawhin []) Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Let � ⊂ X be an open bounded
set and N : � → Y be L-compact on �. Assume that the following conditions hold:

() Lx �= λNx, ∀x ∈ ∂� ∩ D(L), λ ∈ (, );
() Nx /∈ Im L, ∀x ∈ ∂� ∩ Ker L;
() deg{JQN ,� ∩ Ker L, } �= , where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in � ∩ D(L).

Set

X :=
{

x ∈ C(R,R) : x(t + T) – x(t) ≡ ,∀t ∈R
}

,

Y :=
{

y ∈ C(R,R) : y(t + T) – y(t) ≡ ,∀t ∈R
}

,
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with the norm

‖x‖X = max
{‖x‖,

∥
∥x′∥∥}

, ‖y‖Y = ‖y‖.

Clearly, X and Y are both Banach spaces. Meanwhile, define

L : D(L) =
{

x ∈ X : x′′ ∈ C(R,R)
} ⊂ X → Y

by

(Lx)(t) = (Ax)′′(t)

and N : X → Y by

(Nx)(t) = –f
(
t, x′(t)

)
– g

(
t, x(t)

)
+ e(t). (.)

Then (.) can be converted to the abstract equation Lx = Nx. From the definition of L,
one can easily see that

Ker L ∼= R, Im L =
{

y ∈ Y :
∫ T


y(s) ds = 

}
.

So L is a Fredholm operator with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂ R be
defined by

Px = (Ax)(); Qy =

T

∫ T


y(s) ds,

then Im P = Ker L, Ker Q = Im L. Let K denote the inverse of L|Ker p∩D(L). It is easy to see
that Ker L = Im Q = R and

[Ky](t) =
∫ T


G(t, s)y(s) ds,

where

G(t, s) =

⎧
⎨

⎩

–s(T–t)
T ,  ≤ s < t ≤ T ;

–t(T–s)
T ,  ≤ t ≤ s ≤ T .

(.)

From (.) and (.), it is clear that QN and K(I – Q)N are continuous, QN(�) is bounded
and then K(I – Q)N(�) is compact for any open bounded � ⊂ X, which means N is L-
compact on �̄.

3 Positive periodic solution for (1.1)
For the sake of convenience, we list the following assumptions, which will be used repeat-
edly in the sequel:
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(H) there exists a positive constant K such that |f (t, u)| ≤ K , for (t, u) ∈R×R;
(H) there exist positive constants α and β such that |f (t, u)| ≤ α|u| + β , for (t, u) ∈R×R;
(H) f (t, u) ≥ , for (t, u) ∈R×R;
(H) there exists a positive constant D such that g(t, x) > K , for x > D;
(H) there exists a positive constant D such that g(t, x) > ‖e‖ for x > D;
(H) there exist positive constants m, n such that

g(t, x) ≤ mx + n, for all x > .

Now we give our main results on periodic solutions for (.).

Theorem . Assume that conditions (H), (H), (H) hold. Then (.) has at least one
solution with period T if mT < π | – |c||.

Proof By construction (.) has an T-periodic solution if and only if the operator equation

Lx = Nx

has an T-periodic solution. To use Lemma ., we embed this operator equation into an
equation family with a parameter λ ∈ (, ),

Lx = λNx,

which is equivalent to the following equation:

(
(Ax)(t)

)′′ + λf
(
t, x′(t)

)
+ λg

(
t, x(t)

)
= λe(t), (.)

where (Ax)(t) = x(t) – cx(t – δ) in Section .
We first claim that there is a point ξ ∈ (, T) such that

 < x(ξ ) ≤ D. (.)

Integrating both sides of (.) over [, T], we have

∫ T



[
f
(
t, x′(t)

)
+ g

(
t, x(t)

)]
dt = . (.)

This shows that there at least exists a point ξ ∈ (, T) such that

f
(
ξ , x′(ξ )

)
+ g

(
ξ , x(ξ )

)
= ,

then by (H), we have

g
(
ξ , x(ξ )

)
=

∣∣–f
(
ξ , x′(ξ )

)∣∣ ≤ K ,
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and in view to (H) we get x(ξ ) ≤ D. Since x(t) is periodic with periodic T and x(t) > , for
t ∈ [, T]. Then  < x(ξ ) ≤ D. (.) is proved. Therefore, we have

‖x‖ = max
t∈[,T]

∣∣x(t)
∣∣ = max

t∈[ξ ,ξ+T]

∣∣x(t)
∣∣

=



max
t∈[ξ ,ξ+T]

(∣∣x(t)
∣∣ +

∣∣x(t – T)
∣∣)

=



max
t∈[ξ ,ξ+T]

(∣∣
∣∣x(ξ ) +

∫ T

ξ

x′(s) ds
∣∣
∣∣ +

∣∣
∣∣x(ξ ) –

∫ ξ

t–T
x′(s) ds

∣∣
∣∣

)

≤ D +



(∫ t

ξ

∣∣x′(s)
∣∣ds +

∫ ξ

t–T

∣∣x′(s)
∣∣ds

)

≤ D +



∫ T



∣∣x′(s)
∣∣ds. (.)

For |c| �= , by applying Lemma ., we have

∥
∥x′∥∥ = max

t∈[,T]

∣
∣A–Ax′(t)

∣
∣

≤ maxt∈[,T] |Ax′(t)|
| – |c||

=
|(Ax)′(t)|
| – |c|| , (.)

since (Ax)′(t) = (x(t) – cx(t – δ))′ = x′(t) – cx′(t – δ) = (Ax′)(t) (see [, ]).
On the other hand, from

∫ T
 (Ax)′(t) dt = , there exists a point t ∈ (, T) such that

(Ax)′(t) = , which together with the integration of (.) on interval [, T] yields


∣
∣(Ax)′(t)

∣
∣ ≤ 

(
(Ax)′(t) +




∫ T



∣
∣(Ax)′′(t)

∣
∣dt

)

≤ λ

∫ T



∣∣–f
(
t, x′(t)

)
– g

(
t, x(t)

)
+ e(t)

∣∣dt

≤
∫ T



∣
∣f

(
t, x′(t)

)∣∣dt +
∫ T



∣
∣g

(
t, x(t)

)∣∣dt +
∫ T



∣
∣e(t)

∣
∣dt. (.)

Write

I+ =
{

t ∈ [, T] : g
(
t, x(t)

) ≥ 
}

; I– =
{

t ∈ [, T] : g
(
t, x(t)

) ≤ 
}

.

Then we get from (H), (H) and (.)

∫ T



∣∣g
(
t, x(t)

)∣∣dt =
∫

I+

g
(
t, x(t)

)
dt –

∫

I–

g
(
t, x(t)

)
dt

= 
∫

I+

g
(
t, x(t)

)
dt +

∫ T


f
(
t, x′(t)

)
dt

≤ 
∫ T



(
mx(t) + n

)
dt +

∫ T



∣∣f
(
t, x′(t)

)∣∣dt

≤ m
∫ T



∣
∣x(t)

∣
∣dt + nT + KT . (.)
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Substituting (.) into (.), and from (H), we have


∣∣(Ax)′(t)

∣∣ ≤ m
∫ T



∣∣x(t)
∣∣dt + nT + KT + ‖e‖T

≤ mT



(∫ T



∣
∣x(t)

∣
∣dt

) 


+ N, (.)

where N = T(n + K) +‖e‖T . In view of an inequality (found in [], Lemma .) and (.),
we have

(∫ T



∣
∣x(t)

∣
∣ dt

) 
 ≤

(
T
π

)(∫ T



∣
∣x′(t)

∣
∣pdt

) 


+ DT

 . (.)

Substituting (.) into (.), we have


∣
∣(Ax)′(t)

∣
∣ ≤ mT




((
T
π

)(∫ T



∣
∣x′(t)

∣
∣pdt

) 


+ DT



)
+ N. (.)

Substituting (.) into (.), we have

∥∥x′∥∥ ≤ mT 
 (( T

π
)(
∫ T

 |x′(t)| dt) 
 + DT 

 ) + N


| – |c||

≤ mT( T
π

)‖x′‖ + mTD + N


| – |c|| .

Since mT

π |–|c|| < , it is easy to see that there exists a positive constant M such that

∥
∥x′∥∥ ≤ M. (.)

Substituting (.) into (.), we have

‖x‖ ≤ D +



∫ T



∣∣x′(t)
∣∣dt ≤ D +




TM := M. (.)

Next, it follows from (.) that

(Ax)′′(t) + λf
(
t, x′(t)

)
+ λ

(
g

(
x(t)

)
+ g

(
t, x(t)

))
= λe(t). (.)

Multiplying both sides of (.) by x′(t), we get

(Ax)′′(t)x′(t) + λf
(
t, x′(t)

)
x′(t) + λg

(
x(t)

)
x′(t) + λg

(
t, x(t)

)
x′(t) = λe(t)x′(t). (.)
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Let τ ∈ [, T], for any τ ≤ t ≤ T , we integrate (.) on [τ , t] and get

λ

∫ x(t)

x(τ )
g(u) du = λ

∫ t

τ

g
(
x(s)

)
x′(s) ds

= –
∫ t

τ

(Ax)′′(s)x′(s) ds – λ

∫ t

τ

f
(
t, x′(s)

)
x′(s) ds

– λ

∫ t

τ

g
(
s, x(s)

)
x′(s) ds + λ

∫ t

τ

e(s)x′(s) ds. (.)

By (.), (.), (.) and (H), we have

∣
∣∣
∣

∫ t

τ

(Ax)′′(s)x′(s) ds
∣
∣∣
∣ ≤

∫ t

τ

∣∣(Ax)′′(s)
∣∣∣∣x′(s)

∣∣ds

≤ ∥
∥x′∥∥

∫ T



∣
∣(Ax)′′(s)

∣
∣ds

≤ λM

(∫ T



∣∣f
(
t, x′(s)

)∣∣ds +
∫ T



∣∣g
(
s, x(s)

)∣∣ds +
∫ T



∣∣e(s)
∣∣ds

)

≤ λM
(
mTM + nT + KT + T‖e‖).

We have

∣∣
∣∣

∫ t

τ

f
(
t, x(s)

)
x′(s) ds

∣∣
∣∣ ≤ ∥

∥x′∥∥
∫ T



∣
∣f

(
t, x(s)

)∣∣ds ≤ MKT .

∣
∣∣
∣

∫ t

τ

g
(
s, x(s)

)
x′(s) ds

∣
∣∣
∣ ≤ ∥∥x′∥∥

∫ T



∣∣g
(
t, x(t)

)∣∣dt ≤ M
√

T |gM |,

where gM = max≤x≤M |g(t, x)| ∈ L(, T).

∣∣
∣∣

∫ t

τ

e(s)x′(s) dt
∣∣
∣∣ ≤ MT‖e‖.

From these inequalities we can derive from (.) that

∣
∣∣
∣

∫ x(t)

x(τ )
g(u) du

∣
∣∣
∣ ≤ M

(
mTM + nT +

√
T |gM | + KT + T‖e‖).

In view of the strong force condition (.), we know that there exists a constant M > 
such that

x(t) ≥ M, ∀t ∈ [τ , T]. (.)

The case t ∈ [, τ ] can be treated similarly.
From (.), (.) and (.), we let

� =
{

x : E ≤ x(t) ≤ E,
∥∥x′∥∥ ≤ E,∀t ∈ [, T]

}
,
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where  < E < M, E > max{M, D}, E > M. Then condition () of Lemma . is satisfied.
If x ∈ ∂� ∩ Ker L, then x(t) = E or (E). In this case

QNx =

T

∫ T


g(t, E) dt := –ḡ(E),

or

QNx =

T

∫ T


g(t, E) dt := –ḡ(E),

since f (t, ) = . According to the condition (H), we get QNx �= , which implies Nx �= Im L
for x ∈ ∂� ∩ Ker L. Hence, condition () of Lemma . holds. To check condition () of
Lemma ., we define an isomorphism J : Im Q → Ker L = R, J(u) = u. It is noted that if
x ∈ � ∩ Ker L, then x(t) = c with E < c < E,

JQNx = –
∫ T


g(t, c) dt.

From (H), we can derive

deg(JQN ,� ∩ Ker L, ) = –.

So condition () of Lemma . is satisfied. By applying Lemma ., we conclude that the
equation Lx = Nx has a solution x on �̄∩D(L), i.e., (.) has at least one positive T-periodic
solution x(t). �

Theorem . Assume that conditions (H), (H), (H)-(H) hold. Then (.) has at least
one positive solution with period T if mT( T

π )+αT
|–|c|| < .

Proof We will follow the same strategy and notations as the proof of Theorem .. Now,
we consider ‖x′‖ ≤ M.

We first claim that there is a constant ξ ∗ ∈ (, T) such that

 < x
(
ξ ∗) ≤ D. (.)

In view of
∫ T

 (Ax)′(t) dt = , we know that there exist two constants t, t ∈ [,ω] such that
(Ax)′(t) ≥ , (Ax)′(t) ≤ . Let ξ ∗ ∈ (, T) be a global maximum point of (Ax)′(t). Clearly,
we have

(Ax)′
(
ξ ∗) ≥ , (Ax)′′

(
ξ ∗) = .

From (H), we know f (ξ ∗, x′(ξ ∗)) ≥ . Therefore, we see that

g
(
ξ ∗, x

(
ξ ∗)) – e

(
ξ ∗) = –f

(
ξ ∗, x′(ξ ∗)) ≤ ,

i.e.

g
(
ξ ∗, x′(ξ ∗)) ≤ e

(
ξ ∗) ≤ ‖e‖.
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From (H), we have

x(ξ ) ≤ D.

Since x(t) > , hence, we can get  < x(ξ ∗) ≤ D. This proves (.).
Similarly, from (.), we have

∣
∣x(t)

∣
∣ ≤ D +




∫ T



∣
∣x′(t)

∣
∣dt. (.)

From (.), (H) and (H), we have

∫ T



∣∣g
(
t, x(t)

)∣∣dt =
∫

I+

g
(
t, x(t)

)
dt –

∫

I–

g
(
t, x(t)

)
dt

= 
∫

I+

g
(
t, x(t)

)
dt +

∫ T


f
(
t, x′(t)

)
dt

≤ 
∫

I+

(
mx(t) + n

)
dt +

∫ T



∣∣f
(
t, x′(t)

)∣∣dt

≤ m
∫ T



∣∣x(t)
∣∣dt + nT + α

∫ T



∣∣x′(t)
∣∣dt + βT . (.)

Substituting (.) into (.), and from (H), we have


∣∣(Ax)′(t)

∣∣ ≤ m
∫ T



∣∣x(t)
∣∣dt + nT + α

∫ T



∣∣x′(t)
∣∣dt + βT + ‖e‖T

≤ mT



(∫ T



∣∣x(t)
∣∣ dt

) 


+ α
∥∥x′∥∥T + N, (.)

where N = T(n + β) + ‖e‖T . Substituting (.) into (.), we have


∣∣(Ax)′(t)

∣∣ ≤ mT



((
T
π

)(∫ T



∣∣x′(t)
∣∣ dt

) 


+ DT



)
+ α

∥∥x′∥∥T + N

≤ mT
(

T
π

)∥
∥x′∥∥ + α

∥
∥x′∥∥T + mDT + N

=
(

mT
(

T
π

)
+ αT

)∥
∥x′∥∥ + mDT + N. (.)

Similarly, for |c| �= , we can get

∥∥x′∥∥ ≤ (mT( T
π

) + αT)‖x′‖
| – |c|| +

mDT + N


| – |c|| .

Since mT( T
π )+αT

|–|c|| < , it is easy to see that there exists a positive constant M such that

∥∥x′∥∥ ≤ M.

The proof left is as same as Theorem .. �
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We illustrate our results with some examples.

Example . Consider the following neutral Rayleigh equation with singularity:

(
x(t) –




x(t – δ)
)′′

+ cos(t) sin x′(t) +


π

(
sin(t) + 

)
x(t) –


uμ

= cos(t), (.)

where μ ≥  and δ is a constant.
It is clear that T = π

 , c = 
 , e(t) = cos(t), f (t, u) = cos(t) sin u, g(t, x) = 

π
×

(sin(t) + )x(t) – 
xμ(t) . Choose K = , D = , m = 

π
, it is obvious that (H), (H) and (H)

hold. Next, we consider

mT

π | – |c|| =

π

× ( π
 )

π | – 
 |

=



< .

Therefore, by Theorem ., (.) has at least one π
 -periodic solution.

Example . Consider the following a kind of neutral Rayleigh equation:

(
x(t) – x(t – δ)

)′′ +


π

(
sin t + 

)
x′(t) +

(
cos t + 

)
x(t) –


xμ

= sin(t), (.)

where μ ≥  and δ is a constant.
It is clear that T = π , c = , e(t) = sin(t), f (t, u) = 

π
(sin t + )u(t), g(t, x) =

(cos t + )x(t) – 
xμ(t) . Choose m = , D = , a = 

π
, it is obvious that (H), (H), (H)

and (H) hold. Next, we consider

mT( T
π

) + αT
| – |c|| =

 × π ( π
π

) + 
π

× π

 – 

=
π + 


< .

So, (.) has at least one nonconstant π-periodic solution by application of Theorem ..
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