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SIchan University, Chengdu The main objective of this paper is to investigate the dynamic bifurcation for the

Sichuan 610064, China granulation convection in the solar photosphere. Based on the dynamic bifurcation
theory, which is established by Ma and Wang (Phase transition dynamics, pp. 380-459,
2014), the critical parameters (R, F) condition for the granulation convection is derived.
Furthermore, the corresponding R-F-phase diagram is generated. In addition, the
bifurcation solution is also obtained with certain assumptions.
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1 Introduction

The atmosphere of the sun is divided into three parts: the bottom layer of the atmo-
sphere is photosphere, the middle layer is chromosphere and the outermost layer is the
corona. The grainy appearance of solar photosphere is produced by the tops of the con-
vective cells and is called granulation. It worth noting that Kutner analyzed the structure
of granulation in his book [2]. He pointed out that the temperature decreases with the
increasing height in the photosphere. And he concluded that the temperature difference
between the top and bottom of photosphere causes the granulation convection in pho-
tosphere which can be explained by circulation cells of material. In circulation cells, the
hotter gas is brought up from below, producing the bright regions. The cooler gas, which
produces the darker regions, is carried down to replace the gas that was brought up (see
Figure 1).

In addition, Ustyugov introduced the solar activity and gave the magneto-
hydrodynamics (MHD) equations in [3, 4], which can explain the convection structure
in the sun. There have been many studies on this kind of problem. For instance, Chae [5],
Agélas [6], and Wu [7] considered the regularity of MHD equations, and Capone [8] and
Fuchs [9] studied the stability bifurcation of MHD equations. For more research about the
MHD equations refer to [10-17]. It is noticed that the granulation convection structure
(see Figure 1) is similar to the structure of Rayleigh-Bénard convection and the Taylor
problem. Inspired by the dynamic theory, which is established by Ma and Wang to study
the Rayleigh-Bénard convection and the Taylor problem (see [1, 18—20]), we will investi-
gate the dynamic bifurcation for the granulation convection. This paper is organized as
follows.
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Figure 1 The structure of granulation. This is a lateral view
showing the situation under the surface. The hotter gas is
brought up from below, producing the bright regions. The
cooler gas, which produces the darker regions, is carried
down to replace the gas that was brought up.
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Figure 2 The RF-phase diagram. In region |, there is no R
granulation convection structure; and in region Il, the
granulation appears. So the transition occurs as the L
parameter (RF) crosses the critical curve L from region | to I
region Il
R, !
F

1. In Section 2, we introduce the equations governing the atmospheric circulation
with magnetic field and also give the bifurcation theory.

2. Section 3 is devoted to getting the RF-phase diagram of granulation under the
parametric condition Kj = 0 and F # 0, where R is the Rayleigh number, which is
related to the difference of temperature 77 — Ty, F is a dimensionless parameter,
which is related to the magnetic field H, and Kj is as in (2.5), which is related to the
boundary condition Hy and H;. The transition occurs as the parameter (R, F)
crosses the critical curve L from region I to region II; see Figure 2.

3. In Section 4, the bifurcation solution and the critical Rayleigh number R¢ are
obtained under the condition F = 0.

2 Governing equations
2.1 The model in spherical coordinates
Let (¢,0,r) be the spherical coordinates, where ¢, 6, r represent the longitude, the latitude,
and the radial coordinate, respectively. The unknown functions include the velocity field
u = (uy, Uy, u,), the temperature function 7', the pressure function p, the electromagnetic
press function ® and the magnetic field H = (H,, Hy, H,). Then the equations governing
the atmospheric circulation with magnetic field [9, 21-23] in the spherical coordinates are
given by

% + (- Vu=vAu- %Vp—g/?[l—a(T— To)] + %(V x H) x H,
4 (- V)T =k AT,
UL =V x (ux H)+nAH + VO, (2.1)
divu =0,
divH =0,
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where 0 < ¢ <27, -3 <60 < 7,19 <r<r,r =ry+d, ro is the radius of the sun, and 4

>

is the height of the troposphere, k = (0,0, 1), g is the gravitative constant, v is the kinetic
viscosity, « is the thermal diffusivity, and 7 is the resistivity. The differential operators in

the spherical coordinates are given as follows:

- Uk, Uyl
(u~V)u:<(u~V)u¢+ . ¢+‘p—ecot9,
r r
2
U,y u
(u-Vug + — 6——¢cot9,
r

2 2\ T

17 u
(u-V)u,-—@-—“’) :
r r

1 ap 19P ap\~
VP: N -~ T T T
rsinf dp r a0 or

1 du, 1 9(sinfuy) 1
rsinf d¢  rsinf 90 r2

2

. )
divu P (r u,),

- 2  du, 2cosf Juy Uy
Au=|A ot . ot 20 A, o 2.
r?sinf d¢  r’sin’@ d¢  rsin’6
2cos6 du u 290
Aue—z—.—w— .02 +—2ﬁ,
r’sin€ d¢  r2sin"6 r? 96
2u, 2 0(sinfuy) 2 du, T
Aur— R T o - )
r r?sin6 a0 r’sinf d¢

(VxH)xH_<1ﬁ[3(’Hw) 1 3Hr} H, I:aHg w]

r ar sinf 06 rsinf | dg a6
H, [0Hy 9(H,sin0)| H,[dH, 0d(rHy)
rsinf | dg 1o r | 06 or
Hy[8H, 8(Hy)] H,[8(H,) 1 9H,]\"
r | 06 ar r ar sinf 06 ’

10 10
Vx(uxH)= (;a[r(u(pH, - u,Hw)] — ;B_G(MQH“) — uy,Hp),

1 a(H Hp) a['@(H H,)]
—(u -u - —|rsin@(u,Hy — u ,
rsinf d¢ O T R T L ing ar R
1

.
oy [rsin6(u,Hy — ugH,)| -

1 T
r2sinf [, - u,Hw)]) ’

AH, V®, div H are similar to Au, Vp, divu, and the operators A, (- V) are given by

ad a0 ad
w-vy=22, % 9 .,°
r 30  rsinf d¢

or
1 92 1 9 (. 0 19(,0
A=z—s———t————|sinf— |+ 5 —|7r"— )
r2sin’@ d¢?  r’sin@ 30 06 r2or\ or

In this paper, we mainly focus on the dynamic bifurcation for the granulation. For simplic-

’

ity, we assume @ = 7. Then the velocity component uy and the magnetic field Hj are zero,
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and equations (2.1) become

- ~ r . O(rH, :
uw+(1/i Vu, + ”fw:v(Auw+r%%_':—g)_$g_Z+%[ (;rw)_a;ﬂ],
2 3 !
Bautf +(M V)ur_uTw =U(Au’_%_%%)_ﬁ%—g[l—a(T—To)]
&[ﬂ_ B(er)]
por - ¢ ar
4 (- V)T =k AT, .
aH, .
8;0 - rar[r(uw —uH,)] + n(AH, + %B;:Ipr _ _) %£
9H,
% r12 ap [r(u H Hr)] +7I(AH - 2r_1_21r - r% 8(/1¢)+ (j';f
divu =0,
divH =0,
where
u, 0 0
w-vy=e 2,0
3(/) Br
19 19 (,9
12 d¢? i"2 or Br
10u 10
divu=-—2

2
r o e r2 8r(r Mr)'

Furthermore, equations (2.2) are supplemented with the following boundary condition:

(u, T,H)(@,r) = (u, T,H)(p + 2km, 1),

u,=0, Hy=Hy, T=Ty, _-%v_qg  r-p, (2.3)
u,=0, Hy=H, T=T, "_%_g  r=r+d

2.2 Perturbed dimensionless equations
We determine the basic flow by following assumptions.
1. U=(uy,u,T,Hy H,)=(0,0, T(r),O,I:Ir),p = p(r), ® = 0; that is, the pressure
function, the temperature function and the magnetic field function in r-direction
are not zero, and which are only depending on .
2. The functions T(r), H(r) and p(r) satisfy

L2 gl -aT - To) -

PO dr
AT =0,
AH, - 5H, = 0.

3. Based on the boundary condition (2.3), the value of basic flow on the boundary is

given by

H, = Hy, T=To, r=ro,

HVZHl, TZTI, r=r0+d.
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From the above assumptions, we derive the basic flow as follows:

T= % + Co,
H =Kr+1%, (2.4)
p= /0" =pogll = (T — To)l dr,

where
Tir — T To - T;
Co = 11 oro’ C = (To 1)1’07“1,
rn—ro rn—ro (2.5)
Koy Ky
H() = I(lr() + 2 H1 = [(17'1 + —
o ry

It is noticed that K and K; are related to the boundary value Hy and H;. Furthermore,
in order to get the perturbation equations related to the variables r and ¢, we make the

following translations:

p=p +p T=T+T, H,=H +H,.

Omitting the primes, equations (2.2) can be rewritten as

u Urls 29 u 19 H, (3(rHy)  3H,
T Vg + e = (B A ) M
Hy [30Hy) _ oH,y

) por ar dp 17
il u 2 2 du 139
G+ Vup = =F = v(Au, - 2 - 558) - - —gaT,

C

—t+(ro)T=KAT+ Sy, (2.6)
9H, 2 9H, 199 , 139 7
a—f—rar[r(uw = urHy) + n(AH, + 5 aw’——)+;3—+;5(ru¢Hr),
aHy _ 1 2H, 2 M, ~ du
3tr=—23—[V(MH —u H) +n(AH, - =3 = 5 a;’) ——-Hr 3;
divu =0,
divH = 0.

Aswe know, the radius of the sun is about 7 x 10° km and the thickness of the photosphere
is about 500 km. Then the ratio of the thickness of the photosphere to the radius of the sun
is small. Hence, we adopt the approximations that 1/r >~ 1/ry, (ro + d)/ro = 1. For simplicity,

we assume v/« = n/k = 1. Also, we introduce the following dimensionless variables:

To—Th pokc?
\/ﬁ T/, p = d2 p/;
d2
H=HoH, d=H~a, t=2v,
d K

K
u:;u’, r=dr, T =

where R, called the Rayleigh number, is a dimensionless parameter and

R= ga(TO - Tl)dg
KV
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Let (¢”, ") = (ro¢’, 7). With the above assumptions, we omit the primes and get the ap-

proximate equations, which are given as follows:

atw +(u-Vu, + urr:w =Au, + %% —’:—g - 3—5 plo K2[—[2H(6Hw
+ o G Hodro + (5 - 5E),
2

3(;‘;+(u-V)u,—u7“’=Au,—%—%%”—5+\/_T,
%{ (u-V)T = AT + V/Ru,,
agi;a = ;r(”wH —u,H, )+AHW+%%—13—7—§+%£+§}:M¢

o (Kudro + 3%) 52,
a£r=@(uy o= H)+AH—%—%":;"’+”’(I> 1(K1dr0+K°
divu =0,
divH =0,

8H,«)

dg

auw
dp

(2.7)

where (¢,r) € M = (0,L) X (ro, o + 1), 1o is the radius of the sun with the unit of d, L = 27 r,

and Kj, K; are given as (2.5). (u - V), div and A are general differential operators.

9 9 2 9 _ ou,
(u-V)=ty— +u,—, A=—+—, divg= — +
g or op?  0r? 17

The boundary conditions (2.3) are rewritten as

(u, T,H)(@,7) = (u, T,H)(¢ + L, 1),

a ki)
u,=0, H,o=0, T=0, e Ue_o -y,
u,=0, H. =0, T=0, y My o oy 4l

ar ar

2.3 Abstract operator equation

(2.8)

Now we will show that equations (2.7) can be written in the operator form. Since the

velocity field # and the magnetic field H on M are divergence-free, there exist the following

stream functions f; and f; satisfying the given boundary condition:

o o
u‘ﬂ_a? ur—_%,

I T
o’ " dg”

Moreover, the following two vector fields:

2 du, 2 duy 2 8f1
ro 09 1o 3¢ 1o ago
2 0H, 20H,\ 2 0f
rodp’ ro 99 ) 1o 390

Page 6 of 17



Li Boundary Value Problems (2017) 2017:110

are gradient fields, which can be balanced by Vp and V® in (2.7). Hence, (2.7) are equiv-

alent to the following equations:

Yo (- Vg + yzA%_%_% + Lo, (e ot
o KzHo(Kldro + )5 =50,
3“’ + (u- V)u,——2 = Au, — Zr”’ - +\/_T
W +(u~V)T=AT+\/Eu,,
%: %(uw -u,H,)+ AH, ——(2) ?)_?;Jf%”w (2.9)
+ Hio(l(ldro + ﬁoz)agf,
W = 2 (uH, — u Hy) + AH, - % + 82 o (Kdro + 5 2)3”‘%
divu =0,
divH = 0.

To get the abstract form of (2.9), we define the following spaces:

= {(u, T,H) e L? (M,RS) | divu =divH =0, (i, T, H) are periodic in (p-direction},

H ={(u, T,H) € H*(M,R°) N H | (u, T, H) satisfy (2.8)}.

Now, we define the operators L = —-A + B: H; — H and G: H; — H by

~ (0H, BH, U,
AU =-P| Auy, - =2 L AF = 5
r or dg T

0
1 1 du, 1 1 du,\"
SHy Pt Ay = S H = o Pt )

AT,AH, - =
ro Ho ro H() 8<p

Kid g
BU=P O,\/ET,«/EM,,FMWO ,

0

uwu, 1d* , (0H, 0H,
ar o

GU = P(—(u -Vug, — " + p—K—2H0H,
0 0
2

. 3 d r
—(u-Vu, - ;, —(u- V)T, 5(14‘/)]‘1, - u,H,), %(M,Hw —uy,H,) | ,

where P: L*(M, R®) — H is the Leray projection, U = (u, T, H) € H; and

K ~ Hyd?
F=Krod+ =2 A== (2.10)

2d2 - poKz‘

Therefore, the problem (2.9) with boundary conditions (2.8) are equivalent to the follow-

ing abstract equation.

- 1,U+GU,
u(o0) = Uy,

(2.11)

where = (R, F) € R? is the parameter and 1] is the initial value of (2.9).
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3 Under the condition K; =0
In this section, we study (2.9) the case that K; = 0. Hence, the boundary condition in (2.5)

satisfies

2

o
Hy = — Hp.

"1

We choose the Rayleigh number and the F-number as the control parameters, which are

given as follows:

To—T H
R:W{f’, F= d_2°. 3.1)

Then we consider the following eigenvalue equations of (2.9):

Auy -2 22+ AF(%e - U2) = gy,
0

Au,—%—5+«/_T=,3Mn

AT + «/_u,:

AH, -2 o+ G50+ o aﬂ = BH, 3.2)
0
2H, |, 3% du _

AH (2) + 5 ar ITO (p ﬁHry

divu =0,

divH =0,

with the boundary conditions (2.8). We proceed with the separation of variables. Under
the periodic boundary condition (2.8), the problem (3.2) possesses two eigenvectors: W

and W in the following forms:

Uy = cosapg -l (r),

u, = ag sinage - hi(r),

T =sinagg - Tr(r),

v H, = cosaiyp - gi(r), (3.3)
H, = arsinagp - gi(r),

p = pi(r)sinag,

® = Oy (r) sinagg,

u, = sinagg - h(r),

U, = —aycosayp - hi(r),

T = —cosaig - Ti(r),

U H, =sinap - g.(r), (3.4)
H, = —ay cosaxg - gi(r),

P =-pi(r)cosap,

D = —Py(r)cosarp,
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where ay = 2k /L. Putting (¥, p, ®) and (U, p, ) into (3.2), respectively, we deduce from
(3.2), (3.3) and (3.4) that (%, gk, Tk, pr, Pi) satisfy the eigenvalue problems,
D*Dhy — £ Dhy — aypi + AFD*g = BDhy,
o
akD*hk — %dkhk + \/I_QT/( - Dpk = ﬁ&lkhk,
o

D* Tk + \/Eﬂkhk = ﬂT/(, (3'5)
D*Dgy — %ng +ap P + HLOIGdth + HLOFDZI’I/( = BDgy,
o

axD*gy — %akgk +D®y + HLOFathk = Baxgi,

for any k € Z, with k # 0, where

d
D=—, D'=D’-ai.
dr K

We infer from (3.5) and the boundary conditions (2.8) that the /4 satisfy the equations
[( *(8-D*)* - riz(D* -&)(D* - )+ Ra2) (D*(ﬁ -D*) + %(D* - a2)>
0 0
+ ZFHLOFD*D(D* - /S)D*D]hk =0, (3.6)
he=D?hy =D*h =0 atr=rg,ro+1. (3.7)
By (3.7), the /i are sine functions, i.e.,
hy=sinln(r—-r9) (=1,2,3,...). (3.8)

Putting (3.8) into (3.6), we see that

2 1
a,‘fl(a,@ + /3)3 + 720‘1%1(“1%1 + ,B)z(a,%l + zzi) + r—4(a,%l + a,z()2(a,%l +B)

0 0
, » (3.9)
—Ra? |:05131(0‘/%1 +B) + E(a/%l + a,%)] + pOKzea,fllznz(a,f, +B)=0,
where
a} = al+2x?, ay =2km/L. (3.10)

It is well known that all solutions of the cubic equation (3.9) B are eigenvalues of (3.2).
Let ,B,il (1 <i < 3) be three zero points of (3.9). It is easy to see that Reﬁ,b > Reﬂ,fl > Reﬂ,?l.
Furthermore, 8 = 0 is a zero point of (3.9) if and only if

bkl - CklR + dleZ = 0,
where

0,2 602 2y 102 2
b =y + %akl(ak, +ay) + %(ak, +ay),

e =azlag + %(“/%1 +ad)l, (3.11)

_d> 6122
du = D02 O‘kll e,
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where ay; and ay are as defined in (3.10). When F = 0, we can get the critical Rayleigh

number R¢
10,2 62, 2y, 1,2, 2
b ay + ooy + ap) + (o + o) b
Rc =min & _ min o 1 0 5 - Kol (3.12)
kD) ¢y (k) aglog + %(akl +ay)] Cholo

Then the critical parameter curve in Figure 2 is given by
L= {(R’F) € RE | hkol() - Ck()loR + dk()loF2 = O}y (313)
where by, Cio1, and dy,y, as in (3.11) and (3.12).

Lemma 3.1 Let (k,[) = (ko,lo) minimize the right hand side of (3.12) and the zero point
;6,10 1o Of 3.9) is a real single eigenvalue of (3.2) near curve L. Then 5/10 o Satisfies

<0, (RF)el
Biiw § =0, (RF)€L,
>0, (RF)ell,

ﬂ,ﬂl <0,V(k,1,i) # (ko,lo,1), and (R, F) near L, where the region I and Il are as Figure 2.

Proof We first prove that
B <0, (RF)el (3.14)

In fact, as (R, F) = (0, 0), the solutions of (3.9) are

2 2
ﬂl _ 2 ,32 —ﬁ3 _ 2 _ak010+ak
kolo = ~%kolo? kolo = Pkoly = ~%kolo 2 2

T
kolo' O

Namely, /3,10 1(0,0) < 0. Since ,3,10 ;o (R, F) are continuous on (R, F), then (3.14) holds true.
Next, we are ready to prove that the first eigenvalue ﬂl%o 1o (R F) > 0 in region II near the
curve L. Let

2
8kolo = a;:olo (“1%010 + 'B)B * r_zalzolo (alzolo + /3)2(0[/%010 + a/2<o)
0

1 1
" r_4 (alzolo + aio)z(a/%olo + 'B) - R’ |:0t]%010 (0‘/%010 + 'B) + 7_2(0513010 + aio)i|
0 0

d2
2 4 2..2(.2
+ —FPag , Pr*(ag,, + B)
POKZ 040 040
_ 4 163 3 6 E 2 ( 2 +ﬂ2) /32
- a/(ol() + ak()l() + r2 akolo a/(ol() k
0
4
8 4 2 2
+ [36{]{010 + %akolo (Olkolo +ﬂk)
1 2 d?
2 2 2 2 2 472 2
+ = (@, + @) — Rage ) + ——Falin® |B
Iy Pok

+ Lk()lo;
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Figure 3 The graph of g, - As the figure shows:
When Ly, =0, I'y is the graph of g, ; when

Ligly <0, Ty is the graph of gy, Then the
intersecting point of I'; (i=1,2) and B-axis is the
first eigenvalue ﬂ;o/o' When Ly, =0, the

intersecting point of I'y and B-axis, ﬂ‘lo/o =0,and /\

“h

(R, F)isin curve L. When Ligiy <0, the intersecting
point of I'; and B-axis, B\ >0, and (R,F) isin /

region I

RN Z,;* <0

Figure 4 The graph of L. The curl L passes through the R
point (R, F1) and intersects with the R-axis at Re,, itis easy to
find that R¢c > RQ .

where Lii, = biyiy — Ciolg R+ Aoty F2. When Ly, = 0, I'y is the graph of gi,,; when Ly, < 0,
I is the graph of gx /,, as shown in Figure 3. Then the intersecting point of I'; (i = 1,2) and
B-axis is the first eigenvalue ﬁ,lo 1o~ When Ly, = 0, the intersecting point of I'y and S-axis,
/3,10 o = 0, and (R, F) is in curve L. When Ly, < 0, the intersecting point of I'; and $-axis,
,3,1010 >0, and (R, F) is in region II. At last, we will show that ,BIil <0, V(k,1) # (ko,lo), when
(R, F) in region I or in region II near the curve L. We only need

Bu#0, Y(RF)el (k1) (ko lo). (3.15)

Otherwise, if (3.15) does not hold true, there exist a pair of (Ry, F;), such that ﬂ,ﬂl(Rl, F))=0.
That is to say, there exists a curl Ly, which passes through the point (R;, F;) and intersects
with R-axis at R¢,, as shown in Figure 4. It is easy to find that R¢ > R¢,, which makes a
contradiction that R¢ is the minimum critical Rayleigh number. So, we prove (3.15). When
(R,F) =(0,0), we have

2, 2
1 2 2 _ p3 2 Yt
B = g <0, Bia = Bia = —jq — 22 0,
ko
which implies B}, < 0, ¥(k, 1) # (ko, o). Because f},(R, F) are continuous, ,3;;, < 0inregion I
or in region II near the curve L. This proves Lemma 3.1. O

Based on Theorem 2.3.1in [1], Theorem 2 in [20] and Lemma 3.1, we derive the following
theorem.

Theorem 3.2 The critical parameter curve L divides the RF-plane into two regions I and
1I (see Figure 2), such that the following conclusions hold true.
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1. If(RF) €1, the problem (2.8) and (2.9) have no bifurcation, and the basic flow in
(2.4) with Ky = 0 is stable.
If (R, F) € II, there exists a bifurcation solution.

3. The transition takes place as the control parameter (R, F) crosses the critical curve L

from region I into II.

4 For the condition thatK; #0and F=0
4.1 Eigenvalue problem
Consider the case that F = 0, and F is given by (2.10). Then equations (2.9) become

duy Urip _ Yo _dp 1 d%ppagy (0Hy  0H,
ot + (- Vug + = = Aug — A SHIH, (55 = 5.5,

2

U
Ber g (- Vuy — ¢ = Au, — 2 — 2 4 RT,

o
3 4 (- V)T = AT + /Ruy,
oH, p H, p
=t = L(u,H, —uH,) + AH, - =+ % + %u(p, (4.1)
0

oMy _ o 2, 30
te 3, ) 60— e 2,
divu =0,
divH = 0.

Essentially, the control parameter in (4.1) is only the Rayleigh number R in (3.1). Then the
eigenvalues and the eigenvectors ¥, W are similar to those in Section 3, and we can get

the corresponding eigenvalue problems

D*Dhy — %th — axpx = BDhy,
0

arD* by — 5 ayhy + ~'RTy = Dpy = Bah,
0

D* Tk + x/ﬁdkhk = ﬁTk, (4‘2)
D*ng — %ng + akGJk + HLOIGdth = ,Bng,

axD*g — %akgk +D®y = Baygy.

From (4.2), we see that gx (k=1,2,...) satisfy the equations

2

OB 20 =)D (0
- (0" =) (0 =) R (0~ )
1

+ Rﬂi(D*—ai)]gkw, k=1,2,.... (4.3)

n
By (4.2) and the boundary conditions (2.8), gi are the sine functions

gu=sinlz(r—ry), forl=1,2,3,....

Moreover, iy and T} are determined by the following:

1 1
D*(B-D*)gc + - (D* - a) gk = ——KidD* I, (4.4)
ry H()
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\/I_QQka = (D*)(D* - ,B)hk - :_Z(D* - aﬁ)hk. (4.5)
0

Substituting gi; into (4.3), we see that the eigenvalue S of (4.2) satisfies the cubic equation

2 1
(o + ﬁ)3 + r—z(a,fl +ay) (o + ﬁ)za,fl + r—4(oz,%l + a,%)Z(a,%l +B)
0 0

R (o + B) - rlzRa,z( (o +a?) =0. (4.6)
0

Hence, all eigenvalues and eigenvectors can be derived from the following cases.
1. For (k1) = (0,]), we have

1

1 2_2 2 2_2
ﬂolz_l ’ /3012_1 - o
o

\Ilél = (0, 0,sinlm (r - rg), 0, 0), \Ilél = (O, 0,cos i (r —rg),0, 0),

\Ilgl = (0, 0,0, cos i (r —rg), 0), ‘i‘él = (0, 0,0, sinm (r — ro), 0).

2. For (k,I) = (k,0), the eigenvalues and eigenvectors are given by

2
IBkO =—ay — 5
o

W0 = (0,0,0,0,sinaxp), U0 = (0,0,0,0, cos arp).

3. Fork#0and !0, it is well known that all solutions of equation (4.6) are
eigenvalues. Let ﬂil(R) (1 <i < 3) be three zero points of (4.6) such that

ReByy > Refyy > Refy,.

Then, by (3.3), (3.4), (4.4) and (4.5), the eigenvectors \Il,il and \IJ;;Z corresponding to B, can

be written as

lnhfd cosagg - coslm(r—ry),

akhﬁd sinagg - sinlnw (r — rp),

W}, = { Tl sinagg - sinlw(r - ro), (4.7)
I cosayg - cos lm (r—ry),

ay sinagg - sinlw (r — ro),

lnhfd sinagg - cos I (r — ry),
—ayhi, cos axyp - sinln (r - ry),
‘I/,’;, = —T,il cosayg - sinlm (r — ry), (4.8)

It sinagg - coslm(r —ry),

—ay cosagg - sinlm (r —ro),
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where
- Ho [oy (e, + ﬂlq) (akl +a;)]
i_
i = 12n21<1d ’
. Holaj(ed, + ,B,ij)2 - %(aﬁ, +a3)?]
Ty=

NRap 2w Kid

It is clear that the eigenvalues and eigenvectors have the following properties.
L Bl Broand By, (k #0, 1 #0) consist of all eigenvalues of equation (4.2), and all
eigenvectors form a basis of H;
2. Bl;<0(i=1,2)and By < 0;
3. the eigenvalues B}, (k #0, [ #0) only depend on the Rayleigh number.
Now, we are ready to determine the dual eigenvector. The dual eigenvectors W;; and \I—’,’j
are given by

Imhjcosarg - coslm (r —ro),

ﬂkhkz sinap - sinlw (r — ry),

W= T} sinagg - sinl (r — ry), (4.9)
It cosagg - cos lm (r—ry),

ay sinagg - sinlw (r — rg),

I hi sinagg - sinlm (r — ro),

—akhkl cosagg - cos I (r—ry),

\i/ﬁ = —T;j cosay - coslm(r—ry), (4.10)
It sinagg - sinlw (r — rg),

—ay cosagg - coslm (r—ry),

where
Kidp_2(pi 2
Bt - —T L7 (B + )
K= 52 ' XY )
Raj + By + ) oy — B — Z“k 12 2)’
Kidp_ 2
. -l ak«/_
K= , 1
R“i + (B + al%l)(akl IBklakl lz %)

Thus, all dual eigenvectors consist of \Ill* = (0,0,sinlm (r — rp),0,0), ‘-I»’gl* = (0,0,0,
sinln (r —ro),0), ¥}, = (0,0,0,0,sinap), \I/ko (0,0,0,0,cosaxp).

In this part, we are ready to study the critical-crossing of the first eigenvalue. Since the
eigenvalues g}, (1 <i <3, k #0,[+0) only depend on the Rayleigh number, it suffices to
focus on the eigenvalue problem (4.6). If 8 = 0 is a zero point of (4.6), we can get

2 1 2 1 1
2 2\ .6 2 2 2 2 4 2 2\ _
Olkl + — (Olkl +ﬂk)akl + —4(0lkl + ﬂk) Olkl —Rﬂk Olkl + —2011(1 + _26lk = O.

o o o To

In this case, we have

10 2 2 2\,.,6 1 2 2 2

Qg + g(“kz +agoy + %(“kz +ap) oy

R= 204 . 1 2 .1 2 : (4.11)
ag(oag + %akl + %ak)
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Hence the critical Rayleigh number R¢ has a similar form to Section 3, which is given by

10 2,602 2 1 2 2
ay + (g +ap) + gl +ag) g
Rc = min 0 0 _ Ykolo
- 2[y4 4 1 (2 2 - ’
) aplog + g(“kz +ay)] Ckolo

Thus, we have the following lemma.

Lemma 4.1 Let (ko, ly) minimize the right hand side of (4.11). Assume the zero point /3,10 I
of (4.6) is a real single eigenvalue of (4.1) near R, then ,3,10 I satisfies

<0, ifR<Rc,
Biio 1 =0, ifR=Rc,
> 0, lfR > Rc,

ReBy(Rc) <0, V(k,1i) # (ko, lo, 1).

The proof is similar to the proof of Lemma 3.1, so we omit it.

4.2 Transition theory with F=0
In this section, we consider the transition theorem of problem (4.1) with boundary con-
ditions (2.8) with Kj # 0 and F = 0, where Kj, F as in (2.10). Then we have the following

theorem.

Theorem 4.2 Let Ki # 0 and F = 0, we have the following conclusions for equations (4.1)
with boundary conditions (2.8).
1. Equation (4.1) bifurcates from ((u, T, H),R) = (0, R¢) to an attractor g € Hy, only
consisting of a steady state solution.
2. The steady state solution (u, T, H) = (uy, ty, T, Hy, H,) can be expressed as

D=

~ 1
(MW’ Uy, T’ H‘P’Hr) = C(ﬂ/lol() (R)) (x‘p]iolo +-y\p/1()lo) + 0(‘/3/1010 | 2)’

where C > 0 is a constant, \Il,lo 1o and lif,lo 1o 7€ the first eigenvectors given by (4.7)
and (4.8), and x> + y* = 1.

Proof We first reduce the abstract equation (2.11) to the center manifold. Let Jy = (ko, lo, 1),
then W - = Wy, and W}, = Wy, the reduced equations read

d 1
d—’; = ﬁ]ox + _(Wfo'w]*()> (G(u) u)’ \IJ}Z>’

d 1 . (4.12)
=By W@(U» uy,vy),
where U = (uy, u,, T, H,, H,) € H, is written as
u= x\IJJO +y\i:’]0 + Z(x]\II] +y]\i:’]) = x‘-I/]O +y\i:’]0 + o. (413)

J#o
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® is the center manifold function, and G is a bilinear operator, which is

r 1 d? 0H. 0H,,
G(Uy, Uy) = P| —(u, - V)“Z(p _ Aty ——H2H1r o 2 ’
o po K2 ar dp

UrpUyp

d
—(uy - Vg, — ,—(u1 - V)T, — (1o Hor — 1, Hay),
ar

ro
T
0
@(uerZ(p - ul(pHZr)) .
It is easy to verify that
<G(\Ij10’ ), "IJ]T)) = (G(\I"/o’ ci)10)’ \I/}Z))
= (G(®y, Wy,), ¥}t ) = (G(Dyy, ), ¥ ) = 0.
Hence, (4.12) can be rewritten as

@ = B+ gy GV, @), W7 + (G(, Wy,), W7 )]
WUG(%,(D) W)+ <G(<I>,\if,0), Wi +o(lxl® + [yP),
=By + W[ G(‘I"JO, @), ¥ ) + (G(D, ¥y,), 8

(G(¥y,, @), T}1) + <G<d>, o), Wi + o[l + y1°).

+
(4.14)

+ (3, \y*

Based on the approximation formula Theorem 6.1 in[18] for center manifold functions,
we see that the manifold function ® satisfies

—LO == (B + By )
J#o
= x2G(Wy,, ¥y,) + Y2 G(Fy,, Uy, ) + xyG(W)y, Wy, ) + xyG (g, U),)

+o(lx1* + |yI?). (4.15)
By direct calculation, from (4.15), the center manifold function can be written

2)“k0 k()l()hkolo wl

2
CDZ—(X +y 21 0,20y

+ o(|x|2 + |y|2). (4.16)
Inserting (4.16) into (4.14), we have

= B W(x +9°) +o(|x® + [y1?),
(4.17)

_ 3 3
2 —ﬁfoy <%"P70>(x +9%) +o(jxl + y?),
where

L 2
8= Zai (Tiy) Mgty ™ >0,
8 0 0t0 0t0 (418)

<\IJ/0’ \pfo) ("IJJO’ \IJ10> >0.

Therefore, the conclusions of Theorem 4.2 follows from (4.17), (4.18) and the attractor
bifurcation theorem in [3]. The proof of the theorem is completed. g
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5 Conclusions

In summary, the production of granulation convection is illustrated by Theorem 3.2 and
Figure 2, where R is the critical Rayleigh number. As is shown in Figure 2, when the dif-
ferences of temperature and magnetic are small enough, the points (R, F) are below the
critical curve L and in region /, the gas is in a static state. When they become greater
than the curve L, the gas suddenly breaks into regular circulation cells, which is granu-
lation convection. The circulation cells can be expressed by the bifurcation solution in
Theorem 4.2. From both the mathematical and the physical points of view, the results are
valuable to understand the phase transition in fluid dynamics.
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