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Abstract

In this paper, we investigate the following nonlinear and non-homogeneous elliptic
system:

—divia;(|Vu)Vu) + Via; (ul)u = Fulx,u,v) - inRY,
—divia,(|VV))VV) + Va)ax (Vv = F.(x, u,v)  inRY,
W, v) € W1 RNy x W'®2(RM),

where ¢;(t) = a;(|t])t(i = 1,2) are two increasing homeomorphisms from R onto R,
functions V;(i=1,2) and F are 1-periodic in x, and F satisfies some (¢4, ¢,)-superlinear
Orlicz-Sobolev conditions. By using a variant mountain pass lemma, we obtain that
the system has a ground state.

MSC: 35J20; 35J50; 35J55; 35A15
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1 Introduction
In this paper, we consider the following nonlinear and non-homogeneous elliptic system
in Orlicz-Sobolev spaces:

—div(a1(|Vu|)Vu) + Vi(x)ar(|u))u = Fu(x,u,v) inRYN,
—div(ay(|VV])VV) + Va(x)as(|v))v = Fo(x,u,v)  in RY, (L1)
(u,v) € WEPL(RN) x WLP2(RN),

where a;(i = 1,2) : (0, +00) — R are two functions satisfying:

(¢1) #i(i=1,2):R — R defined by

¢i(t): ﬂi(|t|)t fOVt;/O, (1‘2)
0 fort=0,

are two increasing homeomorphisms from R onto R;
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(¢2)
0] tpit) . "
bl o gy <5 g T < miniN A
where
¢ LN
D(t) = / $is)ds, tel0,00) and [Fi= —
0 N-1I;

Vi(i = 1,2) satisty
(V1) Vi(i=1,2) € C(RN,R) are I-periodic in x,,...,xx (called 1-periodic in x for short);
(V) there exist two constants oy, oy > 0 such that

o < min{ Vi(x), Vz(x)} < rnax{ Vi(x), Vz(x)} <ay forallxe RN,

and F satisfies
(F)) FeCHRN x R x R) is I-periodic in x, F(x,0,0) = 0 for all x € RN,

Set ay = a1, v=u, Vo = Vq and F(x,u,v) = F(x,v,u). Then system (1.1) reduces to the
following quasilinear elliptic equation:

—div(a;(|Vu|)Vu) + Vi(x)ay(|u))u = f(x,u) inRY,
(1.3)
u € WhOL(RN),

When a;(|t|)t = |t[P2t(p > 1), equation (1.3) reduces to the following well-known p-
Laplacian equation:

—div(|VulP2Vu) + Vi) ulP2u =f(x,u) inRY, L4)
ue W2 RN), '
To investigate the solutions of p-Laplacian equations like (1.4), the variational method
has become one of useful tools over the past several decades (see [1] and the refer-
ences therein). In most of the references, to ensure the boundedness of the Palais-Smale
((PS) for short) sequence of the energy functional, the following growth condition due to
Ambrosetti-Rabinowitz [1] was always assumed for the nonlinearity f:
(AR) there exists ju > p such that

0 < uF@x,u) <uf(x,u) forallu+0,

where, and in the sequel, F(x,u) = fou f(x,s)ds. (AR) implies that there exist two positive
constants cj, ¢p such that

F(x,u) > cilul* — ¢, forall (x,u) e RN x R,

which shows that (AR) is a p-superlinear growth condition. Based on the fact that the (PS)
condition can be replaced by the weaker Cerami condition for some deformation theorems
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which are the footstone for minimax methods, some new p-superlinear growth conditions
were established in order to weaken (AR). For example, in [2], for the case p = 2, Ding and
Szulkin replaced (AR) with conditions:

() limy, - oo % = +00 uniformly in x € RY;

(2) Flx,u) >0 for all u #0, and |f(x,u)|* < csF(x, u)|u|* for some c3 > 0,7 > max{l, %}
and all (x, u) with |u| large enough, where F(x, u) = f(x, u)u — 2F (x, u).
They proved that (fi) and (f;) hold if the nonlinearity f satisfies (AR) and a subcriti-
cal growth condition that |[f(x, )| < ca(|u| + |u|7) for some ¢4 > 0,g € (2,2*) and all
(x,u) € RN x R, where 2* = 1\21_]_\[2 if N>3and 2* =00 if N =1 or N = 2. Some condi-
tions similar to (f) were also introduced in [3] for the case p = 2 and in [4] for the case
p > 1. Moreover, in [5], Liu proved the existence of ground state for equation (1.4) when
the nonlinearity f satisfies (f1), the following p-superlinear growth condition:

(fs) there exists @ > 1 such that O F (x,u) > F(x,su) for all (x,u) € RN x R and s € [0,1],
where F(x, u) = f(x, u)u — pF(x, u),

and some reasonable assumptions. Instead of minimizing the energy functional on the
Nehari manifold, they obtained that (1.4) has a nontrivial solution by a mountain pass
type argument, and then, by using a technique of Jeanjean and Tanaka in [6], they obtained
that (1.4) has a ground state. (f;) and (f3) are different from (AR). Indeed, in [5], an example
which satisfies (f;) and (f3) but does not satisfy (AR) was given, that is,

Sflx,u) =167 log(1 + |¢]),

and in [3], an example which satisfies (AR) but does not satisfy (f3) was also given when
p =2, thatis,

floeu) =3|ul? / |15 g dt 4 |y, (1.5)
0

Under assumption (¢;), equations like (1.3) may be allowed to possess more complicated
nonlinear or non-homogeneous operator ¢;, which can be used to model many phenom-
ena (see [7, 8]). Based on these interesting facts, this type of equations has caused great
interest among scholars in recent years. In Clément et al. [9], the authors firstly studied
the existence of nontrivial solution for the following equation in Orlicz-Sobolev spaces by
the variational method:

—div(e1(|Vu)Vu) =f(x,u) in <,
u=0 onod<,

where Q is a bounded domain in RN with smooth boundary 92 and f satisfies the follow-
ing (AR) type condition for ¢-Laplacian operator and some reasonable assumptions:

(AR)* there exist > limsup,_, , tgll((tt)) and Ry > 0 such that

0 < uF(x,u) <uf(x,u) forall (x,u) € QL x R with |u| > Ry.

From then on, the variational method has been used widely to study the existence and mul-
tiplicity of solutions for this type of elliptic equations, and some growth conditions for the
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nonlinearity f in the case of p-Laplacian type were extended to the case of ¢-Laplacian
type (for example, see [8, 10, 11]). However, there are very few results regarding the exis-
tence of ground state for equations like (1.3). In [12], by using the mountain pass lemma
and the Nehari manifold method, Alves and Silva proved the existence of nonnegative
ground state for the following ¢-Laplacian equation with autonomous nonlinearity f:

—div(a1(IVul)Vu) + Vi(ex)ar (Jul)u = f(u) inRY,
u € WhO(RN),

where f : R — R is a C'-function satisfying an (AR) type condition and some reasonable
assumptions, € is a positive parameter, and V; : RN — R is a continuous function belong-
ing to the autonomous case V;(x) = u (see Theorem 3.4 in [12]) or the nonautonomous

case

Voo = liminf Vi (x) > Vj := 1nf Vi(x) >0 (see Theorem 4.11 in [12]).

|x|— 00

For the systems like (1.1), on the whole space R, to the best of our knowledge, there is no
paper to study the existence and multiplicity of solutions by the variational method, except
for [13]. In [13], we investigated system (1.1) with V;(x)(i = 1,2) : RN — R satisfying (V>)
and a;(i =1,2) : (0, +00) — R satisfying (¢1) and (¢,). By using the least action principle,
we obtained that system (1.1) has at least one nontrivial solution if F: RY x R x R — R is
a C! function, F(x,0,0) = 0 and satisfies

(1) there exist constants p; € [m;, [})(i=1,2),

max{X, Ll <qi<q<-<qi< min{}i—‘l, Ilj—zz}, and functions

)
Bl
ayj, doj, azjas; € L7 (RN, [0,+00))(j = 1,2,..., k) such that

p2p1g;-1)
|, u,v)| < Zal,(xwm +Za2,(x)|v| o,

j=1 j=1

r1w2g-D

k
|Fy (%, u,v)| < Zﬂgl V|~ 22 Za4j(x)lvlp2‘1/‘1
j=1 j=1

forall (x,u,v) e RN x R x R;
(2) there exist an open set @ C RN with |Q| > 0 and constants ag € [1,11), Bo € [1, 1),
8§>0,¢>0and i,k € Rwith > + k? #0 such that

F(x,tt,kt) > c(|Lt|°‘0 + |Kt|ﬁ0) forall (x,t) € Q x [0,8].

Moreover, when F satisfies an additional symmetric condition, by using the genus theory,
we also obtained that system (1.1) has infinitely many solutions.

On the whole space RY, the main difficulty for this type of elliptic equations and systems
without the (AR) type conditions is the lack of compactness of the Sobolev embedding,
which is crucial to ensure the boundedness of (PS) or Cerami sequence. To overcome
this difficulty, the usual way is to reconstruct the compactness of the Sobolev embedding,
which can be done by assuming that V; and f possess the radially symmetric structure
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(that is, V; and f depend on |x|) and then choosing a radially symmetric function sub-
space as the working space (see [8, 14, 15]) or by assuming that V; is coercive and then
choosing a subspace depending on V; as the working space (see [3, 4, 16, 17]). Then radial
and nonradical solutions can be obtained, respectively. When V; is bounded and V3, f are
without the radially symmetric structure, the compactness of the Sobolev embedding will
be lost. For this situation, to ensure the boundedness of (PS) or Cerami sequence, a use-
ful way is to assume that V; and f satisfy some specific periodicity conditions (see [5, 8,
18]), and another useful way is to assume that the nonlinearity satisfies a sublinear growth
condition such that the energy functional is coercive (see [13]).

In this paper, we study the existence of ground state for system (1.1) under the assump-
tion that V;(i = 1,2) and F are 1-periodic in x. Motivated by [5], we also obtain that sys-
tem (1.1) has a nontrivial solution by a variant mountain pass lemma, and then by using a
technique of Jeanjean and Tanaka in [6], we obtain the existence of ground state. We man-
age to extend the p-superlinear growth conditions (AR) and (f;) with (f;) for p-Laplacian
equations to (¢, ¢2)-superlinear growth conditions in the Orlicz-Sobolev space (called
(¢1, ¢2)-superlinear Orlicz-Sobolev conditions for short) for (¢, ¢,)-Laplacian systems,
respectively (see (F3)-(Fs) in Section 3). Since the system case is different from the scalar
case, we will come across some new difficulties, and more computing skills are needed in
the process of our proofs. We point out that our results are different from those in [12]
and [5] even if system (1.1) reduces to equations (1.3) and (1.4).

This paper is organized as follows. In Section 2, we recall some preliminary knowledge
on Orlicz and Orlicz-Sobolev spaces. In Section 3, we give our main results and complete
the proofs. In Section 4, we present some examples to illustrate our results.

2 Preliminaries
In this section, we introduce some fundamental notions and important properties about
Orlicz and Orlicz-Sobolev spaces. We refer the reader for more details to the books [19,
20] and the references therein.

First of all, we recall the notion of N-function. Let ¢ : [0, +o0) — [0, +00) be a right-
continuous, monotone increasing function with

1) ¢(0)=0;

(2) lim;_s 400 P(2) = +00;

(3) @(t) > 0 whenever ¢ > 0.
Then the function defined on [0, +00) by ®(¢) = fot ¢(s)ds is called an N-function. It is
obvious that ®(0) = 0 and & is strictly increasing and convex in [0, +00).

An N-function & satisfies a A,-condition globally (or near infinity) if

£) . (21)

S;]g o0 < +00 (or htrilf;lop 0 < +oo),

which implies that there exists a constant K > 0 such that ®(2¢) < K®(¢) for all £ > 0 (or

t >ty > 0). ® satisfies a A,-condition globally (or near infinity) if and only if for any given

¢ > 1, there exists a constant K, > 0 such that ®(ct) < K, ®(¢) forall £ > 0 (or ¢ > £y > 0).
For the N-function &, the complement of ® is given by

<~I>(t) = maox{ts - dD(s)} fort> 0.
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& is also an N-function and @ = ®. In addition, we have Young’s inequality, that is,
st < ®d(s)+ D(t) foralls,t>0, (2.1)
and the following inequality (see [21], Lemma A.2):
(p(1)) < @(2t) forallt> 0. (2.2)
Now we recall the Orlicz space L*(2) associated with ®. When ® satisfies the A,-

condition globally, the Orlicz space L*(£2) is the vectorial space of measurable functions
u: Q — R satisfying

/ D (|ul) dx < +00,
Q

where Q C R is an open set. L®(f2) is a Banach space endowed with Luxemburg norm

|ul

llt] @ := inf{k >0: / CI><T) dx < 1} for u € L*(Q).
Q
Particularly, when ®(£) = |£[7(1 < p < +00), the corresponding Orlicz space L?(Q2) is the

classical Lebesgue space L?(£2) and the corresponding Luxemburg norm | || ¢ is equal to
the classical L?(£2) norm, that is,

1
el rr (@) == (/ |u(x)|p dx)p for u € IP(Q).
Q

When Q = RY, we denote ||u|pgxy by ],
The fact that @ satisfies the A,-condition globally implies that

u,—u inl%Q) /®(|un—u|)dx—>0. (2.3)
Q

By the above Young’s inequality (2.1), the following generalized Holder’s inequality

/ uvdx
Q

can be obtained (see [19, 20]).
Define

<2|ullolvllz forallueL®(Q)andallve LED(Q) (2.4)

9
W (Q) = {u cL%(Q): a—” cL%(Q),i=1,. N}
Xi

with the norm
lullne = llulle + I Vulo.
Then W®(Q) is a Banach space called an Orlicz-Sobolev space. Denote the closure of

C(Q) in WH(Q) by Wé’d)(Q). Then, by some basic properties in Orlicz-Sobolev spaces,
we obtain that Wy ®(RN) = WH(RN).
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Next, we recall some inequalities. For more details, we refer the reader to the references
(19, 21].

Lemma 2.1 (see [19, 21]) If ® is an N-function, then the following conditions are equiva-
lent:

@

0 _ () ,
1<i= 1¢>0 o) = stlj([)) o0 =m < +00; (2.5)

(2) let ¢o(t) = min{t!, £}, ¢1(¢) = max{¢}, "} for t > 0. ® satisfies
50 ()P(p) = ®(pt) = 61(E)P(p) forall p,t=0;
(3) D satisfies a Ay-condition globally.

Lemma 2.2 (see [21]) If ® is an N-function and (2.5) holds, then ® satisfies

§0(||M||¢)5/1;N O(lul)dx < ti(lulle) forallueL®(RY).
Lemma 2.3 (see [21]) If © is an N-function and (2.5) holds with [ > 1. Let <I> be the comple-
ment ode and $H(t) = mm{tl 1), £5(8) = max{tl "} for t > 0, where ] := g and i = -
Then satisfies
1)
~ t®'(2) td' () ~
m=inf ——— <sup =— =
>0 CI)(t) t>0 d)(t)
2)
0(6)®(p) < B(pt) < 3(O)P(p)  forall p,t > 0;
3)
o(lulg) < fN S(lul) dx < ¢s(lullz) forall u e L*(RY).
R
If
1 -1 +00 -1
/ N+(IS) ds<+oo and / N+(IS) ds = +0o0, (2.6)
0 §sN 1 SN

then the Sobolev conjugate N-function, function &, of ®, is given in [19] by

t (D_l

@;l(t) = / N+(1 9 ds fort>0.
0 s N

Lemma 2.4 (see [21]) If @ is an N-function and (2.5) holds with [,m € (1 N), then (2.6)

holds. Let £4(t) = min{t", "}, ¢5(¢) = max{¢"",t""} for t > 0, where I* := N g M= z\%

Then @, satisfies
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&

R0 L),

P e S e 0™
@)

C(O).(0) < B (o8) < L5(O)Bu(0) forall p,t = 0;
3)

&a(lello,) < /RN &, (lul) dx < &5 (lullo,) for all u e L (RY),

The following important embedding proposition involving the Orlicz-Sobolev spaces
will be used frequently in our proofs.

Lemma 2.5 (see [19, 20]) If ® is an N-function and (2.5) holds with [,m € (1, N), then the
embedding

W (RV) — LY (RV)
is continuous for any N-function \V satisfying

. W(t) ) W(z)
limsup —— <00 and limsup < 00.
t—0* d)(t) t—+00 dli*(t)

Therefore, there exists a constant Cy such that
lully < Cyllulie forallue W"®(RY). (2.7)

If the space RN is replaced by a bounded domain D C RN and V increases essentially more
slowly than ®, near infinity, that is,

W(ct)
im =0
t—+00 (D*(t)

for any constant c > 0, then the embedding W'®(D) — L¥ (D) is compact.

Remark 2.6 By Lemmas 2.1, 2.3 and 2.4, (¢1)-(¢2) imply that ®,(i = 1,2), ’d;,r(i =1,2),
®;.(i =1,2) and ®;,(i = 1,2) are N-functions that satisfy the A,-condition globally, where
and in the sequel <~I>i denotes the complement of ®;(i = 1,2), ®;, denotes the Sobolev con-
jugate N-function function of ®;(i = 1,2) and ®;, denotes the complement of @, (i = 1,2).
Moreover, the fact that ®;(i = 1,2) and CAI%(i = 1,2) satisfy the A,-condition globally implies
that L® (RN)(i = 1,2) and W % (RN)(i = 1, 2) are separable and reflexive Banach spaces (see
[19, 20]).

Remark 2.7 Under assumptions (¢1) and (¢2), Lemmas 2.1, 2.4 and 2.5 imply that the
embeddings

WhO(RY) & LP(RY),  WMI(RY) < L (RY), i=12, (2.8)
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are continuous and the embeddings
Wh®i(B,) — L*(B,), i=1,2, (2.9)
are compact, where and in the sequel B, = {x ¢ RN : |x| < r} for r > 0.

3 Main results and proofs
Theorem 3.1 Assume that (¢1), (¢2), (V1), (V2), (F1) and the following conditions hold:

(F2)
. Fu(x, u, V) . Fv(x, u, V)
lim ~ =0, lim =~ =0,
w0 ¢y (Ju]) + DT (Pa(|v])) l@n)|—>0 O (D1 (|ul)) + P2 (|v])
F,(x,u,v) ) F,(x,u,v)

lim - ~ lim = T -
lwv)l—o00 D (|ul) + DI, (P2.(|v])) lwy)l—o00 D5 (D1 (|ul)) + D5, (Iv])

uniformly in x € RN, where and in the sequel ®;" denotes the inverse of ®,(i = 1,2), @},
denotes the derivative of ®;,(i =1,2) and 5;} denotes the inverse ofCTD,»*(i =1,2);
(F3) there exist ju; > m;(i = 1,2) such that
1 1
0 < F(x,u,v) < —uF,(x,u,v) + —vF,(x,u,v) forall (u,v) #(0,0).
M1 2
Then system (1.1) has a ground state, that is, a nontrivial solution (ug,vo) such that

I(ug,vo) = inf{l(u, v):(u,v) € W\ {(0, 0)} and I'(u,v) = O},
where W = WEPL(RN) x WEP2(RN) gnd
I(u,v) = /RN <I>1(|Vu|)dx+/RN Vi(x) P (|ul) dx
+'/1;N D, (IVvl) dx + /;{N Va(x) P, (|v]) dx — /RNF(x,u,v)dx.

Theorem 3.2 Assume that (¢1), (¢2), (V1), (Va), (F1), (F2) and the following conditions

hold:

(¢3)
lim sup el* <oo, i=1,2;
i—o - Di(lZ])

(Fa)

F(x,u,v)
im ——mM————— =+
l@v)l—>o0 @y (|ul) + Po(|v])

uniformly in x € RN;
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(F5) F(x,u,v) >0 forall (u,v) #(0,0) and there exists k > max{%, %} such that

< 00,

F(x,u,v) )k 1

li =
imsup <|u|11 + vk F(x,u,v)

|(u,v)|— 00

where

1 1
F(x,u,v) = —uF,(x,u,v) + —VvF,(x, u,v) — F(x,u,v).
12451 145

Then system (1.1) has a ground state.

By Lemmas 2.1 and 2.4, it is easy to check that the following conditions (F,) and (Fs)’
imply (F;) and (F4), respectively.

(F2)
Fy(x, u,v) -0 i Fy(x,u,v) o
()| —0 mplm =) = ‘(uj)‘nio my(mp-1) o
luf™=1+ v ™ lul 72+ vt
F,(x,u,v)
lim —————=0
wnl—oo BG-v
| 1+ v]
. F,(x,u,v . .
’ ll)fn W‘;)’—') =0, uniformlyinxeRN;
u,v)|—>0o0
ul %+ 5
(Fa)'
F(x,u,v)

— 7"~ 400, uniformlyinxe RN,
()| —o00 |u|™ + |v|"2

Thus, we have the following corollary.

Corollary 3.3 In Theorems 3.1 and 3.2, if conditions (F,) and (Fy) are replaced by (F,)’
and (Fy), respectively, then the conclusions still hold.

Remark 3.4 We point out that Theorems 3.1 and 3.2 are complementary, which is based
on the fact that there are functions satisfying (F,) and (Fs) but not satisfying (Fs) (see
Example 4.2 in Section 4) and there are also functions ¢;(i = 1,2) defined by (1.2) satisfying
(¢1) and (¢2) but not satisfying (¢3) (see Case 4 in Section 4).

When system (1.1) reduces to equation (1.3), we present the following results which cor-
respond to Theorems 3.1 and 3.2.

Corollary 3.5 Assume that functions ay, V1 and f satisfy (¢1)-(¢2), (V1)-(V2) and
(f)* f € C(RN,R) is 1-periodic in x,
()"

few L fww

im =0, m =
lul—0 ¢y (| u]) lul—>oo @, (|ul)

uniformly in x € RN;
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(f3)* there exists u > my such that
0 < uF(x,u) <uf(x,u) forallu#0.
Then equation (1.3) has a ground state in W1 (RN).

Corollary 3.6 Assume that functions ay, Vi and f satisfy (¢1)-(¢3), (V1)-(Va), (f)*-(f)*
and

(fa)*

F(x,u)
m = +00
lul—>00 D1 (|ue])

uniformly in x € RN;
(fs)* F(x,u) > 0 for all u #0 and there exists k > %[ such that

. (F(x, u) )k 1
lim sup <00

|(u,v)|— 00 |M|l1 F(x; Lt)

where
F(x,u) = uf (x,u) — my F(x, u, v).
Then equation (1.3) has a ground state in W®1(RN).

Remark 3.7 It is easy to see that our results are different from Theorem 3.4 and Theo-
rem 4.11 in [12].

Remark 3.8 For the nonlinearity f, our subcritical growth condition in the Orlicz-Sobolev

space

li f(xru) _

1m =
lul—>oc0 @1 (|ul)

0, uniformly in x e RN (3.1)

in (f2)* is weaker than the following one which is usually assumed in many papers in order
to consider ¢-Laplacian problems (for example, see [9-12]):

(SC) there exist a constant C > 0 and an N-function defined by V(t) := fot Y(s)ds,t €
[0, +00) satisfying

w0
m< b= =S e

= my <[}

or increasing essentially more slowly than 1, near infinity, such that

f (%, u)
Y (u)

lim sup <00, uniformly inx e RN,

|u|—o00
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Condition (3.1) was introduced by Alves et al. [8] for the autonomous nonlinearity f in the
Orlicz-Sobolev space. When a,(|t|)t = [t|P~2t(p > 1), (3.1) reduces to

lim f(x,*u) =0, uniformlyinxeRY, (3.2)
lul—>o0 |u|P -1

which was first introduced by Liu and Wang [22] instead of the usual subcritical growth
condition, that is, there exist constants C > 0 and q € (p, p*) such that

V(x, u)‘ < C(|u|“”1 + |u|q’1) for all (x,u) e RN x R. (3.3)

Remark 3.9 A condition similar to (f5)* was introduced by Carvalho et al. [11] for the
¢-Laplacian equation in the bounded domain © C R¥. In this paper, because we con-
sider problems on the whole space RN where the Sobolev spaces lack compactness of the
Sobolev embedding, we claim F(x, z) > 0 for all u # 0 in (f;)*.

When a;(|t|)t = |t[P72t(1 < p < N), it is obvious that (¢;)-(¢3) hold, and then we also

present the corresponding results for equation (1.4).

Corollary 3.10 Assume that N > p and functions Vy and f satisfy (V1)-(V2), (fi)*, (AR)
and

()
few

im m S 1) =0
|u|—0 |u|l7_1 ’ |u| =00 |u|17*—1

uniformly in x € RN,
Then equation (1.4) has a ground state in W' (RN),

Corollary 3.11 Assume that N > p and functions Vi and f satisfy (V1)-(V2), (h)*, (f2) and

(fa)

F(x,u)
im =+
lul—>oo  |ul?

uniformly in x € RN;
(fs)' F(x,u) >0 for all u # 0 and there exists k > % such that

. (F(x, u) )k 1
lim sup 0,

— <
lwy)—oo \ Ul ) F(x,u)

where
F(x,u) = uf (x,u) — pF(x, u,v).

Then equation (1.4) has a ground state in W (RN).
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Remark 3.12 If the subcritical growth condition (3.2) in (f;)’ is replaced by (3.3), Corol-
lary 3.10 becomes a corollary of Corollary 3.11 based on the fact that (AR) and (3.3) imply
(fa) and (f5)’ (see [3, 4]). However, we are not sure whether (AR) and (3.2) imply (f2)’ and
(f5) so that we do not know whether Corollary 3.10 is a corollary of Corollary 3.11. It is re-
markable that our Corollaries 3.10 and 3.11 are different from Theorem 1.1 in [5] because
there are examples satisfying (AR) and (f;)’ but not satisfying (f3) (see example (1.5) for
p=2).

Next, we start to present our proofs. By (¢1) and (¢,), we define the space W :=
WLPL(RN) x WL®2(RN) with the norm

[ v)| = lulle, + IVILe, = IVulle, + lulle, + [ VVIe, + [V,

Then W is a separable and reflexive Banach space by Remark 2.6.
On W, define a functional I by

I(u,v) :=/ ¢1(|Vu|)dx+/ V(%) @1 (|ul) dx
RN RN
+/ <I>2(|Vv|)dx+/ Vz(x)d>2(|v|)dx—f F(x,u,v)dx. (3.4)
RN RN RN
Standard arguments show that [ is well defined and of class C}(W,R) and
(I’(u,v),(ft,f/)):/ al(IVu|)Vqutdx+f Vl(x)a1(|u|)uitdx
RN RN
+/ a2(|Vv|)Vva/dx+/ Va(®)as (|v])vvdx
RN RN
—/ Fu(x,u,v)itdx—f F,(x,u,v)vdx (3.5)
RN RN

for all (&,v) € W. For the sake of completeness, we give the proof in the Appendix. Thus,
the critical points of  in W are weak solutions of system (1.1). Denote by I;(i =1,2) : W —
R the functionals

Li(u,v) = ./]1;1\1 CI>1(|Vu|)dx+ /]RN Vl(x)d>1(|u|)dx+ ./]RN <I>2(|VV|)dx
+/ Vg(x)®2(|v|)dx (3.6)
RN
and
L(u,v) = /RN F(x,u,v)dx. (3.7)
Then

I(u,v) = L(1,v) — L(u,v).
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Lemma 3.13 If (Fy) and (F,) hold, then there exist positive constants C; (i = 1,2,3) such

that
|Fulw, )] < Cu(en (jul) + @7 (@2(1V1)) + @5, (1ul) + S5 (2. (1v1)))s (3.8)
|Fy(x,u,v)| < C2(5§1(<D1(|u|)) +o(Ivl) + CT)gi(Cbl*(luD) + @5, (Iv])), (3.9)
[F(x,u,v)| < C3(@1([ul) + o (|v]) + Pra(|uel) + D1 (V1)) (3.10)

for all (x,u,v) e RN x R x R, and

F(x,u,v) . F(x,u,v)

im ———— =0, lim = 3.11
) —~0 D1 (|z]) + Do (|v]) @yl —>o00 Pry(lu]) + Po(V]) (310

uniformly in x € RN,

Proof The proof can be easily completed by virtue of Young’s inequality (2.1) and the fact
F(x,u,v) = / F(x,s,v)ds +/ F,(x,0,t)dt + F(x,0,0) forall (x,u,v) e RN xR x R.
0 0

We omit the details. O
Notation C, denotes a positive constant which depends on the real number a.

Lemma 3.14 Assume that (¢1), (¢2), (Va), (F1) and (F;) hold. Then there exist two positive
constants p,n such that I(u,v) > n for all (u,v) € W with ||(u,v)|| = p.

Proof By (3.11), for any given ¢ € (0, 0), there exists a constant C, > 0 such that

|Fx,u,v)| < &(®1(|ul) + Pa([v])) + Co(Pra(luel) + ox(IV]))
for all (x,u,v) e RN x R x R.

Then, by (3.4), (V3), Lemma 2.2, (3) in Lemma 2.4, (2.8) and (2.7), when || (2, V) || = ||u|l1,0, +

IVIiLe, = IVulle, + lulle, + IVVie, + IvIle, <1, we have
I(u,v)z/ <I>1(|Vu|)dx+/ Vl(x)d>1(|u|)dx
RN RN
+/ <D2(|VV|)dx+/ Vz(x)<D2(|v|)dx—/ |F(x,u,v)|dx
RN RN RN
2/ <I>1(|Vu|)dx+ot1/ <I>1(|u|)dx+/ <I>2(|Vv|)dx+oz1/ <I>2(|V|)dx
RN RN RN RN
—S/RN <I>1(|u|)dx—£/RN <I>2(|V|)dx

~C [ on(udr-c. [ @ (v

> 1Vl + (- &)l + V122 + (o =€) V2

oo 5o
= Cemax{|lullg,,, lullgy, } - Cemax{lIviig, . Ivily;, }
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> min{L, a1 — £} Gy ull ', + min{L e — &) Cony V1113,

I* ¥ m mf % I m mh
- Cngil* ||M||11,<p1 - Csccpll* ”u”lél - CqufZ* ||V||1?q>2 - C6C<1>22* ”V”Léz'
Note that m; < [} < m(i =1,2). It is easy to see that the foregoing inequality implies that
there exist positive constants p and 1 small enough such that I(x,v) > n for all (1,v) e W
with [|(»,v)|| = p. O

Lemma 3.15 Assume that (¢1), (o), (V2), (F1) and (F3) (or (F4)) hold. Then there exists
(10, v0) € W such that I(tug, tvy) — —00 as t — +00.

Proof First, we prove that under assumptions (F;) and (F3) (or (Fy)), for any given constant
M > ay, there exists a constant C; > 0 such that

F(x,u,0) ZMCI>1(|M|) —Cy forall (x,u) e RN x R. (3.12)

In fact, it is obvious by (F;) and (F4). Let v =0 in (F3). Then (F3) reduces to

0 < F(x,u,0) < Mquu(x, u,0) forallu#0,
1

where p; > my, which implies that F(x,u,0) > C(Ju|*! — 1) for some C > 0 and all (x,u) €
RN x R. Moreover, it follows from (2) in Lemma 2.1 that ®;(|u|) < ®1(1) max{|z|*, |u|™}
for all u € R. Since p; > m;, then for any given constant M > «y, there exists a constant
Cu > 0 such that (3.12) holds.

Now, choose uy € C3°(B,) \ {0} with 0 < uy(x) <1, where r > 0. Then (u,0) € W, and
by (3.4), (V3), (F1), (3.12) and (2) in Lemma 2.1, when ¢ > 0, we have

I(tu0,0)=/ <I>1(|tVu0|)dx+/ Vl(x)d>1(|tuo|)dx—/ F(x, tug, 0) dx
]RN RN RN

=/ Cbl(ltVu0|)dx+/ Vl(x)CI>1(|tu0|)dx—/ F(x, tug, 0) dx
RN B, B,

5/ d>1(|tVu0|)dx+a2f <I>1(|tu0|)dx—Mf @1 (|tuol) + Cu B,
RN By By
§d>1(t)/ max{qu0|ll,|Vuo|m1}dx

RN

~ &1 (E)M —ay) [ minfluo|", |uo|™ } dx + CulB,|
By

< oy IVaol [} + | IVatol |72 ~ (M ~ ) o 4] + Coal By .

5 m
11V ol +11V oy

Since lim;_, ,», ®1(¢) = +00, we can choose M > + oy such that I(tug, 0) —

my
leeo 7}
—00 as t — +00. O

Lemmas 3.14, 3.15 and the fact 1(0,0) = 0 show that / has a mountain pass geometry,
that is, setting

I'={yeC([0,1],W):y(0)=0and I(y(1)) < 0},
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we have I" # (/. By a special version of the mountain pass lemma (see [23]), for the moun-
tain pass level

- inf max I(y(2)), 3.13
¢= inf max (r@®) (3.13)

there exists a (C).-sequence {(u,,v,)} of I in W. Moreover, Lemma 3.14 implies that ¢ > 0.
We recall that (C).-sequence {u,,v,} of I in W means

I(u,,v,) = c¢ and (1 + ||(un,vn)||) ||I/(uy,,vn)n w+— 0 asn— oo, (3.14)

Lemma 3.16 Assume that (¢1), (¢2), (Va), (F1)-(F3) hold. Then any (C).-sequence of I in
W is bounded for all ¢ > 0.

Proof Let {(uy,v,)} be a (C).-sequence of I in W for ¢ > 0. By (3.14), we have
I(u,,v,) —>c asmnm— o0 (3.15)

and

12 @ty Vi) | g | @tns vi) | = | T Gty Vi) | e (1nll1,0, + NVll10,) = O a5 71— 00,

which implies

|<I/(um Vi)s (Lum iVn)>
M1 M2

as n — oQ.

, 1 1
< |7 s v) | W E”un”ml + ZHV"HL% -0

(3.16)

Then, by (3.15), (3.16), (3.4), (3.5), (¢2), (V2), (F5) and Lemma 2.2, for n large, we have
1 1
c+ 1 2 I(Mn’ Vn) - <I,(un: Vn)r (_um _Vn)>
M1 M2
1
= ®1(|Vuy,|) = —a1(|Vu, Vu,,z)dx
/RN( 1(1910]) = (1201} V|
1
+/ Vl(x)(cbl(mrl')__“l(lunl)lun|2) dx
RN H1
1
+ D, (|Vv,l) = —ax(| Vv, Vv,,z)dx
[ (200700 = -a(9vivw,
1
+ Vo) @2(|val) = —aa(|v, vn2)dx
/RN A )( 2(1n) = (v

1 1
+ / (—unFu(x, Uy, Vi) + — Vo Fy(x, 1y, v,) — F(x, Uy, vn)> dx
RN \ M1 M“2

> (1— @>[ CI>1(|Vu,,|)dx+ (1— @>a1/ <I>1(|u,,|)dx
M1 RN M1 RN
+ (1— @)/ O (IVval) dox + <1— @>a1/ Oy (|v,]) dx
15%] RN Mn2 RN
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nmy . 5 m ny . 5 m
> (1 - 7) min{ || Vie,ll g, | Vitullg, } + (1 - M—)al min{||u,llg,, |45 }
1 1

my . I nip . I
+ (1 - 7) min{ | Vvl 2,, I Vvalig2} + (1 - M—)al min{[|vall 2, 1val'52},
2 2

which implies that ||(z,, v,) || = [Vuullo, + |4allo, + I VValle, + IValle, < C for some C >0,
that is, {(u,,v,)} is bounded in W. O

Lemma 3.17 Assume that (¢1)-(¢3), (V1), (Va), (F1), (Fa), (Fs) and (Fs) hold. Then any
(C)c-sequence of I in W is bounded for all ¢ > 0.

Proof Let {(u,,v,)} be a (C).-sequence of I in W for ¢ > 0. By (3.14), we have

1 1
Iy, v4) = L4, Vi) — Lo (4, v4) — ¢ and ’<I’(un,vn), (—um _Vn>>‘ -0
o (3.17)
as zn — OQ.

Then, by (3.4), (3.5), (¢) and (V5), for n large, we have
c+1>1(uy,vy) - <I’(u,,, V) (iun, ivn)>
m | m
i /RN <¢1('V””') - milﬂl(lwnl)lwnﬁ) dx
+ /]RN V1(x)(<l>1(|un|) - milﬂl(|”n|)|”n|2) dx
+/RN(<I>2(|W”|)—miZa2(|vVn|)|Wn|2> .
+ /RN Vz(x)<d>2(|vn|) - mi2“2(|Vn|)|VnI2> dx

1 1
+ / <_unFu(xr Uy, Vn) + _Van(x’ Uy, Vn) - F(x, Uy, Vn)) dx
RN \ 711 nmy

> / F(x, uy, vy) dx. (3.18)
]RN

To prove the boundedness of {(u,, v,)}, arguing by contradiction, we suppose that there ex-
ists a subsequence of {(u,,v,)}, still denoted by {(u,,v,)}, such that || (z4,,, V) Il = s ll1,0, +
IVulli,@, = 00. Next, we discuss the problem in three cases.

Case 1. Suppose that || u,|l1,¢, = oo and ||v,|l,¢, — 0. Let iz, = and v, =

Un Vn
lunlly,o; lvallLe, *

Then {it,} and {V,} are bounded in W®1(RN) and W®2(RN), respectively. We claim that

A= lim sup/ (@1(Jitnl) + D2(|7ul)) dx = 0.
By(y)

n—>ooyERN

Indeed, if A; # 0, there exist a constant § > 0, a subsequence of {(i,, V,,)}, still denoted by
{(it,, v,,)}, and a sequence {z,} € ZN such that

/ (@1 (lal) + P2(IVul)) dx>8 forallmeN. (3.19)
By (zn)
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Let u, = i,(- + z,) and v, = V(- + z,). Then [lity]l1,0, = lltnll1e, and |[Vall,e, = VallLe,,
that is, {#z,} and {¥,} are bounded in W'®1(RN) and W' ®2(RN), respectively. Passing to a
subsequence of {(i,, v,)}, still denoted by {(#,, V,)}, by Remark 2.7, there exists (iz,v) € W
such that

* U, — uin WHPH(RN), i, — # in L®(B,) and #,(x) — #(x) a.e. in By;

* v, — vin WVP2(RN), 9, — v in L®2(B,) and ¥, (x) — ¥(x) a.e. in B,.

Since

/B(d>1(|an|)+d>2(|vn|))dx=/ (@1(12nl) + © (1)) i,

By (zn)

then, by (3.19), » and (2.3), we obtain that i # 0 in L®*1(B,) or ¥ # 0 in L*2(B,). Without
loss of generality, we can assume that i # 0 in L®1(B,), that is, [# # 0] := {x € B, : u(x) # 0}
has nonzero Lebesgue measure. Let = u,(- + z,,) and v}, = v,,(- + z,). Then || (&£}, v})|| =
[l (#4, vi1) I, and it follows from that fact that V;(i = 1,2) and F are 1-periodic in x that

I(u,’;,vZ) =I(u,,v,) and ”I’(uf,,v’;) H W = HI’(u,,,v,,)” w+ forallmeN,

that is, {(«}, v})} is also a (C).-sequence of I. Then, by (3.18), for # large, we have
/ F(x,u},vi)dx <c+1. (3.20)
RN

However, by (2) in Lemma 2.1, (F,) and (Fs) imply

lim  F(x,u,v) = +oc uniformly inx € RV, (3.21)
|(24,v)|— 00
= _ _ ounlzy) _ oy :
and by x, i, = &1,(- + z,) = \l\lunlfwl = Mol implies
()| = |2 ()|t |10, — 00, ace.x € [ #0]. (3.22)

Then, it follows from (F;), (3.21), (3.22) and Fatou’s lemma that

/ F(x,ul,vi)dx > / F(x,1,v}) dx — +00,
RN [225£0]

which contradicts (3.20). Therefore, A; = 0 and

lim sup/ @1 (|itn]) dx = lim sup/ @ (|Vu]) dx = 0. (3.23)
Ba(y) By(y)

}’l—)OOye]RN n_)ooye]RN

By Lemma 2.5, (¢3) and the fact that

th thi
lim sup <limsup ————— = 0, i=12,
t>r00 Pix(?) t—+00 D (1) min{t'i, "}
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imply that the embeddings W"®(RN) < L%(RN)(i = 1,2) are continuous. Hence, there

exists a constant M; > 0 such that

litall} + 9]l <My forallmeN. (3.24)

Iy —

For p; € (I;,[])(i = 1,2), by (¢) and (¢3), we have

tPi tPi tPi
lim =0 and lim < lim e 0, i=12. (3.25)
t—0+ ®;(t) t—>+00 Oy (t) T t—>+o0 @y, (1) min{eh, ™}

Then, by the Lions type result for Orlicz-Sobolev spaces (see Theorem 1.3 in [8]), (3.23)
and (3.25) imply that

i, > 0 inI”(RY) and
(3.26)
i’/n — 0 inl?”? (RN) for allp1 € (ll,lik),pz € (lz,l;)

Now, by (3.6), (V) and Lemma 2.2, we have

Il(un;vn)
lj l;
”Mn”f,cpl + ”Vn”fcpz
- fRN d)1(|vun|)dx + 0 f]RN q>1(|un|)dx + fRN q>2(|vvn|)dx+ o fRN d)2(|Vn|)dx

5 l;
”un”ll,c])l + ”Vn||12,q>2

. I} m . lj m
_ min{ Ve, |, 1Vt [0} + o min(llss 1, )

I} I
”un||11,q>1 + ”Vn”ﬁqu

. I . I
| min(l Vvl IVvalg) + e min{lvalg,, vl

5 I
”un”ll,@l + ”Vn”fq;z

; ! I 1
- IViullg, +erlltnllg, + 1VVallg, +erllvallg, —2 =20

- [} [}
||Mn||11,q>1 + ”Vn”fcpz

. [ . ]
_ min{L 1}y g, + min{L,c1}Cp 1,135, =2~ 204

— 5 I
”Mn||11,q>1 + ”Vn”f@z

> min{l, o} min{Cy,, Cp, } + 0,,(1). (3.27)

Moreover, (3.11) and (2) in Lemma 2.1 imply that

F(x,u,v)
im —— =
lwv)—0 |u|h + |v]2

uniformly in x € RN, Then, for any given constant ¢ > 0, there exists a constant R, > 0 such
that

|F(x, u, V)|

W <g¢ for allxeRN,
u'lt + v

(V)| <R., (3.28)
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and by (F) and (F5), for above R, > 0, there exists a constant Cg > 0 such that

F(x,u,v k —
LA < CrF(x,u, V)| > R.. (3:29)
|ul + [v|2
Let
X, = {x eRY: ‘(u,,(x), V,,(x))‘ < RE} and Y, = {x eRN: ‘(u,,(x),v,,(x))’ > Rg}.
Then
1 b F tl ’ F bl b
|112(un Vn)| - 5/ I l(x Uy Vn)|12 dx+/ | (x Uy Vn)| (330)
”un”l,q;l + ”Vn”l,quz Xn ||"‘n||1l,<1>1 + ”Vn||1,q>2 Yy ”Mn”l(p1 + ||Vn||1q>2
By (3.28) and (3.24), we have
F(x,u,,v F(x,u,,v
/ | 11( - n)|l2 ax = / |Iun(\l1 nIVnTIZ| dx
Xn ”un”L(pl + ”anll,q)2 Xn P + 2
F(x,u,,v, - -
< / M(|u,1|’1 +[7]2) dx < eM;. (3.31)
Xn |l"n|l1 + |Vn|12

Since k > max{l ' h Ny then 1 € (1, I7)(i =1,2). Hence, by (3.29), (3.18), (3.26) and the fact
F(x,u,v) > 0, for n large, we have

|F @, thn, V)|
; — dx
1 2
Yy ”un”l,(pl + ||Vn||1,q>2

F(x,u,,v - N
< [ T 4 ) da
Y,

[l + vy 2

1 k-1
FQoun v\ \F I AN
< / M dx / (|Mn|ll + |Vn|12)k—1 dx
Y, |”‘n|l1 + |Vz'1|l2 Y,
1 k-1
— k Ik k
§</YnCRF(x,u,,,v,,)dx> (/RNC%O |k1+|vn|k1)dx)

1 . lk Iy
< [CR(C+1)]k[C%(|IunI ik + ”Vn”k

Ik
k-1 T

k
1

)]kT =0,(1). (3.32)

Since ¢ is arbitrary;, it follows from (3.30)-(3.32) that

12(”;17 Vn)

I
ll4n ||1 ot (12 ||1%c[>2

—0 asn— oo. (3.33)

By dividing (3.17) by ||u,4||ily(I>1 + ||vn||f(I>2 and letting n — oo, we get a contradiction via
(3.27) and (3.33).
Case 2. Suppose that ||un||1 o, — 00 and ||v,lly,e, < My for some constant M, > 0.

Let iz, = —*— and ¥, = Then {i,} is bounded in W"®(RN) and ¥, — 0 in

lonli, @y

WL®2(RN), We claim that

lotn ||1<p

- lim sup/ (1 (Jitn]) + B (17,1)) dx = 0.
By(y

n*)ooyE]RN
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Indeed, if A, # 0, there exist a constant § > 0, a subsequence of {(i1,, V,,)}, still denoted by

{(it,, v,,)}, and a sequence {z,} € ZN such that
/ (Cbl(litnl) +d>2(|17,,|))dx>8 forall n e N. (3.34)
B3 (zn)

Let u, = it,(- +z,) and v, = V,,(- + z,). Then ”Ijlnlll,dh = ”iin”l,d)l and ”]_/n”l,d)z = ”f’n”l,CDZ: that
is, {i1,} is bounded in WY®1(RN) and ¥, — 0 in W"®2(RN), Passing to a subsequence of
{(#t,, Vy)}, still denoted by {(it,,, ,,)}, by Remark 2.7, there exists (i,0) € W such that

*x U, — i in WHPH(RN), iz, — # in L®(B,) and #,(x) — #(x) a.e. in By;
* v, — 0in W'P2(RN), v, — 0 in L®2(B,) and ¥,(x) — 0 a.e. in B,.

Since

L(¢1(|ﬁn|)+d>z(|vn|))dx=f (P1(Jinl) + D2(17ul)) d,

B (zn)

then, by (3.34), » and (2.3), we obtain that # # 0 in L®1(B,), that is, [iz # 0] := {x € By :
u(x) # 0} has nonzero Lebesgue measure. Let ), = u,(- + z,) and v} = v,(- + 2z,,). Then
|y, vi Il = | (4, vin) || and

|u:(x)| = |Ijln(x)|||1/ln”1,¢1 — 00, aexelu#0]. (3.35)

Since V;(i = 1,2) and F are 1-periodic in %, {(z,v})} is also a (C).-sequence of I. Then, by
(3.18), for n large, we have

/RN F(x,ul,vi)dx <c+1. (3.36)

However, it follows from (Fs), (3.35), (3.21) and Fatou’s lemma that

/ F(x,u,v7) dxz/ﬁ F(x,u,vi) dx = +00,
RN [%£0]

which contradicts (3.36). Therefore, A, = 0 and

lim sup/ @1 (|itnl) dx = 0. (3.37)
By (y)

n—)ooyeRN

Then, by the Lions type result for Orlicz-Sobolev spaces (see Theorem 1.3 in [8]) again,
(3.37), (3.25) and the fact % € (I, If) imply that

hk
fi,— 0 inLF1(RY). (3.38)

Since the embeddings W®i(RN) < L%(RN)(i = 1,2) are continuous, there exists a con-
stant M3 > 0 such that

litall} + vall2 <Ms  forallmeN. (3.39)

L=
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Moreover, % € (Ir,13), (3.25) and Lemma 2.5 imply that the embedding W1®2(RN) —

L% (RN) is continuous. Hence, there exists a constant M, > 0 such that

Ivall%, <My forallmeN. (3.40)
k-1

So, for any given constant M > 1, by (3.6), (V;) and Lemma 2.2, we have

L (th, V) . min{ || Vit ||, | Vit llgr} + o min{ |, 15, a5}

5
”un”ﬁcpl +M ”I’ln”l,d)l +M

I 5
_ IVsallg, +ealally, ~1-en

I
”un”ll,q)l +M

. lj
- mln{lval}ch ll24, ”11,(1)1 -1-o

”un”lq;l +M

min{1, o, }Cy + 0,(1). (3.41)
It is obvious that (3.28) and (3.29) still hold for this case. Based on this fact, let

X,,:{xeRN ‘( (%), vy, (x ))‘ERg} and

Y, = {x eRN: ’(uy,(x),v,,(x)ﬂ >R€}.

Then
LTI / Wl unvall o, / @ upvill (3.42)
”un||11,q>1 +M Xn ||un||11,q>1 +M Yy ||”n||1q> +M
By (3.28) and (3.39), we have
F(x, u,, F(x,u,, - 1
/ |E( L V)] de/ | (’j ty vn)li <|un|h+—|vn|12)dx
X ol g, +M X 18]t + V4|2 M
oL n
<e IILtn||,1+M||vn||,2 <&eMs. (3.43)

Note that % € (I, 1)(i =1,2). By (3.29), (3.18), (3.38), (3.40) and the fact F(x,u,v) > 0, for
n large, we have

/ |[F(%, Uy V)] dx
Yo

5
”un”ﬁcpl +M

F(x, u,, - 1
S/ | (x Uy Vn)| |un|ll L _|Vn|12 dx
Yy |l'tn|l1 + |Vn|l2 M
It Lo\ T
X, Up, V) -
< / L) g il + —fv,l2) dx
|Mr1|l1 + |Vn|12 M
1 o L\ 1'%
< <,/Yn CRF(x¢ Mnan)dx> I:CkL (” n” llk + (M) 1Vl 12k>]
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1 ki 1
<[Crlc+D]*C F Cia [ Naanl", + = vall®
< [Crlc+1)] & T<|Iun||%+Mllv II%
1 ki M
<[Crlc+D]¥C [ Cia (on(1)+—4>. (3.44)
= M

Since ¢ > 0 and M > 1 are arbitrary, it follows from (3.42)-(3.44) that

IZ(”m Vn)

h

—— " 50 asu— oo. (3.45)
”Mn”ch1 +M

By dividing (3.17) by ||u, ||i1,<1>1 + M and letting n — 00, we get a contradiction via (3.41) and
(3.45).
Case 3. Suppose that ||Vu,||e, < M5 for some constant Ms > 0 and ||Vv,||¢, — oo. For

this case, with the same discussion as Case 2, we can also get a contradiction. O

Lemma 3.18 System (1.1) has a nontrivial solution under the assumptions of Theorems 3.1
and 3.2, respectively.

Proof For the level ¢ > 0 given in (3.13), there exists a (C).-sequence {(u,,v,)} for [ in W.
Moreover, Lemmas 3.16 and 3.17 show that the sequence {(u,,v,)} is bounded in W. We
claim that

A3:= lim supf (@1(1uul) + P2(Ivul)) dx > 0.
By(y)

n—)ooye]RN

Indeed, if A3 = 0, then

lim supf @1 (Junl) dx = lim sup/ D5 (|vul) dx = 0.
By () B ()

N0 RN "0 yerN

By using the Lions type result for Orlicz-Sobolev spaces (see Theorem 1.3 in [8]) again, we

have

u, —~ 0 inL?(RY) and
(3.46)
V,— 0 inL% (RN), forall g1 € (m1,1),q2 € (m2, 13).

Given gq; € (m;,[})(i = 1,2), by (F1), (F2), (¢1), (¢2) and (2.1), for any given constant ¢ > 0,

there exists a constant C, > 0 such that

|EG, )] < £(@1(126al) + B (1al) + Pro(I260]) + Do ([a])) + Co(Jtl™ + [12]2),
|tnFu (6, 1, vin)| < (@1 ([10]) + P2 (1val) + Pric(l2]) + P2 (1val))

+ Co (|t ™ + |va| ™), (3.47)
V(% tins Vi) | < &(P1(lttn]) + P2 (1Val) + Pri (1) + P2i(Ival))

+ C‘s(|un|q1 + |Vn|q2):
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for all x € RN. Then it follows from Lemma 2.2, (2) in Lemma 2.4, (2.8), (3.46) and the
arbitrariness of ¢ > 0 that

lim F(x,u,,v,)dx = lim u, F,(x, 1, v,) dx (3.48)
N

n—o0 [pN n—>oo Jp

= lim VuF, (%, 1, v,) dx = 0.
n—00 JpN

Hence, by (3.4), (3.5), (3.14), (¢2), (V1) and (3.48), we have

1 1
c= lim [(un: Vn) - I,(un: Vn)» —Un 7 Vi
n—>00 h I

. 1

= nlinéo{/RN ®I(|Vun|)dx—/RN Ed1(|vun|)|vun|2dx
1

+/ Vl(x)¢1(lunl)dx—/ —Viw)ar ([1n]) |4 |* dox
RN RN I

1
+/RN c1>2(|wn|)dx-fRN Ea2(|VV,,|)|VVn|2dx

1

+/ Vz(x)cl>2(|vn|)dx—/ —Va(®)as (|val) val* dix
RN ’N b

1 1
+ / —u,Fy (%, 1, v,) + =V, By (%, 18, v,) — F(%, Uy, vy) | dx
RN ll 12

IA

1 1
lim / —unFy (%, 1, Vi) + — Vi By (%, 1y, vi) — F(%, 0y, vy) | dx t = 0,
RN l 12

n—00 1

which contradicts ¢ > 0. Therefore, A3 > 0, which implies that there exist a constant § > 0,

a subsequence of {(u,, v,)}, still denoted by {(u,,v,)}, and a sequence {z,} € Z" such that

/ (<I>1(|u,,|)+cl>2(|v,,|))dx=/ (@1(|u]) + P2(|v])) dxc > 8
Ba(zn)

By (3.49)
forallm e N,

where u); 1= u,(- +z,,) and v}, := v, (- + z,,). Since ||uy [l,0, = |4nll1,0, and [V} 11,0, = [[VallL0y,

then {u*} and {v}} are bounded in W'®1(RN) and W"®2(RY), respectively. Passing to a

subsequence of {(u},v})}, still denoted by {(u},v})}, there exists (u*,v*) € W such that
N 1 ,® N . : , D N . .

uf — u* in WPL(RN) and v — v* in WP®2(RN), respectively. Moreover, for any given

constant r > 0, by Remark 2.7 and the similar arguments as those in Lemma 4.3 in [8], we

can assume that

* uh — u* in L%1(B,) and u}(x) — u*(x), Vuli(x) —> Vu*(x) a.e. in B,;

* Vi — v* in L®2(B,) and vi(x) — v*(x), VVi(x) — Vv*(x) a.e. in B,.

Then, by (3.49), x and (2.3), we obtain that (&*,v*) # (0, 0). Since V;(i = 1,2) and F are 1-
periodic in x, {(u,v})} is also a (C).-sequence of I. Then, for any given point (w;, wy) €
CP(RN) x C5°(RN) with supp{w;} U supp{ws} C B, for some r > 0, we have

lim (I' (s, V), (w1, wa)) = 0.

n—00



Wang et al. Boundary Value Problems (2017) 2017:106 Page 25 of 37

We claim that

lim (I’ (s, V), (Wi, wa)) = (I' (", v*), (w1, wa)). (3.50)

n—00

First, we claim

lim Vl(x)a1(|ufl’)uf,w1dx:/ Vl(x)a1(|u*‘)u*w1dx. (3.51)
=00 JRN RN

Indeed, it follows from (¢1), (¢2), (V3), » and the boundedness of sequence {u}} in

WL (RN) that the sequence {Vi(x)a(|luf|)u’} is bounded in L%(B,) and Vi(x) x

ar (| () )egs (x) — Vi(x)an(|u*(x)])u*(x) a.e. x € B,. Then, by applying Lemma 2.1 in [8],

we get (3.51) because w; € L*1(B,). Similarly, we can get

lim / Vz(x)ag(’vﬂ)vf,wzdx:/ Vz(x)ag(’v*‘)v*wzdx. (3.52)
RN RN

n— o0

Next, we claim

lim Fu(x, 1), vi)widx = / F (o, u™, v ) wi dx. (3.53)
n—00 ]RN ]RN

Indeed, it follows from (¢1), (¢2), (F1), (F2), *, the boundedness of sequence {(i,v)}

in W and Remark 2.7 that the sequence {F,(x,u},v})} is bounded in L (B,) and

F(x, ul(x),vi(x)) = F,(x, u*(x),v*(x)) a.e. x € B,. Then, by applying Lemma 2.1 in [8]

again, we get (3.53) because w; € L®(B,). Similarly, we can get

nli)nolo " E, (1, vi)wydx = /RN E, (o, u*,v)wy dx. (3.54)
Finally, we claim

nlingo N a1(|Vu:|)VuﬁVw1 dx:A;N a1(|Vu*|)Vu*Vw1dx (3.55)
and

nlingo N a2(|VvZ|)VvZszdx:/RN a> (| Vv* ) Vv Vw, da. (3.56)

In fact, the boundedness of sequence {(i, v})} implies that sequences {al(IVule%} (=
1,2,...,N) are bounded in L% (B,). Moreover, (¢;) and » imply that aﬂqu’;(x)D%’;x) —
aﬂqu*(x)l)%(j =1,2,...,N) a.e. x € B,. Then, by applying Lemma 2.1 in [8] again, we
get (3.55) because %—Z/l € L*(B,)(j=1,2,...,N). Similarly, we can get (3.56). Hence, it fol-
lows from (3.51)-(3.56) that (3.50) holds, that is, (I(u*, v*), (w1, w5)) = 0 for all (w1, w,) €
CP(RN) x C5°(RN). Now, we can conclude that I'(u*, v*) = 0 because C5°(RN) x C3°(RN)
is dense in W. O

Proofof Theorem 3.1 Lemma 3.18 shows that system (1.1) has at least a nontrivial solution.
Next, we prove that system (1.1) has a ground state. Let

d= inf{](u, v): (u,v) #(0,0) and I' (&, v) = O}.
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First, we claim that d > 0. Indeed, for any given nontrivial critical point («, v) of I, by (3.4),
(3.5), (¢2), (V2) and (F3), we have

I(u,v) = I(u,v) - <I/(u, v), (iu, Lv>>
Mm1 M2
= / <¢1(|Vu|) - iazl(|Vu|)|Vu|2) dx
RN M1
+ /RN Vl(x)<d>1(lul) - iﬂl(|u|)|u|2> dx
+ /RN (<I>2(|Vv|) - iaz(|VV|)|Vv|2) dx
+ /R Vi (%(M) - iﬂ2(|V|)|V|2) dx

1 1
+ f <—uFu(x, u,v) + —vFE,(x,u,v) — F(x, u, v)) dx
RN H2

M1

> (1— %) /RN(¢1(|W|) + on @y (|ul)) dx
. (1 _ %) /RN(cpz(w) + a1 (Iv])) dx

1 1
+ / <—uFu(x, u,v) + —vE,(x,u,v) — F(x, u, v)) dx > 0.
'V \ 11 o

Since the nontrivial critical point (u,v) of I is arbitrary, we conclude d > 0. Choose a
sequence {(u,,v,)} C {(u,v) € W: (4,v) #(0,0) and I'(u,v) = 0} such that I(x,,v,) —> d
as n — 00. Then it is obvious that {(x,,v,)} is a (C);-sequence of I for the level d > 0.
Lemma 3.16 shows that {(u,, v,)} is bounded in W. Moreover, Lemma A.3 in the Appendix
implies that there exists a constant Mg > 0 such that

||(u,,, V,,)” > Mg forallmeN. (3.57)

We claim that

Ag:= lim sup/ (@1 (|ual) + P2(|vul)) dx > 0.
Ba(y)

neooyeRN
Indeed, if A4 = 0, similar to (3.48), we get
lim U, F,(x, 1, v,,) dx = lim VuF, (%, 16y, vy) dx = 0. (3.58)
N

n—>00 JpN n—>o00 Jp.

Then, by (3.5), (¢2), (V) and (3.58), we have
0= lim {(1/<un,vn>, )+ [ Funv)dzs [ vE un,vn)dx}
n—o0 RN RN

= lim {/ al(|Vun|)|Vun|2dx+f Vl(x)al(|u,,|)|un|2dx
RN RN

+f a2(|wn|)|w|2dx+f vz(x)a2(|vn|)|vn|2dx}
]RN RN
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> lim {11/ ¢1(|Vun|)dx+lloz1/ D1 (|unl) dx
n—00 RN RN

+12/ ¢2(|an|)dx+lza1/ <I>2(|v,,|)dx}
RN RN

ZO)

which, together with (2.3), implies that [|(z,, vi)ll = |Vuulle, + lunllo, + [VValle, +
lVullo, — O, which contradicts (3.57). Therefore, A4 > 0, which implies that there exist
a constant § > 0, a subsequence of {(u,,v,)}, still denoted by {(u,,v,)}, and a sequence
{z,} € ZN such that

/132<zn>(q)1(|””|) + @ (1val)) dx:/ (@1 (|uz|) + @2(|v2])) dx> 8

By (3.59)
forallm e N,

where uj; := u,(- + z,) and v, := v, (- + z,). Since [[u[l1,0, = [Unll10, and [[V; L0, = [Valle,,
then {u*} and {v}} are bounded in W ®1(RN) and W'®2(RY), respectively. Passing to a
subsequence of {(u},v*)}, still denoted by {(u,v%)}, there exists (uo,v9) € W such that
ut — ug in WHPL(RN) and v — vp in WEP2(RN), respectively. Moreover, for any given
constant r > 0, by Remark 2.7, we can assume that

* u — ug in L*1(B,) and u}(x) — uo(x) a.e. in By;

* Vi — vo in L®2(B,) and v(x) — vo(x) a.e. in B,.

Then, by (3.59), » and (2.3), we obtain that (uo,vo) # (0,0). Since V;(i =1,2) and F
are 1-periodic in x, {(u},v})} is also a (C)4-sequence of I with {(«,v})} C {(u,v) e W:
(u,v) #(0,0) and I' (4, v) = 0}. Then similar arguments as those in Lemma 3.18 show that
I'(ug,vp) = 0, and thus I(ug, v9) > d. However, for any given constant r > 0, it follows from
(3.4), (3.5), (¢2), (V3), (F3), » and Fatou’s lemma that

1
/ (‘D1(|VM0|)——ﬂ1(|VM0|)|VMo|2) dx
By M1
1
+/ Vl(x)<d>1(|u0|) - —ﬂ1(|M0|)|M0|2> dx
By 231
1
+/ (CI>2(|VVO|) - —a2(|Vv0|)|Vv0|2> dx
By [2%)
1
+/ Vz(x)<<bz(|vo|)——ﬂ2(|V0|)|V0|2) dx
By H2
1 1
+f <_u0Fu(x,u0:VO)+_VOFv(x:MO:VO)_F(x:UO;VO)> dx
By H2

M1

1
<timint] [ (@192~ - (5 Vi)

[ v (@uui]) - (o)) s
e [ (@009 - a9 953 )
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1
[ v (@) - L)l s
B, M2
1 1
+/ (—M;Fu(x, M::,VZ) + _V:Fv(x, M;ka:) _F(x’ M:,VZ)) dx}
B, n2

M1

1 1
< liminf{ I(u*,v* —<I’ u, v ,(—u*,—v*>>}
mine|100,55) - /20, (0,

=d.

Since r > 0 is arbitrary, then I(uo, vo) = I(uo, vo) — (I’ (¢10, Vo), ( -1, —vo)) < d. Therefore,

I(uo,vo) = d, that is, (4o, vo) is a ground state of system (1.1). a

Proof of Theorem 3.2 Lemma 3.18 shows that system (1.1) has at least a nontrivial solu-
tion under the assumptions of Theorem 3.2. Moreover, following the same steps as in the
above proof of Theorem 3.1 but replacing p; with m;(i = 1,2), we can find a ground state
of system (1.1). O

4 Examples
For system (1.1), ¢;(i = 1,2) defined by (1.2) can be chosen from the following cases which
satisfy all (¢1)-(¢3) type conditions:

Case 1. Let ¢(t) = |t[P1t for £ # 0, $(0) = 0 with 1 < p + 1 < N. In this case, simple com-
putations show that [=m =p + 1;

Case 2. Let ¢(t) = |t|P 1t + |t|7t for t #0, p(0) = O with1<p+1<g+1<N< Q”; o
In this case, simple computations show that [=p+1,m =g + 1;

Case 3. Let ¢(t) = logt1q7+|tt\1’) fort #0,¢(0)=0withl<p+l<g+1<N< (qf‘”*’%.ln
this case, simple computations show that [ =g-p+1,m=q +1.

Moreover, we also give a case that satisfies (¢;) and (¢;) but does not satisfy (¢3) type
conditions:

Case 4. Let ¢(t) = |t]7tlog(1 + |t|?) for t #0, ¢(0) = 0 with p,g>0andp+g+1<N <

W. In this case, simple computations show that =g+ 1,m=p +q + 1.

Example 4.1 Assume that V;(i = 1,2) and ¢;(i = 1,2) deﬁned by (1.2) satisfy (V1), (Va),
l* +IX my +IF mo +I%
(¢1) and (¢p) with m; > 4(i = 1,2). Let F(x,u,v) = |u| =y V| it + |ul =t V| e

m+IF

5+(i = 1,2). Then it is easy to check that F satisfies (F}), (F)" and

Choose u; =
(F3).

Example 4.2 Assume that V;(i = 1,2) and ¢;(i = 1,2) deﬁned by (1.2) satisfy (V4), (Va),
(¢1)-(pp3) with m; > 4(i =1,2), max{ ’1 NV < min{-2 }. Then F(x, u,v) = |u|™ log(1+

205 15—y Ly —mo lf
L+l

my— 11 my— 12

lu]) + |v|™2 log(1 + |v|) + |u|7 |v| , where constant € > 0 satisfying € <
} satisfies (F), (F>)’, (F4) and (F5). In fact,

and max{l "I }< mln{ml l+€’ my— 12+e

|u|"’1‘1u m1+e myve=t

my +€
V|72 u,

Fu(,u,v) = myul™ 2ulog(1+ |ul) + i
+|u

v mz—lV my + € my+e my +e—4
Ey (%, u,v) = ma|v|™ *vlog (1 + |v]) + |I|ﬁ + Tlul T,
+ v
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then
— |+l |2l ML+ Mg)€  mive  myre
F(x,u,v) = hl id ( ) lu| 72 |v| 72
my(1+ul)  ma(l+|v]) 2mymy
|u|m1+1 |V|m2+1

=@t () )

21fl§—m1 l;—mzlik
L+l

check (F,)' by Young’s inequality. Next, we check (Fs). It is obvious that F(x, u,v) > 0 for
then

It is obvious that F satisfies (F;) and (F4)'. Since 0 < € < , then it is easy to

all (#,v) #(0,0). Moreover, choose max{%[, %’} <k< min{#, #},

. IFee,u,v)] \* 1
lim sup . =) =
|(u,v)|— 00 |u| 1+ |V| 2 F(x, u, V)

(el Tog (1 + ul) + V™2 Tog (L + [v]) + |u "2 |v] 77 )k

< limsup
= I b \k ‘u‘ml-v-l |v\m2+1
1)1 —o0 (|l + |v|2) (m1(1+\u\) m2(1+|v|))
ety 08+ () & [V (og(L+ VD) + ) 4 [yt
B k|(u V)IHEO Jufkl+m1+1 [y|kla+ma+1
] my (L+|ul) ma (L+|v])
< 00.
Appendix

Lemma A.1 If ® is an N-function and (2.5) holds, then for any sequence {u,} converging
to u in L®(RN), there exist a subsequence of {u,)}, still denoted by {u,}, and a function
h e L\(RYN) such that

(@) u,(x) > ulx) a.e. x € RY;

(b) ®(p(|un(X))) < h(x) for all n €N, a.e. x € RN;

(¢) ®(|un(x)|) <h(x) forallneN, a.e. x € RN,

Proof Since u,, — u in L®(RY), by Lemma 2.2, we have

/ D (4luy —ul) dx

RN
< max{4l||u,, - ullé,,llmllun - u||$} — 0 asn— oo,

which implies ®(4|u, — u|) — 0 in L}(RN). Hence, by ([24], Theorem 4.9), there exist a
subsequence of {®(4|u, — ul)}, still denoted by {®(4|u, — u|)}, and functions 4, € L}(RN)
such that

O (4|uy(x) —u®)]) > 0, aexeRY (A1)

and

d>(4|un(x) - u(x)|) <) forallmeN, ae xeRV, (A.2)
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Then, by (2.2), the monotonicity and convexity of ®, (A.2) and the fact 4u € L*(RY), for
all 7 e N, a.e. x € RN, we have

l\Jl’—‘

B0 0))) = (2l 0)]) = 5@ (a0, - )] + 5@ (8]
< ) + S0 (aluto)]) € L (RY)
and
@ (@) = @]y W]) = JIn(w) + 3 P(a[ut)]) < L' ()

Moreover, (A.1) implies that u,(x) — u(x) a.e. x € RN, O

Lemma A.2 Suppose that (¢1), (¢2), (V2), (F1) and (F,) hold. Then I : W — R is well
defined and of class C{(W,R) and

(F(u,v),(it,ff)) / a1(|Vu|)VuVudx+/N Vl(x)zzl(|u|)uitdx

R

/ 2(1VV] VvVvdx+/ Va(x)az (1)) vidx
RN
/ e, u, V)i dx — / F,(x,u,v)vdx
RN
forall (i1,V) e W.

Proof Under assumptions (¢;), (¢2) and (V5), by similar arguments as those in [25], we
can prove that I; : W — R is well defined and of class C'(W,R) and

(Il'(u, V), (it,f/)) = /RN a1(|Vu|)VuVﬁdx+ /RN Vl(x)a1(|u|)uitdx

+ / a2(|VV|)VvV17dx + / Vz(x)a2(|v|)v17dx (A.3)
RN RN
for all (&, v) € W. So, it is sufficient to prove that I, : W — R is well defined and of class
CY(W,R) and
(Ié(u, v), (11, 17)) = / F,(x,u,v)iidx + / F,(x,u,v)vdx (A.4)
RN RN

for all (&z,v) € W.
By (3.7) and (3.10), we have

(1, F(x,u,v)|d
(1 V)E/RN| (x, 1, )| dax
<G /RN(cbl(wD + @y (1V]) + @1 (Jul) + o (IV]))

which, together with (2.8), implies that I, is well defined in W'.
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We now prove that (A.4) holds. For any given (i, v), (&z, V) € W, we have

(Ié(u, v), (i1, 17))
= hlgl}) %(Iz(u + hit, v + hv) — L(u, v))

F(x,u + hit,v + hv) — F(x, u, v + hv)

= lim
h1—>0 RN h *
. F(x,u,v+hv) — F(x,u,v)
+ lim dx
h—0 RN h

=lim | F,(xu+6@hi,v+hv)adx+ lim [ F,(x,uv+0,(x)hv)vdx, (A5)
h—0 RN h—0 RN

where 61,6, : RN — (0,1). By the continuity of F, and F,, we have that

F, (x, u+ 0 (x)hit, v + hf/)it — F,(x,u,v)u (A.6)
and

F, (x, U, v+ 0, (x)hf/)f/ — F,(x,u,v)v

as h — 0 for a.e. x € RN. Moreover, for all / € (-1,1), by (3.8), the monotonicity of func-
tions, (2.1), (¢2), (1) in Lemma 2.4 and (2.8), we have

|F (%, + 6y (x) ik, v + 1)t
< Ci(¢n (|u + 61(hia|) + D7 (@ (v + Hil)) + @Y, (|u + 61 ()it
+ 7N (@2 (Iv + h¥1))) 1l
< C((ul + 1)y (J2el + |i2l) + | DT (Do (v +17]))
+ (el + i) @7, (el + itl) + || DL (P2s (1V] + 171)))
5GW@MWHW+%() 2(Iv] + [91) + maf Dr(Jul + |2
+ O (Jitl) + Do (V] + 17]))

=g (%) € L'(RN). (A7)

Then it follows from (A.6), (A.7) and Lebesgue’s dominated convergence theorem that

lim F, (x, u + 61 (x)hit, v + hf/)zi dx = / F,(x,u,v)udx. (A.8)
h—0 JpN RN

Similarly, we can obtain that
lim F, (x, u,v+ Qg(x)hf/)f/dx = / F,(x,u,v)vdx. (A9)
h—0 JrN RN

Combining (A.8) and (A.9) with (A.5), we can conclude that (A.4) holds.
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Next, we prove the continuity of I,. Let (u,,, v,) = (u,v) in W. We claim that I} (&, v,,) —
I (u,v) in W* (the dual space of W). Otherwise, there exist a constant gy > 0 and a subse-
quence of {(u,,v,)}, denoted by {(#4:, vi)}, such that

||I§(u,,,»,vm») - I (u, V)” w+ > €0 >0 forallieN. (A.10)

Since (t4,;, Vi) = (4, v) in W, then u,; — uin W>®1(RY) and v,; — vin Wh®2(RY), respec-
tively. It follows from (2.8) that u,; — u in L*1*(RN) and v,; — v in L®2*(RN), respectively.
By Lemma A.1, there exist a subsequence of {(u,;,v,;)}, still denoted by {(u,;,v,;)}, and a
function & € L'(RYN) such that

Ui (x) — u(x), Vu(x) = v(x), ae.xeRN (A.11)

and

Dy (1 (|umi(®)])) <h(x),  Bro (@4, (|uni®)])) < (),
(lwni@)|) <hx),  Pr(|um®)]) < hix),
By (62 ([vui®)))) <h®),  Bou(@h, ([Vui)])) < (),
Oy (|vmi@)]) <h(x),  Pou(|vuil)|) < h(x)

o

(A.12)

foralli € N, a.e.x € RN, For this subsequence {(u,, v,)} and all (iz, V) € W, by (A.4) we have

’(Ié(um': Vm') - Ié(bt, V), (i;l, f/))’

= ‘/ Fu(x,u,,i,vni)ﬁdx+/ F,(x, Uy, Vui)Vdx
RN RN

—/ Fu(x,u,v)itdx—/ F,(x,u,v)vdx
RN RN

< / |Fou, iy Vi) — Fu(%,1,v) ||| dx
RN
+ / [E Gttt i)~ il )| [P (A13)
R
Firstly, we claim that

|Fu(x, Uiy Vi) — Fu(x, u, V)| i dx = 0;(1) || (&1, v) || (A.14)
RN

In fact,
|Fu(x> Unis Vi) — Fou (%, 4, V)| |it| dx
RN

= iFu(x)um"Vni)_Fu(x;uyv)||ﬁ|dx
Q

+ / |Fu, tnis Vi) — Fu (%, 1,v) ||| dx, (A.15)
Q)
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where Q) = {x e RN : [u(x)| <1, |v(x)| <1and h(x) <1}, 2 = RN\ Q. It is obvious that
|€21] = oo and [€2;] < oo. Then, by (2.4) and (2.8), we have

|Fu(xrunirvni)_Fu(xju:v)||ﬁ|dx+] |Fu(x¢uniyvm’)_Fu(x:u)v)“ﬁldx
941 Q)
=/‘N|Fu(x,l/lni,1/m’)—Fu(x,M,V)||Zl|X{Ql}dx

R

+/H{N|Fu(x,u,,,-,vni)—Fu(x,u,v)||itlx{§22}dx
< 2||[Fulot, iy vii) = Fule ) x {20} 5, 1] o

+ 2| |Fu 66, iy Vi) = Fuot, 1, 9) [ x (22} 5 1]y,
< 2(1+ Coy,) (||| Fu s thnis vii) = Fulot,v) [ x {21} 5,

|| [Fue, iy Vi) = Fuoes ) x (22} 5, ) || @, )

’

where yx denotes the characteristic function. Then, to get (A.14), by (2.3) it is sufficient to
prove

/RN Dy (|Fu (6, iy Vii) — Fulot, 1, v) | x {S1}) dx
+ /RN D1 (|, thniy Vi) = Fuloe, 4, v) | x {203) dx
=/Q B (| o iy Vi) = Ful, 1, v)|) dix
!
+ /Q D1 (| Fu iy Vi) = Fu(, 1, v)|) dx = 0,(1). (A.16)
2

By (A.11), the continuity of F,,, ®,, d1, and the fact ®;(0) = 1,(0) = 0, we have

B (| E (0, s (%), i) = Fu (36, u(x), v(x))|) > 0, ae.xey (A.17)
and

(| Fu (3 i), i) = Fu( u(), v(®))|) — 0, ace. x € Q. (A.18)
By (A.12) we have

d>1(|um-(x)|) <hx) <1, <D2(|vm-(x)|) <h(x)<1 forallieN, a.e.x € Q;,
which, together with the monotonicity of ®; and ®,, implies that

’um'(x)’ < <I>1_1(1), ‘v,,i(x)| < d>51(1) forallie N, a.e.x € Q.
Then, by (F3), there exists a constant M7 > 0 such that

’Fu (%, i (), v,,i(x))| <M; (¢1(|u,,i(x) |) + 5{1 (<I>2(|vm»(x)|))) forallieN, ae.xe
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and

|Fu (%, (%), v(x)) | < M7 (o1 (|ulx)|) + 5{1(¢2(|v(x){))) for all x € ;.

Then, by the monotonicity and convexity of @y, the fact that ®, satisfies the A,-condition
globally, (A.12) and (2.2), for all i € N, a.e. x € €2;, we have

D1 (| Fu (3 40 ), Vi) = Fu(, (), v())])

D1 (| Fu (3 i (), vi)) | + |Fu (3, ), v()) |)

B[ M7 (1|t ()]) + BT (@2(|vi(0)])) + 1 (|ue@)]) + BT (2(|v()])))]
C(@1(¢1(Jun)])) + @a(|vu@)]) + D1 (1 (Ju)])) + @2 (|v(0)])

< C(h(x) + &1 (2|u)|) + D2(|v)])) =: g2(») € L' (), (A.19)

N IA

IA

where C is a positive constant. Moreover, by (F3), there exists a constant Mg > 0 such that

P (%, (%), Vi) | < Mg + (|t () |) + B2 (e ([Vi)]))

forallieN, a.e.x € 2y
and
|Fu (3, u(x), v(x)) | < M + @7, (|u@)]) + o} (@2 (|[v()])) forallx € Q.

Then, by the monotonicity and convexity of @y, the fact that @y, satisfies the A,-
condition globally, (A.12) and (2.2), for alli e N, a.e. x € 5, we have

B (| Fule i (), Vi () = Fu (3, u(), v(0)) )

B (| Fu (0 i), vii(®) | + | (0 ), v()) )

< B0, (2Ms + O, (i 0)]) + B3 (P2 ([vui@)])) + @1 (|e(0)]) + 1l (@2 ([¥(0)]))
C(1+ D1 (@], (|umi(®)]) + s ([Vui@)]) + Pra (@, (|u@)])) + P (v()]))

< C(1+h(x) + Pra(2]u)]) + Pou(|v()])) =: g3(x) € L'(R2), (A.20)

| /\

IA

where C is a positive constant. Combining (A.17)-(A.20) with Lebesgue’s dominated con-
vergence theorem, we can conclude that (A.16) holds. Then (A.14) holds. Similarly, we can
obtain that

BN |Fv(x: Uni, Vni) - Fv(x; u, V)| |17| dx = 0[(1) ” (i:l’ i;) ” . (A'21)

Therefore, combining (A.14) and (A.21) with (A.13), we can conclude that I} (s, V) —
I’ (u,v) in W*, which contradicts (A.10). O

Lemma A.3 Assume that (¢y), (o), (V2), (F1) and (Fy) hold. Then

(1’(14, v), (4, V)) = (Il'(u, v), (u, v)) - 0((1{(14, v), (u, V))) as H (u,v) ” — 0.
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Proof Since (I'(u,v), (u,v)) = {[{(u,v), (u,v)) — {I3(u,v), (,v)) and (L}(u,v), (u,v)) = o(1)(i =
1,2) as ||(#,v)|| = 0, we need to prove (I, (u,v), (&, v)) = o({I;(u,v), (4, v))) as ||(u, V)| = 0.
By (F1), (F2), (¢2), 1) in Lemma 2.4 and (2.1), for any given constant ¢ > 0, there exists a
constant C, > 0 such that

|4, 0)| + VEu 10, )]| < (@1 (1ul) + @2(1¥1)) + Ce (@ (j) + @i (1))
for all (x,%,v) € RN x R x R. Then, by (A.4), 3) in Lemma 2.4, (2.8) and (2.7), we have

(3.4, ), ()|

5/ (|Fu(x’urv)||u| + |Fv(x,M,V)||V|)dx

RN
< 8/ (@1 (1ul) + D2 (Iv])) dax + CE/ (D1 (lul) + Psa(Iv])) dc
RN RN
< S/RN((DI(WD + @y (|v])) dx + Cs (I|u||¢l* + ||u||¢l* + ||v||®2* + ||V||¢2*)

< S/RN(CDI(WD + @y (|v])) dx + C(||u||1 o+ ||u||1 ot IIVIIND2 + vl ¢2) (A.22)

where C = C, max{C<I>1 C<I>1* chz* ch2 }. Moreover, by (A.3), (¢2), (V2) and Lemma 2.2,
when [|(&, V)|l = |Vullo, + lullo, + VY], + IVle, <1, we have

(L V), (w,v))
:/ a1(|w|)|w|2dx+/ Vi) (|ul)ul® dx
RN RN

+/ a2(|vV|)|vV|2dx+/ Va(x)ax (1v])1vI* dax
RN RN
211/ CI>1(|Vu|)dx+04111/ <I>1(|u|)dx
RN RN
+12/ q>2(|w|)dx+a112/ D, (|v]) dx
RN RN

> min{l, Ly min{L a1} (| Vallg, + llulg + Vv, + Vi)

> min{};, /,} min{1, 011}( mi ||u||1 o T sz ||V||1 @2) (A.23)
Then (A.22), (A.23) and the fact that 1 < m; < [} < mi}(i = 1,2) imply that

im (I (1, ), (1, )]
Iwl—0 (I} (u,v), (1, v))

< lim & fan (P1(lul) + O2(|V])) dx
)0 oy mln{lblz}fRN(@l(luI) + ®y(|v])) dx

C(||M||1 o T ||M||1 o T ||V||1q>2 + ||V||1q>2)

+ 1m
llwv)|—0 min{/;, /o } min{1, al}(cml ||I/l||1 o T sz ||V||1 q>2)

B e
- (231 min{lhlz}'



Wang et al. Boundary Value Problems (2017) 2017:106 Page 36 of 37

Since ¢ is arbitrary, we conclude that |(Z}(u,v), (4, v))| = o({I] (&, v), (1, v))) as ||(, V)| — O.
Hence, (Ié(u’ V)r (u7 V)) = 0((1{(”, V): (u: V))) as ” (ur V) ” — 0. O
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