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Abstract
In this paper, we investigate the following nonlinear and non-homogeneous elliptic
system:

⎧
⎪⎨

⎪⎩

–div(a1(|∇u|)∇u) + V1(x)a1(|u|)u = Fu(x,u, v) in R
N ,

– div(a2(|∇v|)∇v) + V2(x)a2(|v|)v = Fv(x,u, v) in R
N ,

(u, v) ∈W1,�1 (RN)×W1,�2 (RN),

where φi(t) = ai(|t|)t(i = 1, 2) are two increasing homeomorphisms from R onto R,
functions Vi(i = 1, 2) and F are 1-periodic in x, and F satisfies some (φ1,φ2)-superlinear
Orlicz-Sobolev conditions. By using a variant mountain pass lemma, we obtain that
the system has a ground state.
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1 Introduction
In this paper, we consider the following nonlinear and non-homogeneous elliptic system
in Orlicz-Sobolev spaces:

⎧
⎪⎪⎨

⎪⎪⎩

– div(a(|∇u|)∇u) + V(x)a(|u|)u = Fu(x, u, v) in R
N ,

– div(a(|∇v|)∇v) + V(x)a(|v|)v = Fv(x, u, v) in R
N ,

(u, v) ∈ W ,� (RN ) × W ,� (RN ),

(.)

where ai(i = , ) : (, +∞) →R are two functions satisfying:

(φ) φi(i = , ) : R →R defined by

φi(t) =

⎧
⎨

⎩

ai(|t|)t for t �= ,

 for t = ,
(.)

are two increasing homeomorphisms from R onto R;
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(φ)

 < li := inf
t>

tφi(t)
�i(t)

≤ sup
t>

tφi(t)
�i(t)

=: mi < min
{

N , l∗i
}

,

where

�i(t) :=
∫ t


φi(s) ds, t ∈ [,∞) and l∗i :=

liN
N – li

,

Vi(i = , ) satisfy
(V) Vi(i = , ) ∈ C(RN ,R) are -periodic in x, . . . , xN (called -periodic in x for short);
(V) there exist two constants α,α >  such that

α ≤ min
{

V(x), V(x)
} ≤ max

{
V(x), V(x)

} ≤ α for all x ∈ R
N ,

and F satisfies
(F) F ∈ C(RN ×R×R) is -periodic in x, F(x, , ) =  for all x ∈R

N .

Set a = a, v = u, V = V and F(x, u, v) = F(x, v, u). Then system (.) reduces to the
following quasilinear elliptic equation:

⎧
⎨

⎩

– div(a(|∇u|)∇u) + V(x)a(|u|)u = f (x, u) in R
N ,

u ∈ W ,� (RN ).
(.)

When a(|t|)t = |t|p–t(p > ), equation (.) reduces to the following well-known p-
Laplacian equation:

⎧
⎨

⎩

– div(|∇u|p–∇u) + V(x)|u|p–u = f (x, u) in R
N ,

u ∈ W ,p(RN ).
(.)

To investigate the solutions of p-Laplacian equations like (.), the variational method
has become one of useful tools over the past several decades (see [] and the refer-
ences therein). In most of the references, to ensure the boundedness of the Palais-Smale
((PS) for short) sequence of the energy functional, the following growth condition due to
Ambrosetti-Rabinowitz [] was always assumed for the nonlinearity f :

(AR) there exists μ > p such that

 < μF(x, u) ≤ uf (x, u) for all u �= ,

where, and in the sequel, F(x, u) =
∫ u

 f (x, s) ds. (AR) implies that there exist two positive
constants c, c such that

F(x, u) ≥ c|u|μ – c for all (x, u) ∈R
N ×R,

which shows that (AR) is a p-superlinear growth condition. Based on the fact that the (PS)
condition can be replaced by the weaker Cerami condition for some deformation theorems
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which are the footstone for minimax methods, some new p-superlinear growth conditions
were established in order to weaken (AR). For example, in [], for the case p = , Ding and
Szulkin replaced (AR) with conditions:

(f) lim|u|→∞ F(x,u)
|u|p = +∞ uniformly in x ∈R

N ;
(f) F (x, u) >  for all u �= , and |f (x, u)|τ ≤ cF (x, u)|u|τ for some c > , τ > max{, N

 }
and all (x, u) with |u| large enough, where F (x, u) = f (x, u)u – F(x, u).
They proved that (f) and (f) hold if the nonlinearity f satisfies (AR) and a subcriti-
cal growth condition that |f (x, u)| ≤ c(|u| + |u|q–) for some c > , q ∈ (, ∗) and all
(x, u) ∈ R

N × R, where ∗ = N
N– if N ≥  and ∗ = ∞ if N =  or N = . Some condi-

tions similar to (f) were also introduced in [] for the case p =  and in [] for the case
p > . Moreover, in [], Liu proved the existence of ground state for equation (.) when
the nonlinearity f satisfies (f), the following p-superlinear growth condition:

(f) there exists θ ≥  such that θF (x, u) ≥ F (x, su) for all (x, u) ∈ R
N × R and s ∈ [, ],

where F (x, u) = f (x, u)u – pF(x, u),

and some reasonable assumptions. Instead of minimizing the energy functional on the
Nehari manifold, they obtained that (.) has a nontrivial solution by a mountain pass
type argument, and then, by using a technique of Jeanjean and Tanaka in [], they obtained
that (.) has a ground state. (f) and (f) are different from (AR). Indeed, in [], an example
which satisfies (f) and (f) but does not satisfy (AR) was given, that is,

f (x, u) = |t|p– log
(
 + |t|),

and in [], an example which satisfies (AR) but does not satisfy (f) was also given when
p = , that is,

f (x.u) = |u|
∫ u


|t|+sin tt dt + |u|+sin uu. (.)

Under assumption (φ), equations like (.) may be allowed to possess more complicated
nonlinear or non-homogeneous operator φ, which can be used to model many phenom-
ena (see [, ]). Based on these interesting facts, this type of equations has caused great
interest among scholars in recent years. In Clément et al. [], the authors firstly studied
the existence of nontrivial solution for the following equation in Orlicz-Sobolev spaces by
the variational method:

⎧
⎨

⎩

– div(a(|∇u|)∇u) = f (x, u) in �,

u =  on ∂�,

where � is a bounded domain in R
N with smooth boundary ∂� and f satisfies the follow-

ing (AR) type condition for φ-Laplacian operator and some reasonable assumptions:
(AR)∗ there exist μ > lim supt→+∞

tφ(t)
�(t) and R >  such that

 ≤ μF(x, u) ≤ uf (x, u) for all (x, u) ∈ � ×R with |u| ≥ R.

From then on, the variational method has been used widely to study the existence and mul-
tiplicity of solutions for this type of elliptic equations, and some growth conditions for the
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nonlinearity f in the case of p-Laplacian type were extended to the case of φ-Laplacian
type (for example, see [, , ]). However, there are very few results regarding the exis-
tence of ground state for equations like (.). In [], by using the mountain pass lemma
and the Nehari manifold method, Alves and Silva proved the existence of nonnegative
ground state for the following φ-Laplacian equation with autonomous nonlinearity f :

⎧
⎨

⎩

– div(a(|∇u|)∇u) + V(εx)a(|u|)u = f (u) in R
N ,

u ∈ W ,� (RN ),

where f : R → R is a C-function satisfying an (AR) type condition and some reasonable
assumptions, ε is a positive parameter, and V : RN →R is a continuous function belong-
ing to the autonomous case V(x) ≡ μ (see Theorem . in []) or the nonautonomous
case

V∞ := lim inf|x|→∞ V(x) > V := inf
RN

V(x) >  (see Theorem . in []).

For the systems like (.), on the whole spaceRN , to the best of our knowledge, there is no
paper to study the existence and multiplicity of solutions by the variational method, except
for []. In [], we investigated system (.) with Vi(x)(i = , ) : RN → R satisfying (V)
and ai(i = , ) : (, +∞) → R satisfying (φ) and (φ). By using the least action principle,
we obtained that system (.) has at least one nontrivial solution if F : RN ×R×R →R is
a C function, F(x, , ) =  and satisfies

() there exist constants pi ∈ [mi, l∗i )(i = , ),
max{ 

p
, 

p
} ≤ q < q < · · · < qk < min{ l

p
, l

p
}, and functions

aj, aj, aj, aj ∈ L


–qj (RN , [, +∞))(j = , , . . . , k) such that

∣
∣Fu(x, u, v)

∣
∣ ≤

k∑

j=

aj(x)|u|pqj– +
k∑

j=

aj(x)|v|
p(pqj–)

p ,

∣
∣Fv(x, u, v)

∣
∣ ≤

k∑

j=

aj(x)|u|
p(pqj–)

p +
k∑

j=

aj(x)|v|pqj–

for all (x, u, v) ∈R
N ×R×R;

() there exist an open set � ⊂R
N with |�| >  and constants α ∈ [, l), β ∈ [, l),

δ > , c >  and ι,κ ∈ R with ι + κ �=  such that

F(x, ιt,κt) ≥ c
(|ιt|α + |κt|β

)
for all (x, t) ∈ � × [, δ].

Moreover, when F satisfies an additional symmetric condition, by using the genus theory,
we also obtained that system (.) has infinitely many solutions.

On the whole space RN , the main difficulty for this type of elliptic equations and systems
without the (AR) type conditions is the lack of compactness of the Sobolev embedding,
which is crucial to ensure the boundedness of (PS) or Cerami sequence. To overcome
this difficulty, the usual way is to reconstruct the compactness of the Sobolev embedding,
which can be done by assuming that V and f possess the radially symmetric structure
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(that is, V and f depend on |x|) and then choosing a radially symmetric function sub-
space as the working space (see [, , ]) or by assuming that V is coercive and then
choosing a subspace depending on V as the working space (see [, , , ]). Then radial
and nonradical solutions can be obtained, respectively. When V is bounded and V, f are
without the radially symmetric structure, the compactness of the Sobolev embedding will
be lost. For this situation, to ensure the boundedness of (PS) or Cerami sequence, a use-
ful way is to assume that V and f satisfy some specific periodicity conditions (see [, ,
]), and another useful way is to assume that the nonlinearity satisfies a sublinear growth
condition such that the energy functional is coercive (see []).

In this paper, we study the existence of ground state for system (.) under the assump-
tion that Vi(i = , ) and F are -periodic in x. Motivated by [], we also obtain that sys-
tem (.) has a nontrivial solution by a variant mountain pass lemma, and then by using a
technique of Jeanjean and Tanaka in [], we obtain the existence of ground state. We man-
age to extend the p-superlinear growth conditions (AR) and (f) with (f) for p-Laplacian
equations to (φ,φ)-superlinear growth conditions in the Orlicz-Sobolev space (called
(φ,φ)-superlinear Orlicz-Sobolev conditions for short) for (φ,φ)-Laplacian systems,
respectively (see (F)-(F) in Section ). Since the system case is different from the scalar
case, we will come across some new difficulties, and more computing skills are needed in
the process of our proofs. We point out that our results are different from those in []
and [] even if system (.) reduces to equations (.) and (.).

This paper is organized as follows. In Section , we recall some preliminary knowledge
on Orlicz and Orlicz-Sobolev spaces. In Section , we give our main results and complete
the proofs. In Section , we present some examples to illustrate our results.

2 Preliminaries
In this section, we introduce some fundamental notions and important properties about
Orlicz and Orlicz-Sobolev spaces. We refer the reader for more details to the books [,
] and the references therein.

First of all, we recall the notion of N-function. Let φ : [, +∞) → [, +∞) be a right-
continuous, monotone increasing function with

() φ() = ;
() limt→+∞ φ(t) = +∞;
() φ(t) >  whenever t > .

Then the function defined on [, +∞) by �(t) =
∫ t

 φ(s) ds is called an N-function. It is
obvious that �() =  and � is strictly increasing and convex in [, +∞).

An N-function � satisfies a �-condition globally (or near infinity) if

sup
t>

�(t)
�(t)

< +∞
(

or lim sup
t→+∞

�(t)
�(t)

< +∞
)

,

which implies that there exists a constant K >  such that �(t) ≤ K�(t) for all t ≥  (or
t ≥ t > ). � satisfies a �-condition globally (or near infinity) if and only if for any given
c ≥ , there exists a constant Kc >  such that �(ct) ≤ Kc�(t) for all t ≥  (or t ≥ t > ).

For the N-function �, the complement of � is given by

�̃(t) = max
s≥

{
ts – �(s)

}
for t ≥ .
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�̃ is also an N-function and ˜̃� = �. In addition, we have Young’s inequality, that is,

st ≤ �(s) + �̃(t) for all s, t ≥ , (.)

and the following inequality (see [], Lemma A.):

�̃
(
φ(t)

) ≤ �(t) for all t ≥ . (.)

Now we recall the Orlicz space L�(�) associated with �. When � satisfies the �-
condition globally, the Orlicz space L�(�) is the vectorial space of measurable functions
u : � → R satisfying

∫

�

�
(|u|)dx < +∞,

where � ⊂R
N is an open set. L�(�) is a Banach space endowed with Luxemburg norm

‖u‖� := inf

{

λ >  :
∫

�

�

( |u|
λ

)

dx ≤ 
}

for u ∈ L�(�).

Particularly, when �(t) = |t|p( < p < +∞), the corresponding Orlicz space L�(�) is the
classical Lebesgue space Lp(�) and the corresponding Luxemburg norm ‖u‖� is equal to
the classical Lp(�) norm, that is,

‖u‖Lp(�) :=
(∫

�

∣
∣u(x)

∣
∣p dx

) 
p

for u ∈ Lp(�).

When � = R
N , we denote ‖u‖Lp(RN ) by ‖u‖p.

The fact that � satisfies the �-condition globally implies that

un → u in L�(�) ⇐⇒
∫

�

�
(|un – u|)dx → . (.)

By the above Young’s inequality (.), the following generalized Hölder’s inequality
∣
∣
∣
∣

∫

�

uv dx
∣
∣
∣
∣ ≤ ‖u‖�‖v‖�̃ for all u ∈ L�(�) and all v ∈ L�̃(�) (.)

can be obtained (see [, ]).
Define

W ,�(�) :=
{

u ∈ L�(�) :
∂u
∂xi

∈ L�(�), i = , . . . , N
}

with the norm

‖u‖,� := ‖u‖� + ‖∇u‖�.

Then W ,�(�) is a Banach space called an Orlicz-Sobolev space. Denote the closure of
C∞

 (�) in W ,�(�) by W ,�
 (�). Then, by some basic properties in Orlicz-Sobolev spaces,

we obtain that W ,�
 (RN ) = W ,�(RN ).
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Next, we recall some inequalities. For more details, we refer the reader to the references
[, ].

Lemma . (see [, ]) If � is an N-function, then the following conditions are equiva-
lent:

()

 ≤ l = inf
t>

tφ(t)
�(t)

≤ sup
t>

tφ(t)
�(t)

= m < +∞; (.)

() let ζ(t) = min{tl, tm}, ζ(t) = max{tl, tm} for t ≥ . � satisfies

ζ(t)�(ρ) ≤ �(ρt) ≤ ζ(t)�(ρ) for all ρ, t ≥ ;

() � satisfies a �-condition globally.

Lemma . (see []) If � is an N-function and (.) holds, then � satisfies

ζ
(‖u‖�

) ≤
∫

RN
�

(|u|)dx ≤ ζ
(‖u‖�

)
for all u ∈ L�

(
R

N)
.

Lemma . (see []) If � is an N-function and (.) holds with l > . Let �̃ be the comple-
ment of � and ζ(t) = min{tl̃, tm̃}, ζ(t) = max{tl̃, tm̃} for t ≥ , where l̃ := l

l– and m̃ := m
m– .

Then �̃ satisfies
()

m̃ = inf
t>

t�̃′ (t)
�̃(t)

≤ sup
t>

t�̃′ (t)
�̃(t)

= l̃;

()

ζ(t)�̃(ρ) ≤ �̃(ρt) ≤ ζ(t)�̃(ρ) for all ρ, t ≥ ;

()

ζ
(‖u‖�̃

) ≤
∫

RN
�̃

(|u|)dx ≤ ζ
(‖u‖�̃

)
for all u ∈ L�̃

(
R

N)
.

If
∫ 



�–(s)

s
N+

N
ds < +∞ and

∫ +∞



�–(s)

s
N+

N
ds = +∞, (.)

then the Sobolev conjugate N-function, function �∗ of �, is given in [] by

�–
∗ (t) =

∫ t



�–(s)

s
N+

N
ds for t ≥ .

Lemma . (see []) If � is an N-function and (.) holds with l, m ∈ (, N), then (.)
holds. Let ζ(t) = min{tl∗ , tm∗}, ζ(t) = max{tl∗ , tm∗} for t ≥ , where l∗ := lN

N–l , m∗ := mN
N–m .

Then �∗ satisfies
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()

l∗ = inf
t>

t�′∗(t)
�∗(t)

≤ sup
t>

t�′∗(t)
�∗(t)

= m∗;

()

ζ(t)�∗(ρ) ≤ �∗(ρt) ≤ ζ(t)�∗(ρ) for all ρ, t ≥ ;

()

ζ
(‖u‖�∗

) ≤
∫

RN
�∗

(|u|)dx ≤ ζ
(‖u‖�∗

)
for all u ∈ L�∗(RN)

.

The following important embedding proposition involving the Orlicz-Sobolev spaces
will be used frequently in our proofs.

Lemma . (see [, ]) If � is an N-function and (.) holds with l, m ∈ (, N), then the
embedding

W ,�(
R

N)
↪→ L�

(
R

N)

is continuous for any N-function � satisfying

lim sup
t→+

�(t)
�(t)

< ∞ and lim sup
t→+∞

�(t)
�∗(t)

< ∞.

Therefore, there exists a constant C� such that

‖u‖� ≤ C�‖u‖,� for all u ∈ W ,�(
R

N)
. (.)

If the space RN is replaced by a bounded domain D ⊂R
N and � increases essentially more

slowly than �∗ near infinity, that is,

lim
t→+∞

�(ct)
�∗(t)

= 

for any constant c > , then the embedding W ,�(D) ↪→ L� (D) is compact.

Remark . By Lemmas ., . and ., (φ)-(φ) imply that �i(i = , ), �̃i(i = , ),
�i∗(i = , ) and �̃i∗(i = , ) are N-functions that satisfy the �-condition globally, where
and in the sequel �̃i denotes the complement of �i(i = , ), �i∗ denotes the Sobolev con-
jugate N-function function of �i(i = , ) and �̃i∗ denotes the complement of �i∗(i = , ).
Moreover, the fact that �i(i = , ) and �̃i(i = , ) satisfy the �-condition globally implies
that L�i (RN )(i = , ) and W ,�i (RN )(i = , ) are separable and reflexive Banach spaces (see
[, ]).

Remark . Under assumptions (φ) and (φ), Lemmas ., . and . imply that the
embeddings

W ,�i
(
R

N)
↪→ L�i

(
R

N)
, W ,�i

(
R

N)
↪→ L�i∗(RN)

, i = , , (.)
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are continuous and the embeddings

W ,�i (Br) ↪→ L�i (Br), i = , , (.)

are compact, where and in the sequel Br = {x ∈R
N : |x| < r} for r > .

3 Main results and proofs
Theorem . Assume that (φ), (φ), (V), (V), (F) and the following conditions hold:

(F)

lim
|(u,v)|→

Fu(x, u, v)
φ(|u|) + �̃–

 (�(|v|)) = , lim
|(u,v)|→

Fv(x, u, v)
�̃–

 (�(|u|)) + φ(|v|) = ,

lim
|(u,v)|→∞

Fu(x, u, v)
�′

∗(|u|) + �̃–
∗ (�∗(|v|)) = , lim

|(u,v)|→∞
Fv(x, u, v)

�̃–
∗(�∗(|u|)) + �′

∗(|v|) = ,

uniformly in x ∈R
N , where and in the sequel �̃–

i denotes the inverse of �̃i(i = , ), �′
i∗

denotes the derivative of �i∗(i = , ) and �̃–
i∗ denotes the inverse of �̃i∗(i = , );

(F) there exist μi > mi(i = , ) such that

 < F(x, u, v) ≤ 
μ

uFu(x, u, v) +


μ
vFv(x, u, v) for all (u, v) �= (, ).

Then system (.) has a ground state, that is, a nontrivial solution (u, v) such that

I(u, v) = inf
{

I(u, v) : (u, v) ∈ W \ {
(, )

}
and I ′(u, v) = 

}
,

where W = W ,� (RN ) × W ,� (RN ) and

I(u, v) =
∫

RN
�

(|∇u|)dx +
∫

RN
V(x)�

(|u|)dx

+
∫

RN
�

(|∇v|)dx +
∫

RN
V(x)�

(|v|)dx –
∫

RN
F(x, u, v) dx.

Theorem . Assume that (φ), (φ), (V), (V), (F), (F) and the following conditions
hold:

(φ)

lim sup
t→

|t|li
�i(|t|) < ∞, i = , ;

(F)

lim
|(u,v)|→∞

F(x, u, v)
�(|u|) + �(|v|) = +∞

uniformly in x ∈R
N ;
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(F) F(x, u, v) >  for all (u, v) �= (, ) and there exists k > max{N
l

, N
l

} such that

lim sup
|(u,v)|→∞

(
F(x, u, v)

|u|l + |v|l
)k 

F(x, u, v)
< ∞,

where

F(x, u, v) =


m
uFu(x, u, v) +


m

vFv(x, u, v) – F(x, u, v).

Then system (.) has a ground state.

By Lemmas . and ., it is easy to check that the following conditions (F)′ and (F)′

imply (F) and (F), respectively.

(F)′

lim
|(u,v)|→

Fu(x, u, v)

|u|m– + |v| m(m–)
m

= , lim
|(u,v)|→

Fv(x, u, v)

|u| m(m–)
m + |v|m–

= ,

lim
|(u,v)|→∞

Fu(x, u, v)

|u|l∗ – + |v|
l∗(l∗ –)

l∗

= ,

lim
|(u,v)|→∞

Fv(x, u, v)

|u|
l∗ (l∗–)

l∗ + |v|l∗–

= , uniformly in x ∈ R
N ;

(F)′

lim
|(u,v)|→∞

F(x, u, v)
|u|m + |v|m

= +∞, uniformly in x ∈R
N .

Thus, we have the following corollary.

Corollary . In Theorems . and ., if conditions (F) and (F) are replaced by (F)′

and (F)′, respectively, then the conclusions still hold.

Remark . We point out that Theorems . and . are complementary, which is based
on the fact that there are functions satisfying (F) and (F) but not satisfying (F) (see
Example . in Section ) and there are also functions φi(i = , ) defined by (.) satisfying
(φ) and (φ) but not satisfying (φ) (see Case  in Section ).

When system (.) reduces to equation (.), we present the following results which cor-
respond to Theorems . and ..

Corollary . Assume that functions a, V and f satisfy (φ)-(φ), (V)-(V) and

(f)∗ f ∈ C(RN ,R) is -periodic in x,
(f)∗

lim|u|→

f (x, u)
φ(|u|) = , lim|u|→∞

f (x, u)
�′

∗(|u|) = 

uniformly in x ∈R
N ;
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(f)∗ there exists μ > m such that

 < μF(x, u) ≤ uf (x, u) for all u �= .

Then equation (.) has a ground state in W ,� (RN ).

Corollary . Assume that functions a, V and f satisfy (φ)-(φ), (V)-(V), (f)∗-(f)∗

and

(f)∗

lim|u|→∞
F(x, u)
�(|u|) = +∞

uniformly in x ∈R
N ;

(f)∗ F(x, u) >  for all u �=  and there exists k > N
l

such that

lim sup
|(u,v)|→∞

(
F(x, u)
|u|l

)k 
F(x, u)

< ∞,

where

F(x, u) = uf (x, u) – mF(x, u, v).

Then equation (.) has a ground state in W ,� (RN ).

Remark . It is easy to see that our results are different from Theorem . and Theo-
rem . in [].

Remark . For the nonlinearity f , our subcritical growth condition in the Orlicz-Sobolev
space

lim|u|→∞
f (x, u)

�′
∗(|u|) = , uniformly in x ∈R

N (.)

in (f)∗ is weaker than the following one which is usually assumed in many papers in order
to consider φ-Laplacian problems (for example, see [–]):

(SC) there exist a constant C >  and an N-function defined by �(t) :=
∫ t

 ψ(s) ds, t ∈
[, +∞) satisfying

m < l� := inf
t>

tψ(t)
�(t)

≤ sup
t>

tψ(t)
�(t)

=: m� < l∗

or increasing essentially more slowly than �∗ near infinity, such that

lim sup
|u|→∞

∣
∣
∣
∣
f (x, u)
ψ(u)

∣
∣
∣
∣ < ∞, uniformly in x ∈R

N .
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Condition (.) was introduced by Alves et al. [] for the autonomous nonlinearity f in the
Orlicz-Sobolev space. When a(|t|)t = |t|p–t(p > ), (.) reduces to

lim|u|→∞
f (x, u)
|u|p∗– = , uniformly in x ∈R

N , (.)

which was first introduced by Liu and Wang [] instead of the usual subcritical growth
condition, that is, there exist constants C >  and q ∈ (p, p∗) such that

∣
∣f (x, u)

∣
∣ ≤ C

(|u|p– + |u|q–) for all (x, u) ∈R
N ×R. (.)

Remark . A condition similar to (f)∗ was introduced by Carvalho et al. [] for the
φ-Laplacian equation in the bounded domain � ⊂ R

N . In this paper, because we con-
sider problems on the whole space R

N where the Sobolev spaces lack compactness of the
Sobolev embedding, we claim F(x, u) >  for all u �=  in (f)∗.

When a(|t|)t = |t|p–t( < p < N), it is obvious that (φ)-(φ) hold, and then we also
present the corresponding results for equation (.).

Corollary . Assume that N > p and functions V and f satisfy (V)-(V), (f)∗, (AR)
and

(f)′

lim|u|→

f (x, u)
|u|p– = , lim|u|→∞

f (x, u)
|u|p∗– = 

uniformly in x ∈R
N .

Then equation (.) has a ground state in W ,p(RN ).

Corollary . Assume that N > p and functions V and f satisfy (V)-(V), (f)∗, (f)′ and

(f)′

lim|u|→∞
F(x, u)
|u|p = +∞

uniformly in x ∈R
N ;

(f)′ F(x, u) >  for all u �=  and there exists k > N
p such that

lim sup
|(u,v)|→∞

(
F(x, u)
|u|p

)k 
F(x, u)

< ∞,

where

F(x, u) = uf (x, u) – pF(x, u, v).

Then equation (.) has a ground state in W ,p(RN ).
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Remark . If the subcritical growth condition (.) in (f)′ is replaced by (.), Corol-
lary . becomes a corollary of Corollary . based on the fact that (AR) and (.) imply
(f)′ and (f)′ (see [, ]). However, we are not sure whether (AR) and (.) imply (f)′ and
(f)′ so that we do not know whether Corollary . is a corollary of Corollary .. It is re-
markable that our Corollaries . and . are different from Theorem . in [] because
there are examples satisfying (AR) and (f)′ but not satisfying (f) (see example (.) for
p = ).

Next, we start to present our proofs. By (φ) and (φ), we define the space W :=
W ,� (RN ) × W ,� (RN ) with the norm

∥
∥(u, v)

∥
∥ = ‖u‖,� + ‖v‖,� = ‖∇u‖� + ‖u‖� + ‖∇v‖� + ‖v‖� .

Then W is a separable and reflexive Banach space by Remark ..
On W , define a functional I by

I(u, v) :=
∫

RN
�

(|∇u|)dx +
∫

RN
V(x)�

(|u|)dx

+
∫

RN
�

(|∇v|)dx +
∫

RN
V(x)�

(|v|)dx –
∫

RN
F(x, u, v) dx. (.)

Standard arguments show that I is well defined and of class C(W ,R) and

〈
I ′(u, v), (ũ, ṽ)

〉
=

∫

RN
a

(|∇u|)∇u∇ũ dx +
∫

RN
V(x)a

(|u|)uũ dx

+
∫

RN
a

(|∇v|)∇v∇ ṽ dx +
∫

RN
V(x)a

(|v|)vṽ dx

–
∫

RN
Fu(x, u, v)ũ dx –

∫

RN
Fv(x, u, v)ṽ dx (.)

for all (ũ, ṽ) ∈ W . For the sake of completeness, we give the proof in the Appendix. Thus,
the critical points of I in W are weak solutions of system (.). Denote by Ii(i = , ) : W →
R the functionals

I(u, v) =
∫

RN
�

(|∇u|)dx +
∫

RN
V(x)�

(|u|)dx +
∫

RN
�

(|∇v|)dx

+
∫

RN
V(x)�

(|v|)dx (.)

and

I(u, v) =
∫

RN
F(x, u, v) dx. (.)

Then

I(u, v) = I(u, v) – I(u, v).
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Lemma . If (F) and (F) hold, then there exist positive constants Ci (i = , , ) such
that

∣
∣Fu(x, u, v)

∣
∣ ≤ C

(
φ

(|u|) + �̃–


(
�

(|v|)) + �′
∗

(|u|) + �̃–
∗

(
�∗

(|v|))), (.)
∣
∣Fv(x, u, v)

∣
∣ ≤ C

(
�̃–


(
�

(|u|)) + φ
(|v|) + �̃–

∗
(
�∗

(|u|)) + �′
∗

(|v|)), (.)
∣
∣F(x, u, v)

∣
∣ ≤ C

(
�

(|u|) + �
(|v|) + �∗

(|u|) + �∗
(|v|)) (.)

for all (x, u, v) ∈R
N ×R×R, and

lim
|(u,v)|→

F(x, u, v)
�(|u|) + �(|v|) = , lim

|(u,v)|→∞
F(x, u, v)

�∗(|u|) + �∗(|v|) =  (.)

uniformly in x ∈R
N .

Proof The proof can be easily completed by virtue of Young’s inequality (.) and the fact

F(x, u, v) =
∫ u


Fs(x, s, v) ds +

∫ v


Ft(x, , t) dt + F(x, , ) for all (x, u, v) ∈ R

N ×R×R.

We omit the details. �

Notation Ca denotes a positive constant which depends on the real number a.

Lemma . Assume that (φ), (φ), (V), (F) and (F) hold. Then there exist two positive
constants ρ,η such that I(u, v) ≥ η for all (u, v) ∈ W with ‖(u, v)‖ = ρ .

Proof By (.), for any given ε ∈ (,α), there exists a constant Cε >  such that

∣
∣F(x, u, v)

∣
∣ ≤ ε

(
�

(|u|) + �
(|v|)) + Cε

(
�∗

(|u|) + �∗
(|v|))

for all (x, u, v) ∈R
N ×R×R.

Then, by (.), (V), Lemma ., () in Lemma ., (.) and (.), when ‖(u, v)‖ = ‖u‖,� +
‖v‖,� = ‖∇u‖� + ‖u‖� + ‖∇v‖� + ‖v‖� ≤ , we have

I(u, v) ≥
∫

RN
�

(|∇u|)dx +
∫

RN
V(x)�

(|u|)dx

+
∫

RN
�

(|∇v|)dx +
∫

RN
V(x)�

(|v|)dx –
∫

RN

∣
∣F(x, u, v)

∣
∣dx

≥
∫

RN
�

(|∇u|)dx + α

∫

RN
�

(|u|)dx +
∫

RN
�

(|∇v|)dx + α

∫

RN
�

(|v|)dx

– ε

∫

RN
�

(|u|)dx – ε

∫

RN
�

(|v|)dx

– Cε

∫

RN
�∗

(|u|)dx – Cε

∫

RN
�∗

(|v|)dx

≥ ‖∇u‖m
�

+ (α – ε)‖u‖m
�

+ ‖∇v‖m
�

+ (α – ε)‖v‖m
�

– Cε max
{‖u‖l∗

�∗ ,‖u‖m∗


�∗
}

– Cε max
{‖v‖l∗

�∗ ,‖v‖m∗


�∗
}
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≥ min{,α – ε}Cm‖u‖m
,�

+ min{,α – ε}Cm‖v‖m
,�

– CεCl∗
�∗‖u‖l∗

,�
– CεCm∗


�∗‖u‖m∗


,�

– CεCl∗
�∗‖v‖l∗

,�
– CεCm∗


�∗‖v‖m∗


,�

.

Note that mi < l∗i ≤ m∗
i (i = , ). It is easy to see that the foregoing inequality implies that

there exist positive constants ρ and η small enough such that I(u, v) ≥ η for all (u, v) ∈ W
with ‖(u, v)‖ = ρ . �

Lemma . Assume that (φ), (φ), (V), (F) and (F) (or (F)) hold. Then there exists
(u, v) ∈ W such that I(tu, tv) → –∞ as t → +∞.

Proof First, we prove that under assumptions (F) and (F) (or (F)), for any given constant
M > α, there exists a constant CM >  such that

F(x, u, ) ≥ M�
(|u|) – CM for all (x, u) ∈R

N ×R. (.)

In fact, it is obvious by (F) and (F). Let v =  in (F). Then (F) reduces to

 < F(x, u, ) ≤ 
μ

uFu(x, u, ) for all u �= ,

where μ > m, which implies that F(x, u, ) ≥ C(|u|μ – ) for some C >  and all (x, u) ∈
R

N ×R. Moreover, it follows from () in Lemma . that �(|u|) ≤ �() max{|u|l , |u|m}
for all u ∈ R. Since μ > m, then for any given constant M > α, there exists a constant
CM >  such that (.) holds.

Now, choose u ∈ C∞
 (Br) \ {} with  ≤ u(x) ≤ , where r > . Then (u, ) ∈ W , and

by (.), (V), (F), (.) and () in Lemma ., when t > , we have

I(tu, ) =
∫

RN
�

(|t∇u|
)

dx +
∫

RN
V(x)�

(|tu|
)

dx –
∫

RN
F(x, tu, ) dx

=
∫

RN
�

(|t∇u|
)

dx +
∫

Br

V(x)�
(|tu|

)
dx –

∫

Br

F(x, tu, ) dx

≤
∫

RN
�

(|t∇u|
)

dx + α

∫

Br

�
(|tu|

)
dx – M

∫

Br

�
(|tu|

)
+ CM|Br|

≤ �(t)
∫

RN
max

{|∇u|l , |∇u|m
}

dx

– �(t)(M – α)
∫

Br

min
{|u|l , |u|m

}
dx + CM|Br|

≤ �(t)
[∥
∥|∇u|

∥
∥l

l
+

∥
∥|∇u|

∥
∥m

m
– (M – α)‖u‖m

m

]
+ CM|Br|.

Since limt→+∞ �(t) = +∞, we can choose M >
‖|∇u|‖l

l
+‖|∇u|‖m

m
‖u‖m

m
+α such that I(tu, ) →

–∞ as t → +∞. �

Lemmas ., . and the fact I(, ) =  show that I has a mountain pass geometry,
that is, setting

� =
{
γ ∈ C

(
[, ], W

)
: γ () =  and I

(
γ ()

)
< 

}
,
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we have � �= ∅. By a special version of the mountain pass lemma (see []), for the moun-
tain pass level

c = inf
γ∈�

max
t∈[,]

I
(
γ (t)

)
, (.)

there exists a (C)c-sequence {(un, vn)} of I in W . Moreover, Lemma . implies that c > .
We recall that (C)c-sequence {un, vn} of I in W means

I(un, vn) → c and
(
 +

∥
∥(un, vn)

∥
∥
)∥
∥I ′(un, vn)

∥
∥

W∗ →  as n → ∞. (.)

Lemma . Assume that (φ), (φ), (V), (F)-(F) hold. Then any (C)c-sequence of I in
W is bounded for all c ≥ .

Proof Let {(un, vn)} be a (C)c-sequence of I in W for c ≥ . By (.), we have

I(un, vn) → c as n → ∞ (.)

and

∥
∥I ′(un, vn)

∥
∥

W∗
∥
∥(un, vn)

∥
∥ =

∥
∥I ′(un, vn)

∥
∥

W∗
(‖un‖,� + ‖vn‖,�

) →  as n → ∞,

which implies

∣
∣
∣
∣

〈

I ′(un, vn),
(


μ

un,


μ
vn

)〉∣
∣
∣
∣ ≤ ∥

∥I ′(un, vn)
∥
∥

W∗

(

μ

‖un‖,� +


μ
‖vn‖,�

)

→ 

as n → ∞.
(.)

Then, by (.), (.), (.), (.), (φ), (V), (F) and Lemma ., for n large, we have

c +  ≥ I(un, vn) –
〈

I ′(un, vn),
(


μ

un,


μ
vn

)〉

=
∫

RN

(

�
(|∇un|

)
–


μ

a
(|∇un|

)|∇un|
)

dx

+
∫

RN
V(x)

(

�
(|un|

)
–


μ

a
(|un|

)|un|
)

dx

+
∫

RN

(

�
(|∇vn|

)
–


μ

a
(|∇vn|

)|∇vn|
)

dx

+
∫

RN
V(x)

(

�
(|vn|

)
–


μ

a
(|vn|

)|vn|
)

dx

+
∫

RN

(

μ

unFu(x, un, vn) +


μ
vnFv(x, un, vn) – F(x, un, vn)

)

dx

≥
(

 –
m

μ

)∫

RN
�

(|∇un|
)

dx +
(

 –
m

μ

)

α

∫

RN
�

(|un|
)

dx

+
(

 –
m

μ

)∫

RN
�

(|∇vn|
)

dx +
(

 –
m

μ

)

α

∫

RN
�

(|vn|
)

dx
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≥
(

 –
m

μ

)

min
{‖∇un‖l

�
,‖∇un‖m

�

}
+

(

 –
m

μ

)

α min
{‖un‖l

�
,‖un‖m

�

}

+
(

 –
m

μ

)

min
{‖∇vn‖l

�
,‖∇vn‖m

�

}
+

(

 –
m

μ

)

α min
{‖vn‖l

�
,‖vn‖m

�

}
,

which implies that ‖(un, vn)‖ = ‖∇un‖� + ‖un‖� + ‖∇vn‖� + ‖vn‖� ≤ C for some C > ,
that is, {(un, vn)} is bounded in W . �

Lemma . Assume that (φ)-(φ), (V), (V), (F), (F), (F) and (F) hold. Then any
(C)c-sequence of I in W is bounded for all c ≥ .

Proof Let {(un, vn)} be a (C)c-sequence of I in W for c ≥ . By (.), we have

I(un, vn) = I(un, vn) – I(un, vn) → c and
∣
∣
∣
∣

〈

I ′(un, vn),
(


m

un,


m
vn

)〉∣
∣
∣
∣ → 

as n → ∞.
(.)

Then, by (.), (.), (φ) and (V), for n large, we have

c +  ≥ I(un, vn) –
〈

I ′(un, vn),
(


m

un,


m
vn

)〉

=
∫

RN

(

�
(|∇un|

)
–


m

a
(|∇un|

)|∇un|
)

dx

+
∫

RN
V(x)

(

�
(|un|

)
–


m

a
(|un|

)|un|
)

dx

+
∫

RN

(

�
(|∇vn|

)
–


m

a
(|∇vn|

)|∇vn|
)

dx

+
∫

RN
V(x)

(

�
(|vn|

)
–


m

a
(|vn|

)|vn|
)

dx

+
∫

RN

(


m
unFu(x, un, vn) +


m

vnFv(x, un, vn) – F(x, un, vn)
)

dx

≥
∫

RN
F(x, un, vn) dx. (.)

To prove the boundedness of {(un, vn)}, arguing by contradiction, we suppose that there ex-
ists a subsequence of {(un, vn)}, still denoted by {(un, vn)}, such that ‖(un, vn)‖ = ‖un‖,� +
‖vn‖,� → ∞. Next, we discuss the problem in three cases.

Case . Suppose that ‖un‖,� → ∞ and ‖vn‖,� → ∞. Let ũn = un
‖un‖,�

and ṽn = vn
‖vn‖,�

.
Then {ũn} and {ṽn} are bounded in W ,� (RN ) and W ,� (RN ), respectively. We claim that

λ := lim
n→∞ sup

y∈RN

∫

B(y)

(
�

(|ũn|
)

+ �
(|ṽn|

))
dx = .

Indeed, if λ �= , there exist a constant δ > , a subsequence of {(ũn, ṽn)}, still denoted by
{(ũn, ṽn)}, and a sequence {zn} ∈ Z

N such that

∫

B(zn)

(
�

(|ũn|
)

+ �
(|ṽn|

))
dx > δ for all n ∈N. (.)
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Let ūn = ũn(· + zn) and v̄n = ṽn(· + zn). Then ‖ūn‖,� = ‖ũn‖,� and ‖v̄n‖,� = ‖ṽn‖,� ,
that is, {ūn} and {v̄n} are bounded in W ,� (RN ) and W ,� (RN ), respectively. Passing to a
subsequence of {(ūn, v̄n)}, still denoted by {(ūn, v̄n)}, by Remark ., there exists (ū, v̄) ∈ W
such that

� ūn ⇀ ū in W ,� (RN ), ūn → ū in L� (B) and ūn(x) → ū(x) a.e. in B;
� v̄n ⇀ v̄ in W ,� (RN ), v̄n → v̄ in L� (B) and v̄n(x) → v̄(x) a.e. in B.

Since

∫

B

(
�

(|ūn|
)

+ �
(|v̄n|

))
dx =

∫

B(zn)

(
�

(|ũn|
)

+ �
(|ṽn|

))
dx,

then, by (.), � and (.), we obtain that ū �=  in L� (B) or v̄ �=  in L� (B). Without
loss of generality, we can assume that ū �=  in L� (B), that is, [ū �= ] := {x ∈ B : ū(x) �= }
has nonzero Lebesgue measure. Let u∗

n = un(· + zn) and v∗
n = vn(· + zn). Then ‖(u∗

n, v∗
n)‖ =

‖(un, vn)‖, and it follows from that fact that Vi(i = , ) and F are -periodic in x that

I
(
u∗

n, v∗
n
)

= I(un, vn) and
∥
∥I ′(u∗

n, v∗
n
)∥
∥

W∗ =
∥
∥I ′(un, vn)

∥
∥

W∗ for all n ∈N,

that is, {(u∗
n, v∗

n)} is also a (C)c-sequence of I . Then, by (.), for n large, we have

∫

RN
F
(
x, u∗

n, v∗
n
)

dx ≤ c + . (.)

However, by () in Lemma ., (F) and (F) imply

lim
|(u,v)|→∞

F(x, u, v) = +∞ uniformly in x ∈R
N , (.)

and by �, ūn = ũn(· + zn) = un(·+zn)
‖un‖,�

= u∗
n

‖un‖,�
implies

∣
∣u∗

n(x)
∣
∣ =

∣
∣ūn(x)

∣
∣‖un‖,� → ∞, a.e. x ∈ [ū �= ]. (.)

Then, it follows from (F), (.), (.) and Fatou’s lemma that

∫

RN
F
(
x, u∗

n, v∗
n
)

dx ≥
∫

[ū�=]
F
(
x, u∗

n, v∗
n
)

dx → +∞,

which contradicts (.). Therefore, λ =  and

lim
n→∞ sup

y∈RN

∫

B(y)
�

(|ũn|
)

dx = lim
n→∞ sup

y∈RN

∫

B(y)
�

(|ṽn|
)

dx = . (.)

By Lemma ., (φ) and the fact that

lim sup
t→+∞

tli

�i∗(t)
≤ lim sup

t→+∞
tli

�i∗() min{tl∗i , tm∗
i } = , i = , ,
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imply that the embeddings W ,�i (RN ) ↪→ Lli (RN )(i = , ) are continuous. Hence, there
exists a constant M >  such that

‖ũn‖l
l + ‖ṽn‖l

l ≤ M for all n ∈N. (.)

For pi ∈ (li, l∗i )(i = , ), by (φ) and (φ), we have

lim
t→+

tpi

�i(t)
=  and lim

t→+∞
tpi

�i∗(t)
≤ lim

t→+∞
tpi

�i∗() min{tl∗i , tm∗
i } = , i = , . (.)

Then, by the Lions type result for Orlicz-Sobolev spaces (see Theorem . in []), (.)
and (.) imply that

ũn →  in Lp
(
R

N)
and

ṽn →  in Lp
(
R

N)
for all p ∈ (

l, l∗
)
, p ∈ (

l, l∗
)
.

(.)

Now, by (.), (V) and Lemma ., we have

I(un, vn)
‖un‖l

,�
+ ‖vn‖l

,�

≥
∫

RN �(|∇un|) dx + α
∫

RN �(|un|) dx +
∫

RN �(|∇vn|) dx + α
∫

RN �(|vn|) dx
‖un‖l

,�
+ ‖vn‖l

,�

≥ min{‖∇un‖l
�

,‖∇un‖m
�

} + α min{‖un‖l
�

,‖un‖m
�

}
‖un‖l

,�
+ ‖vn‖l

,�

+
min{‖∇vn‖l

�
,‖∇vn‖m

�
} + α min{‖vn‖l

�
,‖vn‖m

�
}

‖un‖l
,�

+ ‖vn‖l
,�

≥ ‖∇un‖l
�

+ α‖un‖l
�

+ ‖∇vn‖l
�

+ α‖vn‖l
�

–  – α

‖un‖l
,�

+ ‖vn‖l
,�

≥ min{,α}Cl‖un‖l
,�

+ min{,α}Cl‖vn‖l
,�

–  – α

‖un‖l
,�

+ ‖vn‖l
,�

≥ min{,α}min{Cl , Cl} + on(). (.)

Moreover, (.) and () in Lemma . imply that

lim
|(u,v)|→

F(x, u, v)
|u|l + |v|l = 

uniformly in x ∈R
N . Then, for any given constant ε > , there exists a constant Rε >  such

that

|F(x, u, v)|
|u|l + |v|l ≤ ε for all x ∈R

N ,
∣
∣(u, v)

∣
∣ ≤ Rε , (.)
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and by (F) and (F), for above Rε > , there exists a constant CR >  such that

( |F(x, u, v)|
|u|l + |v|l

)k

≤ CRF(x, u, v) for all x ∈R
N ,

∣
∣(u, v)

∣
∣ > Rε . (.)

Let

Xn =
{

x ∈ R
N :

∣
∣
(
un(x), vn(x)

)∣
∣ ≤ Rε

}
and Yn =

{
x ∈R

N :
∣
∣
(
un(x), vn(x)

)∣
∣ > Rε

}
.

Then

|I(un, vn)|
‖un‖l

,�
+ ‖vn‖l

,�

≤
∫

Xn

|F(x, un, vn)|
‖un‖l

,�
+ ‖vn‖l

,�

dx +
∫

Yn

|F(x, un, vn)|
‖un‖l

,�
+ ‖vn‖l

,�

dx. (.)

By (.) and (.), we have

∫

Xn

|F(x, un, vn)|
‖un‖l

,�
+ ‖vn‖l

,�

dx =
∫

Xn

|F(x, un, vn)|
|un|l
|ũn|l + |vn|l

|ṽn|l
dx

≤
∫

Xn

|F(x, un, vn)|
|un|l + |vn|l

(|ũn|l + |ṽn|l
)

dx ≤ εM. (.)

Since k > max{N
l

, N
l

}, then lik
k– ∈ (li, l∗i )(i = , ). Hence, by (.), (.), (.) and the fact

F(x, u, v) ≥ , for n large, we have

∫

Yn

|F(x, un, vn)|
‖un‖l

,�
+ ‖vn‖l

,�

dx

≤
∫

Yn

|F(x, un, vn)|
|un|l + |vn|l

(|ũn|l + |ṽn|l
)

dx

≤
(∫

Yn

( |F(x, un, vn)|
|un|l + |vn|l

)k

dx
) 

k
(∫

Yn

(|ũn|l + |ṽn|l
) k

k– dx
) k–

k

≤
(∫

Yn

CRF(x, un, vn) dx
) 

k
(∫

RN
C k

k–

(|ũn|
lk
k– + |ṽn|

lk
k–

)
dx

) k–
k

≤ [
CR(c + )

] 
k
[
C k

k–

(‖ũn‖
lk
k–
lk
k–

+ ‖ṽn‖
lk
k–
lk
k–

)] k–
k = on(). (.)

Since ε is arbitrary, it follows from (.)-(.) that

I(un, vn)
‖un‖l

,�
+ ‖vn‖l

,�

→  as n → ∞. (.)

By dividing (.) by ‖un‖l
,�

+ ‖vn‖l
,�

and letting n → ∞, we get a contradiction via
(.) and (.).

Case . Suppose that ‖un‖,� → ∞ and ‖vn‖,� ≤ M for some constant M > .
Let ũn = un

‖un‖,�
and ṽn = vn

‖un‖,�
. Then {ũn} is bounded in W ,� (RN ) and ṽn →  in

W ,� (RN ). We claim that

λ := lim
n→∞ sup

y∈RN

∫

B(y)

(
�

(|ũn|
)

+ �
(|ṽn|

))
dx = .
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Indeed, if λ �= , there exist a constant δ > , a subsequence of {(ũn, ṽn)}, still denoted by
{(ũn, ṽn)}, and a sequence {zn} ∈ Z

N such that

∫

B(zn)

(
�

(|ũn|
)

+ �
(|ṽn|

))
dx > δ for all n ∈N. (.)

Let ūn = ũn(·+ zn) and v̄n = ṽn(·+ zn). Then ‖ūn‖,� = ‖ũn‖,� and ‖v̄n‖,� = ‖ṽn‖,� , that
is, {ūn} is bounded in W ,� (RN ) and v̄n →  in W ,� (RN ). Passing to a subsequence of
{(ūn, v̄n)}, still denoted by {(ūn, v̄n)}, by Remark ., there exists (ū, ) ∈ W such that

� ūn ⇀ ū in W ,� (RN ), ūn → ū in L� (B) and ūn(x) → ū(x) a.e. in B;
� v̄n →  in W ,� (RN ), v̄n →  in L� (B) and v̄n(x) →  a.e. in B.

Since
∫

B

(
�

(|ūn|
)

+ �
(|v̄n|

))
dx =

∫

B(zn)

(
�

(|ũn|
)

+ �
(|ṽn|

))
dx,

then, by (.), � and (.), we obtain that ū �=  in L� (B), that is, [ū �= ] := {x ∈ B :
ū(x) �= } has nonzero Lebesgue measure. Let u∗

n = un(· + zn) and v∗
n = vn(· + zn). Then

‖(u∗
n, v∗

n)‖ = ‖(un, vn)‖ and

∣
∣u∗

n(x)
∣
∣ =

∣
∣ūn(x)

∣
∣‖un‖,� → ∞, a.e. x ∈ [ū �= ]. (.)

Since Vi(i = , ) and F are -periodic in x, {(u∗
n, v∗

n)} is also a (C)c-sequence of I . Then, by
(.), for n large, we have

∫

RN
F
(
x, u∗

n, v∗
n
)

dx ≤ c + . (.)

However, it follows from (F), (.), (.) and Fatou’s lemma that

∫

RN
F
(
x, u∗

n, v∗
n
)

dx ≥
∫

[ū�=]
F
(
x, u∗

n, v∗
n
)

dx = +∞,

which contradicts (.). Therefore, λ =  and

lim
n→∞ sup

y∈RN

∫

B(y)
�

(|ũn|
)

dx = . (.)

Then, by the Lions type result for Orlicz-Sobolev spaces (see Theorem . in []) again,
(.), (.) and the fact lk

k– ∈ (l, l∗ ) imply that

ũn →  in L
lk
k–

(
R

N)
. (.)

Since the embeddings W ,�i (RN ) ↪→ Lli (RN )(i = , ) are continuous, there exists a con-
stant M >  such that

‖ũn‖l
l + ‖vn‖l

l ≤ M for all n ∈N. (.)
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Moreover, lk
k– ∈ (l, l∗), (.) and Lemma . imply that the embedding W ,� (RN ) ↪→

L
lk
k– (RN ) is continuous. Hence, there exists a constant M >  such that

‖vn‖l
lk
k–

≤ M for all n ∈N. (.)

So, for any given constant M > , by (.), (V) and Lemma ., we have

I(un, vn)
‖un‖l

,�
+ M

≥ min{‖∇un‖l
�

,‖∇un‖m
�

} + α min{‖un‖l
�

,‖un‖m
�

}
‖un‖l

,�
+ M

≥ ‖∇un‖l
�

+ α‖un‖l
�

–  – α

‖un‖l
,�

+ M

≥ min{,α}Cl‖un‖l
,�

–  – α

‖un‖l
,�

+ M

= min{,α}Cl + on(). (.)

It is obvious that (.) and (.) still hold for this case. Based on this fact, let

Xn =
{

x ∈ R
N :

∣
∣
(
un(x), vn(x)

)∣
∣ ≤ Rε

}
and

Yn =
{

x ∈R
N :

∣
∣
(
un(x), vn(x)

)∣
∣ > Rε

}
.

Then

|I(un, vn)|
‖un‖l

,�
+ M

≤
∫

Xn

|F(x, un, vn)|
‖un‖l

,�
+ M

dx +
∫

Yn

|F(x, un, vn)|
‖un‖l

,�
+ M

dx. (.)

By (.) and (.), we have

∫

Xn

|F(x, un, vn)|
‖un‖l

,�
+ M

dx ≤
∫

Xn

|F(x, un, vn)|
|un|l + |vn|l

(

|ũn|l +


M
|vn|l

)

dx

≤ ε

(

‖ũn‖l
l +


M

‖vn‖l
l

)

≤ εM. (.)

Note that lik
k– ∈ (li, l∗i )(i = , ). By (.), (.), (.), (.) and the fact F(x, u, v) ≥ , for

n large, we have

∫

Yn

|F(x, un, vn)|
‖un‖l

,�
+ M

dx

≤
∫

Yn

|F(x, un, vn)|
|un|l + |vn|l

(

|ũn|l +


M
|vn|l

)

dx

≤
(∫

Yn

( |F(x, un, vn)|
|un|l + |vn|l

)k

dx
) 

k
(∫

Yn

(

|ũn|l +


M
|vn|l

) k
k–

dx
) k–

k

≤
(∫

Yn

CRF(x, un, vn) dx
) 

k
[

C k
k–

(

‖ũn‖
lk
k–
lk
k–

+
(


M

) k
k– ‖vn‖

lk
k–
lk
k–

)] k–
k
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≤ [
CR(c + )

] 
k C

k–
k
k

k–
C k–

k

(

‖ũn‖l
lk
k–

+


M
‖vn‖l

lk
k–

)

≤ [
CR(c + )

] 
k C

k–
k
k

k–
C k–

k

(

on() +
M

M

)

. (.)

Since ε >  and M >  are arbitrary, it follows from (.)-(.) that

I(un, vn)
‖un‖l

,�
+ M

→  as n → ∞. (.)

By dividing (.) by ‖un‖l
,�

+ M and letting n → ∞, we get a contradiction via (.) and
(.).

Case . Suppose that ‖∇un‖� ≤ M for some constant M >  and ‖∇vn‖� → ∞. For
this case, with the same discussion as Case , we can also get a contradiction. �

Lemma . System (.) has a nontrivial solution under the assumptions of Theorems .
and ., respectively.

Proof For the level c >  given in (.), there exists a (C)c-sequence {(un, vn)} for I in W .
Moreover, Lemmas . and . show that the sequence {(un, vn)} is bounded in W . We
claim that

λ := lim
n→∞ sup

y∈RN

∫

B(y)

(
�

(|un|
)

+ �
(|vn|

))
dx > .

Indeed, if λ = , then

lim
n→∞ sup

y∈RN

∫

B(y)
�

(|un|
)

dx = lim
n→∞ sup

y∈RN

∫

B(y)
�

(|vn|
)

dx = .

By using the Lions type result for Orlicz-Sobolev spaces (see Theorem . in []) again, we
have

un →  in Lq
(
R

N)
and

vn →  in Lq
(
R

N)
, for all q ∈ (

m, l∗
)
, q ∈ (

m, l∗
)
.

(.)

Given qi ∈ (mi, l∗i )(i = , ), by (F), (F), (φ), (φ) and (.), for any given constant ε > ,
there exists a constant Cε >  such that

∣
∣F(x, un, vn)

∣
∣ ≤ ε

(
�

(|un|
)

+ �
(|vn|

)
+ �∗

(|un|
)

+ �∗
(|vn|

))
+ Cε

(|un|q + |vn|q
)
,

∣
∣unFu(x, un, vn)

∣
∣ ≤ ε

(
�

(|un|
)

+ �
(|vn|

)
+ �∗

(|un|
)

+ �∗
(|vn|

))

+ Cε

(|un|q + |vn|q
)
, (.)

∣
∣vnFv(x, un, vn)

∣
∣ ≤ ε

(
�

(|un|
)

+ �
(|vn|

)
+ �∗

(|un|
)

+ �∗
(|vn|

))

+ Cε

(|un|q + |vn|q
)
,
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for all x ∈ R
N . Then it follows from Lemma ., () in Lemma ., (.), (.) and the

arbitrariness of ε >  that

lim
n→∞

∫

RN
F(x, un, vn) dx = lim

n→∞

∫

RN
unFu(x, un, vn) dx (.)

= lim
n→∞

∫

RN
vnFv(x, un, vn) dx = .

Hence, by (.), (.), (.), (φ), (V) and (.), we have

c = lim
n→∞

{

I(un, vn) –
〈

I ′(un, vn),
(


l

un,

l

vn

)〉}

= lim
n→∞

{∫

RN
�

(|∇un|
)

dx –
∫

RN


l

a
(|∇un|

)|∇un| dx

+
∫

RN
V(x)�

(|un|
)

dx –
∫

RN


l

V(x)a
(|un|

)|un| dx

+
∫

RN
�

(|∇vn|
)

dx –
∫

RN


l

a
(|∇vn|

)|∇vn| dx

+
∫

RN
V(x)�

(|vn|
)

dx –
∫

RN


l

V(x)a
(|vn|

)|vn| dx

+
∫

RN

(

l

unFu(x, un, vn) +

l

vnFv(x, un, vn) – F(x, un, vn)
)

dx
}

≤ lim
n→∞

{∫

RN

(

l

unFu(x, un, vn) +

l

vnFv(x, un, vn) – F(x, un, vn)
)

dx
}

= ,

which contradicts c > . Therefore, λ > , which implies that there exist a constant δ > ,
a subsequence of {(un, vn)}, still denoted by {(un, vn)}, and a sequence {zn} ∈ Z

N such that

∫

B(zn)

(
�

(|un|
)

+ �
(|vn|

))
dx =

∫

B

(
�

(∣
∣u∗

n
∣
∣
)

+ �
(∣
∣v∗

n
∣
∣
))

dx > δ

for all n ∈ N,
(.)

where u∗
n := un(· + zn) and v∗

n := vn(· + zn). Since ‖u∗
n‖,� = ‖un‖,� and ‖v∗

n‖,� = ‖vn‖,� ,
then {u∗

n} and {v∗
n} are bounded in W ,� (RN ) and W ,� (RN ), respectively. Passing to a

subsequence of {(u∗
n, v∗

n)}, still denoted by {(u∗
n, v∗

n)}, there exists (u∗, v∗) ∈ W such that
u∗

n ⇀ u∗ in W ,� (RN ) and v∗
n ⇀ v∗ in W ,� (RN ), respectively. Moreover, for any given

constant r > , by Remark . and the similar arguments as those in Lemma . in [], we
can assume that

� u∗
n → u∗ in L� (Br) and u∗

n(x) → u∗(x),∇u∗
n(x) → ∇u∗(x) a.e. in Br ;

� v∗
n → v∗ in L� (Br) and v∗

n(x) → v∗(x),∇v∗
n(x) → ∇v∗(x) a.e. in Br .

Then, by (.), � and (.), we obtain that (u∗, v∗) �= (, ). Since Vi(i = , ) and F are -
periodic in x, {(u∗

n, v∗
n)} is also a (C)c-sequence of I . Then, for any given point (w, w) ∈

C∞
 (RN ) × C∞

 (RN ) with supp{w} ∪ supp{w} ⊂ Br for some r > , we have

lim
n→∞

〈
I ′(u∗

n, v∗
n
)
, (w, w)

〉
= .
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We claim that

lim
n→∞

〈
I ′(u∗

n, v∗
n
)
, (w, w)

〉
=

〈
I ′(u∗, v∗), (w, w)

〉
. (.)

First, we claim

lim
n→∞

∫

RN
V(x)a

(∣
∣u∗

n
∣
∣
)
u∗

nw dx =
∫

RN
V(x)a

(∣
∣u∗∣∣)u∗w dx. (.)

Indeed, it follows from (φ), (φ), (V), � and the boundedness of sequence {u∗
n} in

W ,� (RN ) that the sequence {V(x)a(|u∗
n|)u∗

n} is bounded in L�̃ (Br) and V(x) ×
a(|u∗

n(x)|)u∗
n(x) → V(x)a(|u∗(x)|)u∗(x) a.e. x ∈ Br . Then, by applying Lemma . in [],

we get (.) because w ∈ L� (Br). Similarly, we can get

lim
n→∞

∫

RN
V(x)a

(∣
∣v∗

n
∣
∣
)
v∗

nw dx =
∫

RN
V(x)a

(∣
∣v∗∣∣)v∗w dx. (.)

Next, we claim

lim
n→∞

∫

RN
Fu

(
x, u∗

n, v∗
n
)
w dx =

∫

RN
Fu

(
x, u∗, v∗)w dx. (.)

Indeed, it follows from (φ), (φ), (F), (F), �, the boundedness of sequence {(u∗
n, v∗

n)}
in W and Remark . that the sequence {Fu(x, u∗

n, v∗
n)} is bounded in L�̃∗ (Br) and

Fu(x, u∗
n(x), v∗

n(x)) → Fu(x, u∗(x), v∗(x)) a.e. x ∈ Br . Then, by applying Lemma . in []
again, we get (.) because w ∈ L�∗ (Br). Similarly, we can get

lim
n→∞

∫

RN
Fv

(
x, u∗

n, v∗
n
)
w dx =

∫

RN
Fv

(
x, u∗, v∗)w dx. (.)

Finally, we claim

lim
n→∞

∫

RN
a

(∣
∣∇u∗

n
∣
∣
)∇u∗

n∇w dx =
∫

RN
a

(∣
∣∇u∗∣∣)∇u∗∇w dx (.)

and

lim
n→∞

∫

RN
a

(∣
∣∇v∗

n
∣
∣
)∇v∗

n∇w dx =
∫

RN
a

(∣
∣∇v∗∣∣)∇v∗∇w dx. (.)

In fact, the boundedness of sequence {(u∗
n, v∗

n)} implies that sequences {a(|∇u∗
n|) ∂u∗

n
∂xj

} (j =

, , . . . , N) are bounded in L�̃ (Br). Moreover, (φ) and � imply that a(|∇u∗
n(x)|) ∂u∗

n(x)
∂xj

→
a(|∇u∗(x)|) ∂u∗(x)

∂xj
(j = , , . . . , N) a.e. x ∈ Br . Then, by applying Lemma . in [] again, we

get (.) because ∂w
∂xj

∈ L� (Br)(j = , , . . . , N). Similarly, we can get (.). Hence, it fol-
lows from (.)-(.) that (.) holds, that is, 〈I ′(u∗, v∗), (w, w)〉 =  for all (w, w) ∈
C∞

 (RN ) × C∞
 (RN ). Now, we can conclude that I ′(u∗, v∗) =  because C∞

 (RN ) × C∞
 (RN )

is dense in W . �

Proof of Theorem . Lemma . shows that system (.) has at least a nontrivial solution.
Next, we prove that system (.) has a ground state. Let

d = inf
{

I(u, v) : (u, v) �= (, ) and I ′(u, v) = 
}

.
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First, we claim that d ≥ . Indeed, for any given nontrivial critical point (u, v) of I , by (.),
(.), (φ), (V) and (F), we have

I(u, v) = I(u, v) –
〈

I ′(u, v),
(


μ

u,


μ
v
)〉

=
∫

RN

(

�
(|∇u|) –


μ

a
(|∇u|)|∇u|

)

dx

+
∫

RN
V(x)

(

�
(|u|) –


μ

a
(|u|)|u|

)

dx

+
∫

RN

(

�
(|∇v|) –


μ

a
(|∇v|)|∇v|

)

dx

+
∫

RN
V(x)

(

�
(|v|) –


μ

a
(|v|)|v|

)

dx

+
∫

RN

(

μ

uFu(x, u, v) +


μ
vFv(x, u, v) – F(x, u, v)

)

dx

≥
(

 –
m

μ

)∫

RN

(
�

(|∇u|) + α�
(|u|))dx

+
(

 –
m

μ

)∫

RN

(
�

(|∇v|) + α�
(|v|))dx

+
∫

RN

(

μ

uFu(x, u, v) +


μ
vFv(x, u, v) – F(x, u, v)

)

dx ≥ .

Since the nontrivial critical point (u, v) of I is arbitrary, we conclude d ≥ . Choose a
sequence {(un, vn)} ⊂ {(u, v) ∈ W : (u, v) �= (, ) and I ′(u, v) = } such that I(un, vn) → d
as n → ∞. Then it is obvious that {(un, vn)} is a (C)d-sequence of I for the level d ≥ .
Lemma . shows that {(un, vn)} is bounded in W . Moreover, Lemma A. in the Appendix
implies that there exists a constant M >  such that

∥
∥(un, vn)

∥
∥ ≥ M for all n ∈N. (.)

We claim that

λ := lim
n→∞ sup

y∈RN

∫

B(y)

(
�

(|un|
)

+ �
(|vn|

))
dx > .

Indeed, if λ = , similar to (.), we get

lim
n→∞

∫

RN
unFu(x, un, vn) dx = lim

n→∞

∫

RN
vnFv(x, un, vn) dx = . (.)

Then, by (.), (φ), (V) and (.), we have

 = lim
n→∞

{
〈
I ′(un, vn), (un, vn)

〉
+

∫

RN
unFu(x, un, vn) dx +

∫

RN
vnFv(x, un, vn) dx

}

= lim
n→∞

{∫

RN
a

(|∇un|
)|∇un| dx +

∫

RN
V(x)a

(|un|
)|un| dx

+
∫

RN
a

(|∇vn|
)|∇vn| dx +

∫

RN
V(x)a

(|vn|
)|vn| dx

}
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≥ lim
n→∞

{

l

∫

RN
�

(|∇un|
)

dx + lα

∫

RN
�

(|un|
)

dx

+ l

∫

RN
�

(|∇vn|
)

dx + lα

∫

RN
�

(|vn|
)

dx
}

≥ ,

which, together with (.), implies that ‖(un, vn)‖ = ‖∇un‖� + ‖un‖� + ‖∇vn‖� +
‖vn‖� → , which contradicts (.). Therefore, λ > , which implies that there exist
a constant δ > , a subsequence of {(un, vn)}, still denoted by {(un, vn)}, and a sequence
{zn} ∈ Z

N such that

∫

B(zn)

(
�

(|un|
)

+ �
(|vn|

))
dx =

∫

B

(
�

(∣
∣u∗

n
∣
∣
)

+ �
(∣
∣v∗

n
∣
∣
))

dx > δ

for all n ∈ N,
(.)

where u∗
n := un(· + zn) and v∗

n := vn(· + zn). Since ‖u∗
n‖,� = ‖un‖,� and ‖v∗

n‖,� = ‖vn‖,� ,
then {u∗

n} and {v∗
n} are bounded in W ,� (RN ) and W ,� (RN ), respectively. Passing to a

subsequence of {(u∗
n, v∗

n)}, still denoted by {(u∗
n, v∗

n)}, there exists (u, v) ∈ W such that
u∗

n ⇀ u in W ,� (RN ) and v∗
n ⇀ v in W ,� (RN ), respectively. Moreover, for any given

constant r > , by Remark ., we can assume that

� u∗
n → u in L� (Br) and u∗

n(x) → u(x) a.e. in Br ;
� v∗

n → v in L� (Br) and v∗
n(x) → v(x) a.e. in Br .

Then, by (.), � and (.), we obtain that (u, v) �= (, ). Since Vi(i = , ) and F
are -periodic in x, {(u∗

n, v∗
n)} is also a (C)d-sequence of I with {(u∗

n, v∗
n)} ⊂ {(u, v) ∈ W :

(u, v) �= (,) and I ′(u, v) = }. Then similar arguments as those in Lemma . show that
I ′(u, v) = , and thus I(u, v) ≥ d. However, for any given constant r > , it follows from
(.), (.), (φ), (V), (F), � and Fatou’s lemma that

∫

Br

(

�
(|∇u|

)
–


μ

a
(|∇u|

)|∇u|
)

dx

+
∫

Br

V(x)
(

�
(|u|

)
–


μ

a
(|u|

)|u|
)

dx

+
∫

Br

(

�
(|∇v|

)
–


μ

a
(|∇v|

)|∇v|
)

dx

+
∫

Br

V(x)
(

�
(|v|

)
–


μ

a
(|v|

)|v|
)

dx

+
∫

Br

(

μ

uFu(x, u, v) +


μ
vFv(x, u, v) – F(x, u, v)

)

dx

≤ lim inf
n→∞

{∫

Br

(

�
(∣
∣∇u∗

n
∣
∣
)

–

μ

a
(∣
∣∇u∗

n
∣
∣
)∣
∣∇u∗

n
∣
∣

)

dx

+
∫

Br

V(x)
(

�
(∣
∣u∗

n
∣
∣
)

–

μ

a
(∣
∣u∗

n
∣
∣
)∣
∣u∗

n
∣
∣

)

dx

+
∫

Br

(

�
(∣
∣∇v∗

n
∣
∣
)

–


μ
a

(∣
∣∇v∗

n
∣
∣
)∣
∣∇v∗

n
∣
∣

)

dx
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+
∫

Br

V(x)
(

�
(∣
∣v∗

n
∣
∣
)

–


μ
a

(∣
∣v∗

n
∣
∣
)∣
∣v∗

n
∣
∣

)

dx

+
∫

Br

(

μ

u∗
nFu

(
x, u∗

n, v∗
n
)

+


μ
v∗

nFv
(
x, u∗

n, v∗
n
)

– F
(
x, u∗

n, v∗
n
)
)

dx
}

≤ lim inf
n→∞

{

I
(
u∗

n, v∗
n
)

–
〈

I ′(u∗
n, v∗

n
)
,
(


μ

u∗
n,


μ

v∗
n

)〉}

= d.

Since r >  is arbitrary, then I(u, v) = I(u, v) – 〈I ′(u, v), ( 
μ

u, 
μ

v)〉 ≤ d. Therefore,
I(u, v) = d, that is, (u, v) is a ground state of system (.). �

Proof of Theorem . Lemma . shows that system (.) has at least a nontrivial solu-
tion under the assumptions of Theorem .. Moreover, following the same steps as in the
above proof of Theorem . but replacing μi with mi(i = , ), we can find a ground state
of system (.). �

4 Examples
For system (.), φi(i = , ) defined by (.) can be chosen from the following cases which
satisfy all (φ)-(φ) type conditions:

Case . Let φ(t) = |t|p–t for t �= , φ() =  with  < p +  < N . In this case, simple com-
putations show that l = m = p + ;

Case . Let φ(t) = |t|p–t + |t|q–t for t �= , φ() =  with  < p +  < q +  < N < (p+)(q+)
q–p .

In this case, simple computations show that l = p + , m = q + ;
Case . Let φ(t) = |t|q–t

log(+|t|p) for t �= , φ() =  with  < p +  < q +  < N < (q–p+)(q+)
p . In

this case, simple computations show that l = q – p + , m = q + .
Moreover, we also give a case that satisfies (φ) and (φ) but does not satisfy (φ) type

conditions:
Case . Let φ(t) = |t|q–t log( + |t|p) for t �= , φ() =  with p, q >  and p + q +  < N <

(q+)(p+q+)
p . In this case, simple computations show that l = q + , m = p + q + .

Example . Assume that Vi(i = , ) and φi(i = , ) defined by (.) satisfy (V), (V),

(φ) and (φ) with mi ≥ (i = , ). Let F(x, u, v) = |u| m+l∗
 + |v| m+l∗

 + |u| m+l∗
 |v| m+l∗

 .
Choose μi = mi+l∗i

 (i = , ). Then it is easy to check that F satisfies (F), (F)′ and
(F).

Example . Assume that Vi(i = , ) and φi(i = , ) defined by (.) satisfy (V), (V),
(φ)-(φ) with mi ≥ (i = , ), max{N

l
, N

l
} < min{ m

m–l
, m

m–l
}. Then F(x, u, v) = |u|m log(+

|u|) + |v|m log( + |v|) + |u| m+ε
 |v| m+ε

 , where constant ε >  satisfying ε < l∗ l∗–ml∗–ml∗
l∗ +l∗

and max{N
l

, N
l

} < min{ m
m–l+ε

, m
m–l+ε

} satisfies (F), (F)′, (F)′ and (F). In fact,

Fu(x, u, v) = m|u|m–u log
(
 + |u|) +

|u|m–u
 + |u| +

m + ε


|u| m+ε–

 |v| m+ε
 u,

Fv(x, u, v) = m|v|m–v log
(
 + |v|) +

|v|m–v
 + |v| +

m + ε


|u| m+ε

 |v| m+ε–
 v,
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then

F(x, u, v) =
|u|m+

m( + |u|) +
|v|m+

m( + |v|) +
(m + m)ε

mm
|u| m+ε

 |v| m+ε


≥ |u|m+

m( + |u|) +
|v|m+

m( + |v|) .

It is obvious that F satisfies (F) and (F)′. Since  < ε < l∗ l∗–ml∗–ml∗
l∗ +l∗

, then it is easy to
check (F)′ by Young’s inequality. Next, we check (F). It is obvious that F(x, u, v) >  for
all (u, v) �= (, ). Moreover, choose max{N

l
, N

l
} < k ≤ min{ m

m–l+ε
, m

m–l+ε
}, then

lim sup
|(u,v)|→∞

( |F(x, u, v)|
|u|l + |v|l

)k 
F(x, u, v)

≤ lim sup
|(u,v)|→∞

(|u|m log( + |u|) + |v|m log( + |v|) + |u| m+ε
 |v| m+ε

 )k

(|u|l + |v|l )k( |u|m+

m(+|u|) + |v|m+

m(+|v|) )

≤ Ck lim sup
|(u,v)|→∞

|u|km (log( + |u|))k + |v|km (log( + |v|))k + |u|k(m+ε) + |v|k(m+ε)

|u|kl+m+

m(+|u|) + |v|kl+m+

m(+|v|)

< ∞.

Appendix
Lemma A. If � is an N-function and (.) holds, then for any sequence {un} converging
to u in L�(RN ), there exist a subsequence of {un}, still denoted by {un}, and a function
h ∈ L(RN ) such that

(a) un(x) → u(x) a.e. x ∈R
N ;

(b) �̃(φ(|un(x)|)) ≤ h(x) for all n ∈N, a.e. x ∈R
N ;

(c) �(|un(x)|) ≤ h(x) for all n ∈N, a.e. x ∈R
N .

Proof Since un → u in L�(RN ), by Lemma ., we have

∫

RN
�

(
|un – u|)dx

≤ max
{

l‖un – u‖l
�, m‖un – u‖m

�

} →  as n → ∞,

which implies �(|un – u|) →  in L(RN ). Hence, by ([], Theorem .), there exist a
subsequence of {�(|un – u|)}, still denoted by {�(|un – u|)}, and functions h ∈ L(RN )
such that

�
(

∣
∣un(x) – u(x)

∣
∣
) → , a.e. x ∈R

N (A.)

and

�
(

∣
∣un(x) – u(x)

∣
∣
) ≤ h(x) for all n ∈N, a.e. x ∈R

N . (A.)
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Then, by (.), the monotonicity and convexity of �, (A.) and the fact u ∈ L�(RN ), for
all n ∈N, a.e. x ∈R

N , we have

�̃
(
φ
(∣
∣un(x)

∣
∣
)) ≤ �

(

∣
∣un(x)

∣
∣
) ≤ 


�

(

∣
∣un(x) – u(x)

∣
∣
)

+


�

(

∣
∣u(x)

∣
∣
)

≤ 


h(x) +


�

(

∣
∣u(x)

∣
∣
) ∈ L(

R
N)

and

�
(∣
∣un(x)

∣
∣
) ≤ �

(

∣
∣un(x)

∣
∣
) ≤ 


h(x) +



�

(

∣
∣u(x)

∣
∣
) ∈ L(

R
N)

.

Moreover, (A.) implies that un(x) → u(x) a.e. x ∈ R
N . �

Lemma A. Suppose that (φ), (φ), (V), (F) and (F) hold. Then I : W → R is well
defined and of class C(W ,R) and

〈
I ′(u, v), (ũ, ṽ)

〉
=

∫

RN
a

(|∇u|)∇u∇ũ dx +
∫

RN
V(x)a

(|u|)uũ dx

+
∫

RN
a

(|∇v|)∇v∇ ṽ dx +
∫

RN
V(x)a

(|v|)vṽ dx

–
∫

RN
Fu(x, u, v)ũ dx –

∫

RN
Fv(x, u, v)ṽ dx

for all (ũ, ṽ) ∈ W .

Proof Under assumptions (φ), (φ) and (V), by similar arguments as those in [], we
can prove that I : W →R is well defined and of class C(W ,R) and

〈
I ′

(u, v), (ũ, ṽ)
〉

=
∫

RN
a

(|∇u|)∇u∇ũ dx +
∫

RN
V(x)a

(|u|)uũ dx

+
∫

RN
a

(|∇v|)∇v∇ ṽ dx +
∫

RN
V(x)a

(|v|)vṽ dx (A.)

for all (ũ, ṽ) ∈ W . So, it is sufficient to prove that I : W → R is well defined and of class
C(W ,R) and

〈
I ′

(u, v), (ũ, ṽ)
〉

=
∫

RN
Fu(x, u, v)ũ dx +

∫

RN
Fv(x, u, v)ṽ dx (A.)

for all (ũ, ṽ) ∈ W .
By (.) and (.), we have

I(u, v) ≤
∫

RN

∣
∣F(x, u, v)

∣
∣dx

≤ C

∫

RN

(
�

(|u|) + �
(|v|) + �∗

(|u|) + �∗
(|v|))dx,

which, together with (.), implies that I is well defined in W .
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We now prove that (A.) holds. For any given (u, v), (ũ, ṽ) ∈ W , we have

〈
I ′

(u, v), (ũ, ṽ)
〉

= lim
h→


h
(
I(u + hũ, v + hṽ) – I(u, v)

)

= lim
h→

∫

RN

F(x, u + hũ, v + hṽ) – F(x, u, v + hṽ)
h

dx

+ lim
h→

∫

RN

F(x, u, v + hṽ) – F(x, u, v)
h

dx

= lim
h→

∫

RN
Fu

(
x, u + θ(x)hũ, v + hṽ

)
ũ dx + lim

h→

∫

RN
Fv

(
x, u, v + θ(x)hṽ

)
ṽ dx, (A.)

where θ, θ : RN → (, ). By the continuity of Fu and Fv, we have that

Fu
(
x, u + θ(x)hũ, v + hṽ

)
ũ → Fu(x, u, v)ũ (A.)

and

Fv
(
x, u, v + θ(x)hṽ

)
ṽ → Fv(x, u, v)ṽ

as h →  for a.e. x ∈ R
N . Moreover, for all h ∈ (–, ), by (.), the monotonicity of func-

tions, (.), (φ), () in Lemma . and (.), we have

∣
∣Fu

(
x, u + θ(x)hũ, v + hṽ

)
ũ
∣
∣

≤ C
(
φ

(∣
∣u + θ(x)hũ

∣
∣
)

+ �̃–


(
�

(|v + hṽ|)) + �′
∗

(∣
∣u + θ(x)hũ

∣
∣
)

+ �̃–
∗

(
�∗

(|v + hṽ|)))|ũ|
≤ C

((|u| + |ũ|)φ
(|u| + |ũ|) + |ũ|�̃–


(
�

(|v| + |ṽ|))

+
(|u| + |ũ|)�′

∗
(|u| + |ũ|) + |ũ|�̃–

∗
(
�∗

(|v| + |ṽ|)))

≤ C
(
m�

(|u| + |ũ|) + �
(|ũ|) + �

(|v| + |ṽ|) + m∗
�∗

(|u| + |ũ|)

+ �∗
(|ũ|) + �∗

(|v| + |ṽ|))

=: g(x) ∈ L(
R

N)
. (A.)

Then it follows from (A.), (A.) and Lebesgue’s dominated convergence theorem that

lim
h→

∫

RN
Fu

(
x, u + θ(x)hũ, v + hṽ

)
ũ dx =

∫

RN
Fu(x, u, v)ũ dx. (A.)

Similarly, we can obtain that

lim
h→

∫

RN
Fv

(
x, u, v + θ(x)hṽ

)
ṽ dx =

∫

RN
Fv(x, u, v)ṽ dx. (A.)

Combining (A.) and (A.) with (A.), we can conclude that (A.) holds.
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Next, we prove the continuity of I ′
. Let (un, vn) → (u, v) in W . We claim that I ′

(un, vn) →
I ′

(u, v) in W ∗ (the dual space of W ). Otherwise, there exist a constant ε >  and a subse-
quence of {(un, vn)}, denoted by {(uni, vni)}, such that

∥
∥I ′

(uni, vni) – I ′
(u, v)

∥
∥

W∗ ≥ ε >  for all i ∈N. (A.)

Since (uni, vni) → (u, v) in W , then uni → u in W ,� (RN ) and vni → v in W ,� (RN ), respec-
tively. It follows from (.) that uni → u in L�∗ (RN ) and vni → v in L�∗ (RN ), respectively.
By Lemma A., there exist a subsequence of {(uni, vni)}, still denoted by {(uni, vni)}, and a
function h ∈ L(RN ) such that

uni(x) → u(x), vni(x) → v(x), a.e. x ∈R
N (A.)

and

�̃
(
φ

(∣
∣uni(x)

∣
∣
)) ≤ h(x), �̃∗

(
�′

∗
(∣
∣uni(x)

∣
∣
)) ≤ h(x),

�
(∣
∣uni(x)

∣
∣
) ≤ h(x), �∗

(∣
∣uni(x)

∣
∣
) ≤ h(x),

�̃
(
φ

(∣
∣vni(x)

∣
∣
)) ≤ h(x), �̃∗

(
�′

∗
(∣
∣vni(x)

∣
∣
)) ≤ h(x),

�
(∣
∣vni(x)

∣
∣
) ≤ h(x), �∗

(∣
∣vni(x)

∣
∣
) ≤ h(x)

(A.)

for all i ∈ N, a.e. x ∈R
N . For this subsequence {(un, vn)} and all (ũ, ṽ) ∈ W , by (A.) we have

∣
∣
〈
I ′

(uni, vni) – I ′
(u, v), (ũ, ṽ)

〉∣
∣

=
∣
∣
∣
∣

∫

RN
Fu(x, uni, vni)ũ dx +

∫

RN
Fv(x, uni, vni)ṽ dx

–
∫

RN
Fu(x, u, v)ũ dx –

∫

RN
Fv(x, u, v)ṽ dx

∣
∣
∣
∣

≤
∫

RN

∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣|ũ|dx

+
∫

RN

∣
∣Fv(x, uni, vni) – Fv(x, u, v)

∣
∣|ṽ|dx. (A.)

Firstly, we claim that

∫

RN

∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣|ũ|dx = oi()

∥
∥(ũ, ṽ)

∥
∥. (A.)

In fact,

∫

RN

∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣|ũ|dx

=
∫

�

∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣|ũ|dx

+
∫

�

∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣|ũ|dx, (A.)
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where � = {x ∈ R
N : |u(x)| ≤ , |v(x)| ≤  and h(x) ≤ }, � = R

N \ �. It is obvious that
|�| = ∞ and |�| < ∞. Then, by (.) and (.), we have

∫

�

∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣|ũ|dx +

∫

�

∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣|ũ|dx

=
∫

RN

∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣|ũ|χ{�}dx

+
∫

RN

∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣|ũ|χ{�}dx

≤ 
∥
∥
∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣χ{�}

∥
∥

�̃
‖ũ‖�

+ 
∥
∥
∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣χ{�}

∥
∥

�̃∗‖ũ‖�∗

≤ ( + C�∗ )
(∥
∥
∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣χ{�}

∥
∥

�̃

+
∥
∥
∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣χ{�}

∥
∥

�̃∗
)∥
∥(ũ, ṽ)

∥
∥,

where χ denotes the characteristic function. Then, to get (A.), by (.) it is sufficient to
prove

∫

RN
�̃

(∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣χ{�}

)
dx

+
∫

RN
�̃∗

(∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣χ{�}

)
dx

=
∫

�

�̃
(∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣
)

dx

+
∫

�

�̃∗
(∣
∣Fu(x, uni, vni) – Fu(x, u, v)

∣
∣
)

dx = oi(). (A.)

By (A.), the continuity of Fu, �̃, �̃∗ and the fact �̃() = �̃∗() = , we have

�̃
(∣
∣Fu

(
x, uni(x), vni(x)

)
– Fu

(
x, u(x), v(x)

)∣
∣
) → , a.e. x ∈ � (A.)

and

�̃∗
(∣
∣Fu

(
x, uni(x), vni(x)

)
– Fu

(
x, u(x), v(x)

)∣
∣
) → , a.e. x ∈ �. (A.)

By (A.) we have

�
(∣
∣uni(x)

∣
∣
) ≤ h(x) ≤ , �

(∣
∣vni(x)

∣
∣
) ≤ h(x) ≤  for all i ∈N, a.e. x ∈ �,

which, together with the monotonicity of � and �, implies that

∣
∣uni(x)

∣
∣ ≤ �–

 (),
∣
∣vni(x)

∣
∣ ≤ �–

 () for all i ∈N, a.e. x ∈ �.

Then, by (F), there exists a constant M >  such that

∣
∣Fu

(
x, uni(x), vni(x)

)∣
∣ ≤ M

(
φ

(∣
∣uni(x)

∣
∣
)

+�̃–


(
�

(∣
∣vni(x)

∣
∣
)))

for all i ∈ N, a.e. x ∈ �
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and

∣
∣Fu

(
x, u(x), v(x)

)∣
∣ ≤ M

(
φ

(∣
∣u(x)

∣
∣
)

+ �̃–


(
�

(∣
∣v(x)

∣
∣
)))

for all x ∈ �.

Then, by the monotonicity and convexity of �̃, the fact that �̃ satisfies the �-condition
globally, (A.) and (.), for all i ∈N, a.e. x ∈ �, we have

�̃
(∣
∣Fu

(
x, uni(x), vni(x)

)
– Fu

(
x, u(x), v(x)

)∣
∣
)

≤ �̃
(∣
∣Fu

(
x, uni(x), vni(x)

)∣
∣ +

∣
∣Fu

(
x, u(x), v(x)

)∣
∣
)

≤ �̃
[
M

(
φ

(∣
∣uni(x)

∣
∣
)

+ �̃–


(
�

(∣
∣vni(x)

∣
∣
))

+ φ
(∣
∣u(x)

∣
∣
)

+ �̃–


(
�

(∣
∣v(x)

∣
∣
)))]

≤ C
(
�̃

(
φ

(∣
∣uni(x)

∣
∣
))

+ �
(∣
∣vni(x)

∣
∣
)

+ �̃
(
φ

(∣
∣u(x)

∣
∣
))

+ �
(∣
∣v(x)

∣
∣
))

≤ C
(
h(x) + �

(

∣
∣u(x)

∣
∣
)

+ �
(∣
∣v(x)

∣
∣
))

=: g(x) ∈ L(�), (A.)

where C is a positive constant. Moreover, by (F), there exists a constant M >  such that

∣
∣Fu

(
x, uni(x), vni(x)

)∣
∣ ≤ M + �′

∗
(∣
∣uni(x)

∣
∣
)

+ �̃–
∗

(
�∗

(∣
∣vni(x)

∣
∣
))

for all i ∈N, a.e. x ∈ �

and

∣
∣Fu

(
x, u(x), v(x)

)∣
∣ ≤ M + �′

∗
(∣
∣u(x)

∣
∣
)

+ �̃–
∗

(
�∗

(∣
∣v(x)

∣
∣
))

for all x ∈ �.

Then, by the monotonicity and convexity of �̃∗, the fact that �̃∗ satisfies the �-
condition globally, (A.) and (.), for all i ∈N, a.e. x ∈ �, we have

�̃∗
(∣
∣Fu

(
x, uni(x), vni(x)

)
– Fu

(
x, u(x), v(x)

)∣
∣
)

≤ �̃∗
(∣
∣Fu

(
x, uni(x), vni(x)

)∣
∣ +

∣
∣Fu

(
x, u(x), v(x)

)∣
∣
)

≤ �̃∗
(
M + �′

∗
(∣
∣uni(x)

∣
∣
)

+ �̃–
∗

(
�∗

(∣
∣vni(x)

∣
∣
))

+ �′
∗

(∣
∣u(x)

∣
∣
)

+ �̃–
∗

(
�∗

(∣
∣v(x)

∣
∣
)))

≤ C
(
 + �̃∗

(
�′

∗
(∣
∣uni(x)

∣
∣
))

+ �∗
(∣
∣vni(x)

∣
∣
)

+ �̃∗
(
�′

∗
(∣
∣u(x)

∣
∣
))

+ �∗
(∣
∣v(x)

∣
∣
))

≤ C
(
 + h(x) + �∗

(

∣
∣u(x)

∣
∣
)

+ �∗
(∣
∣v(x)

∣
∣
))

=: g(x) ∈ L(�), (A.)

where C is a positive constant. Combining (A.)-(A.) with Lebesgue’s dominated con-
vergence theorem, we can conclude that (A.) holds. Then (A.) holds. Similarly, we can
obtain that

∫

RN

∣
∣Fv(x, uni, vni) – Fv(x, u, v)

∣
∣|ṽ|dx = oi()

∥
∥(ũ, ṽ)

∥
∥. (A.)

Therefore, combining (A.) and (A.) with (A.), we can conclude that I ′
(uui, vni) →

I ′
(u,v) in W ∗, which contradicts (A.). �

Lemma A. Assume that (φ), (φ), (V), (F) and (F) hold. Then

〈
I ′(u, v), (u, v)

〉
=

〈
I ′

(u, v), (u, v)
〉
– o

(〈
I ′

(u, v), (u, v)
〉)

as
∥
∥(u, v)

∥
∥ → .
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Proof Since 〈I ′(u, v), (u, v)〉 = 〈I ′
(u, v), (u, v)〉 – 〈I ′

(u, v), (u, v)〉 and 〈I ′
i (u, v), (u, v)〉 = o()(i =

, ) as ‖(u, v)‖ → , we need to prove 〈I ′
(u, v), (u, v)〉 = o(〈I ′

(u, v), (u, v)〉) as ‖(u, v)‖ → .
By (F), (F), (φ), ) in Lemma . and (.), for any given constant ε > , there exists a
constant Cε >  such that

∣
∣uFu(x, u, v)

∣
∣ +

∣
∣vFv(x, u, v)

∣
∣ ≤ ε

(
�

(|u|) + �
(|v|)) + Cε

(
�∗

(|u|) + �∗
(|v|))

for all (x, u, v) ∈ R
N ×R×R. Then, by (A.), ) in Lemma ., (.) and (.), we have

∣
∣
〈
I ′

(u, v), (u, v)
〉∣
∣

≤
∫

RN

(∣
∣Fu(x, u, v)

∣
∣|u| +

∣
∣Fv(x, u, v)

∣
∣|v|)dx

≤ ε

∫

RN

(
�

(|u|) + �
(|v|))dx + Cε

∫

RN

(
�∗

(|u|) + �∗
(|v|))dx

≤ ε

∫

RN

(
�

(|u|) + �
(|v|))dx + Cε

(‖u‖l∗
�∗ + ‖u‖m∗


�∗ + ‖v‖l∗

�∗ + ‖v‖m∗


�∗
)

≤ ε

∫

RN

(
�

(|u|) + �
(|v|))dx + C

(‖u‖l∗
,�

+ ‖u‖m∗


,�
+ ‖v‖l∗

,�
+ ‖v‖m∗


,�

)
, (A.)

where C = Cε max{Cl∗
�∗ , Cm∗


�∗ , Cl∗

�∗ , Cm∗


�∗}. Moreover, by (A.), (φ), (V) and Lemma .,
when ‖(u, v)‖ = ‖∇u‖� + ‖u‖� + ‖∇v‖� + ‖v‖� ≤ , we have

〈
I ′

(u, v), (u, v)
〉

=
∫

RN
a

(|∇u|)|∇u| dx +
∫

RN
V(x)a

(|u|)|u| dx

+
∫

RN
a

(|∇v|)|∇v| dx +
∫

RN
V(x)a

(|v|)|v| dx

≥ l

∫

RN
�

(|∇u|)dx + αl

∫

RN
�

(|u|)dx

+ l

∫

RN
�

(|∇v|)dx + αl

∫

RN
�

(|v|)dx

≥ min{l, l}min{,α}
(‖∇u‖m

�
+ ‖u‖m

�
+ ‖∇v‖m

�
+ ‖v‖m

�

)

≥ min{l, l}min{,α}
(
Cm‖u‖m

,�
+ Cm‖v‖m

,�

)
. (A.)

Then (A.), (A.) and the fact that  < mi < l∗i ≤ m∗
i (i = , ) imply that

lim
‖(u,v)‖→

|〈I ′
(u, v), (u, v)〉|

〈I ′
(u, v), (u, v)〉

≤ lim
‖(u,v)‖→

ε
∫

RN (�(|u|) + �(|v|)) dx
α min{l, l}

∫

RN (�(|u|) + �(|v|)) dx

+ lim
‖(u,v)‖→

C(‖u‖l∗
,�

+ ‖u‖m∗


,�
+ ‖v‖l∗

,�
+ ‖v‖m∗


,�

)
min{l, l}min{,α}(Cm‖u‖m

,�
+ Cm‖v‖m

,�
)

=
ε

α min{l, l} .
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Since ε is arbitrary, we conclude that |〈I ′
(u, v), (u, v)〉| = o(〈I ′

(u, v), (u, v)〉) as ‖(u, v)‖ → .
Hence, 〈I ′

(u, v), (u, v)〉 = o(〈I ′
(u, v), (u, v)〉) as ‖(u, v)‖ → . �
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