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Abstract

We have investigated an initial-boundary problem for the perturbation equations of
rotating, incompressible, and viscous magnetohydrodynamic (MHD) fluids with zero
resistivity in a horizontally periodic domain. The velocity of the fluid in the domain is
non-slip on both upper and lower flat boundaries. We switch the analysis of the
initial-boundary problem from Euler coordinates to Lagrangian coordinates under
proper initial data, and get a so-called transformed MHD problem. Then, we exploit
the two-tiers energy method. We deduce the time-decay estimates for the
transformed MHD problem which, together with a local well-posedness result, implies
that there exists a unique time-decay solution to the transformed MHD problem. By
an inverse transformation of coordinates, we also obtain the existence of a unique
time-decay solution to the original initial-boundary problem with proper initial data.

Keywords: magnetohydrodynamic fluid; equilibrium state; magnetic field; decay
estimates; rotation

1 Introduction
The three-dimensional (3D) rotating, incompressible and viscous magnetohydrodynamic

(MHD) equations with zero resistivity in a domain © C R? read as follows:

oV +pv-Vv+ V(p+ Ao |M|?/2) + 2p(d X V) = uAv + AgM - VM,
Mi;=M-Vv—v-VM, (1.1)
divv=divM = 0.

Here the unknowns v = v(x, £), M := M(x, ) and p = p(x, t) denote the velocity, the magnetic
field, and the pressure of the incompressible MHD fluid respectively; ;> 0, p and A stand
for the coefficients of the shear viscosity, the density constant, and the permeability of
vacuum, respectively. 2p(® x v) represents the Coriolis force, and @ = (0, 0, w) denotes the
constant angular velocity in the vertical direction. In system (1.1), equation (1.1); describes
the balance law of momentum, while (1.1); is called the induction equation. As for the
constraint divM = 0, it can be seen just as a restriction on the initial value of M since
(divM); = 0 due to (1.1),.
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Let M := (my, my, ms3) be a constant vector with m3 # 0, and (0, M, p) be a rest state of
the system (1.1). We denote the perturbation to an equilibrium state (0, M) by

Then, (v, N, q) satisfies the perturbation equations

v+ pv-Vv+ V(G + N + M[*/2)

= AV + (N + M) - V(N + M) + 2pw(vre; — vies),
N;=(N+M)-Vv—v-V(N + M),
divv=divN =0,

where we have used the relation @ x v = w(v1e; — v5e1). For system (1.2), we impose the
initial and the boundary conditions:

(VrN)|t:0 = (VO:NO) in €, (13)

v(-,t)|se =0 foranyt>D0, (1.4)

where vy and Ny should satisfy the compatibility conditions div vy = div Ny = 0. We call the
initial-boundary value problem (1.2)-(1.4) the MHD problem (with rotation) for simplicity.
In this article, we always assume that the domain is horizontally periodic with finite height,

iLe.,
Q:={x:=(x,x3) eR® |& € T,0<x3 <h} withh>0,

where 7 := (27 L T) x 27 L,T), T =R/Z, and 2w Ly,27w L, > O are the periodicity lengths.

The effects of magnetic fields and rotation on the motion of pure fluids were widely in-
vestigated; see [1-10] and the references cited therein. In particular, Tan and Wang [11]
showed that the well-posedness problem of the initial-boundary problem (1.2)-(1.4) for
w = 0 (i.e., without the effect of rotation). In this article, we further consider w # 0, and
show that there also exists a unique time-decay solution to the initial-boundary problem
(1.2)-(1.4) in Lagrangian coordinates (see Theorem 2.1), which, together with the inverse
transformation of coordinates, implies the existence of a time-decay solution to the origi-
nal initial-boundary problem (1.2)-(1.4) with proper initial data in H”(2). Our result also
holds for the case w = 0, thus improves Tan and Wang’s result in [11], in which the suffi-
ciently small initial data at least belong to H'®(<2).

In the next section we introduce the form of the initial-boundary problem (1.2)-(1.4) in
Lagrangian coordinates, and the details of our result.

2 Main results

2.1 Reformulation

In general, it is difficult to directly show the existence of a unique global-in-time solution
to (1.2)-(1.4). Instead, we switch our analysis to Lagrangian coordinates as in [12, 13]. To
this end, we assume that there is an invertible mapping &, := £o(y) : 2 — €, such that

02 =¢(0(02) and detV¢y=1, (2.1)
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where ¢ denotes the third component of y. We define the flow map ¢ as the solution to

&) =v(E (3, 2), ),

2.2
¢(,0) = &. &2)

We denote the Eulerian coordinates by (x, £) with x = ¢(y,£), where (y,¢) € @ x R* stand
for the Lagrangian coordinates. In order to switch back and forth from Lagrangian to
Eulerian coordinates, we assume that ¢ (-, ¢) is invertible and € = ¢(£2, £). In other words,
the Eulerian domain of the fluid is the image of € under mapping ¢. In view of the non-
slip boundary condition v|3q = 0, we have 92 = £ (92, ¢). In addition, since det V¢, = 1, we
have

det(Ve) =1 (2.3)

due to divv = 0; see [14], Proposition 1.4.
Now, we further define the Lagrangian unknowns by

.0, B),t) = (v,p + MolM[*/2,M) (¢ (3,£),£)  for (y,£) € @ x R*. (2.4)

Thus in Lagrangian coordinates the evolution equations for u, p and B read as

gt =u,
puy — LA AU+ V2P = AoB - V4B +2pw(use; — urey), 2.5)
B, —B-Vau=0, '
divau=0,
with initial and boundary conditions
(M,; _y)|39 =0 and (;rurB”t:O =(§0’M01B0)‘
Moreover, div 4 B = 0 if the initial data ¢, and By satisfy
div4, By = 0. (2.6)

Here Ay denotes the initial value of A, the matrix A := (A;)3x3 via AT = (Vo)L=
(3j¢:)3%5, and the differential operators V4, div.A and A4 are defined by Vuf :=
(A1 Oxf, Ao Oif .Agkakf)T, diVA(Xl,Xz,X3)T = Ay dr Xy, and A 4f := div 4 V 4f for appro-
priate f and X. It should be noted that we have used the Einstein convention of summation
over repeated indices, and 8 = d,,. In addition, in view of the definition of A and (2.3), we
can see that A = (A;."j)gxg, where A;‘} is the algebraic complement minor of the (i, j)th entry

0;¢;. Since 0; A}, = 0, we can get an important relation
div 4 u = 9)(Agux) =0, (2.7)

which will be used in the derivation of temporal derivative estimates.
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Our next goal is to eliminate B by expressing it in terms of ¢. This can be achieved in
the same manner as in [12, 13]. For the reader’s convenience, we give the derivation here.

In view of the definition of 4, one has
0itk Axj = Ak g = by,
where §; = 0 for i #j, and §; =1 for i = j. Thus, applying Aj; to (2.5)4, we obtain
Aji9:B;j = BiAidrujAjp = Bi A0 (3x8j) Ajy = =B A 8dp Ajy = =B Ajis
which implies that 9,(A;B)) = 0 (i.e., (A" B), = 0). Hence,
AuBj = ABY, (2.8)
which yields B; = BZQA?IB?, ie.,

B=V¢AIB,. (2.9)

Here and in what follows, the notation f° also denotes the initial data of the function f. To

obtain the asymptotic stability in time, we naturally expect
(¢,B) converges to (y, M) ast— oo. (2.10)

Thus (2.9) formally implies

AgB() = A_/[, ie., B() =M. V{o. (211)

Putting the above expression of By into (2.9), we get

B=M-V¢. (2.12)
Moreover, in view of (2.8), (2.11) and (2.12), the Lorentz force term can be represented by
B -V 4B =B ApdB=AYB) (M -V¢)=M-V(M-V¢). (2.13)

Summing up the above analyses, we can see that, under the initial conditions (2.1) and
(2.11), one can use the relation (2.13) to change (2.5) into the following Navier-Stokes sys-
tem:

gt =u,
puse — WA g1+ V 4P = hoM - V(M - V) + 2pw(uzer — rer),

divqu =0,

and B is defined by (2.12). Now, we introduce the shift functions

n=¢{-y and g=p-p. (2.14)
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Then the evolution equations for the shift functions (1, q) and u read as

r)t =Uu,
pur — LA 4u + YV aq =AM - V(M - V) = 2pw(user — urer), (2.15)
divqu =0,

where A= +Vnp), 1= (8i7)3x3. The associated initial and boundary conditions read as
follows:

(1, w)le=0 = (o o), (n,u)laq = 0. (2.16)

It should be noted that the shift function g is the sum of the perturbed fluid and the mag-
netic pressures in Lagrangian coordinates. Hence we still call g the perturbation pressure
for the sake of simplicity. In this article, we call the initial-boundary value problem (2.15)-
(2.16) the transformed MHD problem.

2.2 Main results
Before stating our first main result on the transformed MHD problem in detail, we intro-
duce some simplified notations that shall be used throughout this paper:

R := [0, 00), / ::/, IF = I[P(Q):= WOP(Q) forl<p < oo,
Q

H} = W (Q), H* .= W*(Q), I k=1 gk fork=>1,

3f denotes 31952  for any o + ay = , I N 2= Z (1971852 - ||,

aj+ag=m

a < b means that a < cb,

where, and in what follows, the letter ¢ denotes a generic constant which may depend
on the domain € and some physical parameters, such as Ag, M, g, i and p in the MHD
equations (2.15). It should be noted that a product space (X)" of vector functions is still
denoted by X, for example, a vector function u € (H?)? is denoted by u € H? with norm
Nl = (i, llux|172)""?. Finally, we define some functionals:

e = IVal3e + [l + [ e VO,

2
D= [, M- Vi, Vi) o + [ o) |5 + Y [8Fully oy + 1Va1? + 1V 4.3,
k=1

3 2
EM =1Vl + Il + 3 [0ful ¢y + DI V0Fal e
k=0 k=0

3 2
D= [ M-I, Va) gy + |G+ D [9full3_pe + D | VoEal i + 1945,
k=1 k=1

“ll (o, w)(2)113
3; Go(t) = (17)307 dr,

Gi(#) = sup |n(z)
0<t<t

Gs(t) = sup E7(1) + /tDH(t)dt, Ga(t) = sup (1+7)3EL(2).
0

0<t<t 0<t<t
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Next, we introduce our main result.

Theorem 2.1 Let Q2 be a horizontally periodic domain with finite height, » be an arbitrary
real number, and ms # 0. Then there is a sufficiently small constant § > 0, such that for any
(no,uo) € H” x H° satisfying the following conditions:

@) lmoll3 + lluollg < 6;

(2) ¢o:=y+ no satisfies (2.1);

(3) (no,uo) satisfies necessary compatibility conditions (i.e., aiu(x, 0)ag=0forj=1

and 2),

there exists a unique global solution (n,u) € C°(RS,H’ x H®) to the transformed MHD
problem (2.15)-(2.16) with an associated perturbation pressure q. Moreover, (1, u, q) enjoys
the following stability estimate:

4

G(00) =Y Gi(0o) < c(lmoll3 + lluoll)- (217)

k=1

Here the positive constants § and ¢ depend on the domain Q and other known physical
parameters Ao, M, ju and p.

Remark 2.1 Exploiting the inverse transformation of ¢, we can easily deduce from Theo-
rem 2.1 the global well-posedness of the original MHD problem (1.2)-(1.4). More precisely,
there is a sufficiently small constant 8y > 0, such that, for any (vo, Ny) € H® satisfying the
following conditions:
(1) there exists an invertible mapping ¢o := {o(x) : 2 — €, such that (2.1) holds, where
AL = (Vo)™
(2) (M + No)(&o) = M - Vo3
(3) 1150 =15 + Ivollg < 8o;
(4) the initial data oo, vo, Np satisfy necessary compatibility conditions (i.e.,
aiv(x, 0)|sq =0 for j =1and 2),
there exists a unique global solution (v,N) € C°(R}, H®) to the original MHD problem
(1.2)-(1.4) with an associated perturbation pressure g. Moreover, (v,N, q) enjoys the fol-
lowing stability estimate:

3 2
wp (nNuz DTN uvafzmuizk)
k=0 k=0

0<t<oo

+ sup (1+ (| N)|s + |06 VD7) < c(ligo = %12 + lIvol2). (2.18)
<t<oo

Now we briefly describe the basic idea in the proof of Theorem 2.1. By the standard
energy method, there are two functionals £ and Q of (i, x) satisfying the lower-order

energy inequality (see Proposition 3.1)

d -~
SEaDh<op, (219)

where the functional £ is equivalent to £. Unfortunately, we can not close the energy
estimates only based on (2.19), since Q can not be controlled by EL. However, we observe
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that the structure of the energy inequality above is very similar to that of the surface wave
problem [15], for which Guo and Tice developed a two-tier energy method to overcome
this difficulty. In the spirit of the two-tier energy method, we look after a higher-order
energy inequality to match the lower-order energy inequality (2.19). Since £ contains
[Inlls, we find that the higher-order energy at least includes ||n]||¢. Thus, similar to (2.19),
we establish the higher-order energy inequality (see Proposition 4.1)

d -
AR VEL| (n, w2, (2.20)

where the functional £ is equivalent to £/, Moreover, the highest-order norm ||(n, u)||
enjoys the highest-order energy inequality

d
I+ (o] <&+ D1, (2.21)

where the norm ||7n||7, is equivalent to ||5||7. In the derivation of the a priori estimates, we
have Q < £, and thus (2.19) implies (see Proposition 3.1)

d

dtéL +Dl<o. (2.22)

Consequently, by the two-tier energy method, we can deduce the global-in-time stability
estimate (2.17) based on (2.20)-(2.22).

The rest of the sections are mainly devoted to the proof of Theorem 2.1. In Section 3, we
first derive the lower-order energy inequality (2.22) for the transformed MHD problem.
Then in Section 4 we derive the higher-order energy inequality (2.20) and the highest-
order energy inequality (2.21). Based on these three energy inequalities, we prove Theo-
rem 2.1 by adapting the two-tier energy method in Section 5.

3 Lower-order energy inequality

In this section, we start to derive the lower-order energy inequality in the a priori estimates
for the transformed MHD problem. To this end, let (5, &) be a solution of the transformed
MHD problem with perturbed pressure g, such that

Gi(T)+ sup EH(r)<8€(0,1) forsomeT >0, (3.1)

0<t<T

where § is sufficiently small. It should be noted that the smallness depends on the known
physical parameters in (1.4), and will be repeatedly used in what follows. Moreover, we
assume that the solution (n,u,q) possesses proper regularity, so that the formal calcu-
lation makes sense. We remind the reader that in the calculations, we shall repeatedly
use Cauchy-Schwarz’s inequality, Holder’s inequality, the embedding inequalities (see [16],
4.12 Theorem)

flle S for2<p<6 and |fllze S Ifll2 (3.2)

and the interpolation inequalities (see [16], 5.2 Theorem)

Il < ILfII(l)_é Ilfllrlf < Celfllo + €llf 1l i (3.3)



Wang and Zhao Boundary Value Problems (2017) 2017:114 Page 8 of 31

for any 0 <j < i and any constant € > 0, where the constant C. depends on the domain 2
and €. In addition, we shall also frequently use the following two estimates:

el < IFNlgleg forj>=0 (3.4)

and

Ifllo S ldafllo forf € Hy, (3.5)

where «(j) = j for j > 2 and «(j) = 2 for j < 1. We also introduce the following inequality,
see (3.4) in [17]:

Ifllo < hIM - Vefllo/m. (3.6)

Before deriving the lower-order energy inequality defined on (0, T'], we first give some
preliminary estimates, temporal derivative estimates, horizontal spatial estimates and
Stokes estimates in sequence.

3.1 Preliminary estimates
In this subsection, we derive some preliminary estimates for .A. To begin with, we give an
expression of A. Using (2.15);, we have

dpdet(I+ V)= Y d,9mAy= Y Ajdu, (3.7)

1<ij<3 1<ij<3

where A7 is the algebraic complement minor of the (i,/)th entry in the matrix I + Vn.
Recalling the definition of A, we see that

A= (A;)ng/det(l +Vn).
Inserting this relation into (3.7), we get

3y det(I + Vi) =det(I + Vi) > Aydju; =0,
1<ij,<3

which, together with initial condition det( + V) = 1, implies
det(/ + V) = 1.

Thus we obtain

A= (4]),5 (.9
Now, exploiting (2.15)1, (3.1), (3.4) and (3.8), we easily see that
IAl; ST+ [0l @+ Inla) S1 for0<j<6, (3.9)

IVAI; < 21+ Inllja) S lnlle  for0 <j<5.



Wang and Zhao Boundary Value Problems (2017) 2017:114 Page 9 of 31

Similarly, we further deduce that

lo/Al, <D 0fVu|, foranyl<i<4and0<)<8-2i
k=0

Letting A:= A —1I, we next bound A. To this end, we assume that § is so small that the
following expansion holds:
[ee]
AT =1-Vn+(Vn)* Y (-Vn)' =1-Vn+ (V) AT,
i=0
whence
AT = ()2 AT - vy,
Using (3.1), (3.4) and (3.9), we find that
1Al S IVl for0<j<é.
3.2 Temporal derivative estimates
In this subsection, we try to control temporal derivatives. For this purpose, we apply 3, to

(2.15) to get

Ay
P U — A AU+ V 4dlq

s ail ; . (3.10)
= M0 M - V(M - V) + 2pwd)(uzer - mes) + uNy,' + N/,
div 4 ¥u = divD,
where
Ns= 30 o At (0 A o),
0<m<j,0<n<j
. i—1
Ny o= =D (07 Audfora) 5,
0<l<j
. j—1 nj—1
D= (_ S it Akiafuk) : (310
0=l<j 3x1

CI’:_Z denotes the number of (j — [)-combinations from a given set S of j elements,
and we have used relation (2.7) in (3.11). Then from (3.10) we show the following estimates:
Lemma 3.1 It holds that for j = 0 and 1,

d - _ A -

& (a0l + 2ol Volnl2) + ] Sa0lul? < VETD, 612

d 1
— (| Vasae g + =/ Puteellg S Maall3 + Nluae | + v EHDE. (3.13)
de "
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Proof (1) We only prove (3.12) for j = 1, since the derivation of the case j = 0 is similar.
Multiplying (3.10), with j = 1 by u;, integrating (by parts) the resulting equality over €,
and using (3.10);, we get

|

(I/Puellg + X0 M - 1el1G) + il Voaze

N =
o,

t

= 2/0(0/ 0, (uzer —urep) - uy dy + /Qt div 4 u; dy

+//,/N:;1 . utdy+/N;’1 ~uydy
=Y I (3.14)
The last three integrals 1%, ..., I can be estimated as follows:

Iy = —/Vqt -DE dy S IValloll Aellgallull s S IVaelloll Aellllully

SVEHD,, (3.15)
I S Al A sl udlo S VEHDE, (3.16)
Iy SN AoVl luello S 1A Vallalluello S vV EHDY, (3.17)

where we have used (3.10); in (3.15). Consequently, the desired estimate (3.12) follows
from (3.15)-(3.17).

(2) Now we turn to the proof of (3.13). Multiplying (3.10), with j = 1 by u,, integrating
(by parts) the resulting equality over €2, and using (3.10);, we conclude

nd
EaHVAlel% + |I/Pue g

= f(prat(uzel —wep) - uy + hoM - V(M - Vi) - uy) dy
+ /qtdivAuttdy+u/N,i’1 cugdy + /N;’l uy dy

+;L/VAut:VAtutdy
=Y i (3.18)

On the other hand, the five integrals ]{1 ey ]? can be bounded as follows:
TS (o + aell2) et llos (3.19)
I3 = —/Vqt D5 dxe S IVaello(Mello el + 1A ll2 e lo)

SVEHDY, (3.20)
JE <Al Aellalell2 Nl llo S vV EHDE, (3.21)
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<Al Vallallello S VEHDE, (3.22)
JE <N AN Al lull? SV EHDE, (3.23)

Thus, substituting (3.19)-(3.23) into (3.18) and using Cauchy-Schwarz’s inequality, we im-
mediately get (3.13). O

3.3 Horizontal spatial estimates
In this subsection, we establish the estimates of horizontal spatial derivatives. For this
purpose, we rewrite (2.15) as the following non-homogeneous linear form:

77t =u,
oy — WAU+ Vg — oM - V(M- V) = 2pw(uze; — urey) + uNf{’ + N;‘, (3.24)
divu = DZ,

where
N = o (A A + A+ A) i,
N;' = —(Aadiq)sxa and D= Agdu.

Then we have the following estimate on horizontal spatial derivatives of .

Lemma 3.2 It holds that

d i ‘ y /
([ -ty S5l ) <ol vyl

SVEAD 4 |lull}y, 0<j<3.

Proof We only show the case j = 3; the remaining three cases can be verified similarly.
Applying 97 to (3.24),, multiplying the resulting equation by 37, and then using (3.24);,
we get

pd:(33n - dpu) — (LA, + hoM - V(M- V3;n)) - din
= (2pwd; (uer — wies) + LN, + 8;’N;’ - Vojq) - n + ,0|8£u|2.

If we integrate (by parts) the above identity over €2, we obtain

d _
([ ooin-atucy s S1vatall; )« aolit- o

= 2pa)/ ag(uzel —urey) - 8217 dy + /(/LB,?NZZ + BgN;“) . 8277 dy
. 2
+/8§qd1v32ndy+ ||ﬁ82u||0

S OKE +lull3y, (3.25)
k=1

where the first three integrals on the right-hand side of the first equality in (3.25) are de-
noted by Kf, K} and K%, respectively.
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We have the boundedness
K < 3l 132l 826
Noting that

|+ N2 o < I Allallelis + 1AL llells + 1ALV alls + 1Al Vally

< VEHDL,
we find that
Ky < |ndiNg + Ny | [9in], < VETD . (3.27)

Next we estimate the third integral K%. To start with, we analyze the property of div 7.

Since
det(/ + Vn) =1,
we have by Sarrus’ rule

divn = 01120211 + 02130312 + 03110113 — A1 N10212 — A1 33Nz — 021720373
+ 0111(32130312 — 02123313) + 211 (01120313 — d1130372)

+ 0311 (01130212 — 01120273).

Multiplying the above identity by a smooth test function ¢, and then integrating (by parts)
the resulting identity over €2, we derive that

[edviey=- [vo-va,
where
n1(3am2 + 9313) + 11(82m39372 — 021120373)
V= | 120313 —moina + m(01m203m3 — din3d37m2)
MmNz — 120213 + M1 (dn302m2 — 91120273)
This means that
divn =divy.
Thus, it follows immediately that
Ki = —/ 3Vq-pydy= —/ Vg 5y dy

<IVali|a;w ], < nllsliValilinlls < VEHDE. (3.28)
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Now, substituting (3.26), (3.27) and (3.28) into (3.25), we immediately obtain the desired
estimate for the case j = 3. d

Similarly, we also establish the following estimates of horizontal spatial derivatives of u:

Lemma 3.3 We have
d ; _ . )
L (1Bl + ol 1 wepn2) + w|Vojul? < VEFDE, =125

Proof We only prove the case j = 3; the remaining two cases can be shown similarly. Ap-
plying 97 to (3.24),, and multiplying the resulting equality by 3; %, we make use of (3.24);
to get

pOjug - u— WA u - Oju— oM - V(M- Vpn) - 0pn,

= (200} (uzer — ure) + woEN" + aﬁN; - Vapq) - dyu.
Integrating (by parts) the above identity over 2, we have

1d _ "
3 i ([ elapal @y e nalit-vapnl}) + 5 vl
= / (WORNY + 0PN - Opudy + / dPqdivaiudy = M + M5 (3.29)

On the other hand, similarly to (3.27) and (3.28), the two integrals M} and M} can be
estimated as follows:

ML S ||pdpNyE + a,fN; ||0 Ha,j’u”o < VEHDE, (3.30)
My =- / 3t qa2D! dy < IIVqlsllAllallulls S VEHDE, (3.31)

where we have used (3.24)3 in (3.31). Consequently, putting the above two estimates into
(3.29), we obtain Lemma 3.3 for the case j = 3. O

3.4 Stokes problem and stability condition
In this subsection, we use the regularity theory of the Stokes problem to derive more esti-
mates of (1, u). To this end, we rewrite (3.24), and (3.24) as the following Stokes problem:
-Aw+ Vg
=AM - V(M- Vn) - dom3An + 2pw(uze; — ure) — puy + ,uN,’j + N;, (3.32)
divw = pl,Dﬁ + )\Omg divn,
coupled with boundary condition

a)|39 =0, (333)

where w = Agmin + pu.
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Now, applying 3{: to (3.32) and (3.33), we get

—Aa}’fw + Vaﬁq

= 3 (hoM - V(M - V) = Aom3 An + 2 pw(uze — urez)) — pdfu, + s N + N;‘,
div dfw = udf D! + rom3 div 3k,
8}]:w|3g =0.

Then we apply the classical regularity theory to the Stokes problem as in [18], Proposition
2.3, to deduce that

2 ”
ol i en + 1VGIZ ik SNV nin + [ )|y + St (3.34)
where

St = | (NG Ng) g+ | (DL divar)

liime Jiimcor

In addition, applying 3{‘ to (3.24),-(3.24)3, we see that

—uAfu+vVakq
— M. k(R k k+1 kath o akarh
=AM - 9, V(M- Vn) +2pwd; (urer — u1€2) — pd; "t + ;N + 9, Ng,
divd*u = 3kD”,
*ulaq = 0.

Hence, we apply again the classical regularity theory to the Stokes problem to get

2

lofael} s + [ V0Fa] S 10K (V20 1) |y + S (3.35)

where S§, := | 9f (N, NIIZ o + 10f D117 1,1+ As a result of (3.34) and (3.35), one has the
following estimates.

Lemma 3.4 We have

d

I+ el + 1941?) < |G ud[] + Inl, + €7D, (3.36)
leell3 + 1917 < 113 + [ o) | + EEL, (3.37)
lete 13+ 1V gel2 < Neel + | oty wae) | + €D, (3.38)

where E- := EL — || V(13 o and ||nls,. is equivalent to ||n]|s.
Proof Noting that, by virtue of (2.15);,

romip d
ol kra = | Comsn, ) [ o + =57 MR k120

we deduce from (3.34) that

d
i + (| + 1Vl )

2 2 2
,S ”M”k,i_k + ”n”k+1,i—k+1 + ||”t||, + S(/:),," (3.39)
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In particular, we take (i, k) = (1,0) and (i, k) = (1,1) to get

d
&Ilnllﬁ ve((|@mms +1val3) < [ ud|; + 112, + S5, (3.40)

and

d
e+ el 5, + 19alto) < [+ Il + St (3.41)
On the other hand, it is easy to show that

Soy+ 8% < |(NEND) |7+ [ (DL diva) |5 < 142 (1l + 119g12) + 1113

< EHEL <ghpl, (3.42)

Thus we immediately obtain (3.36) from (3.40)-(3.42).
Now we turn to the derivation of (3.37). In view of (3.35) with (i, k) = (1,0), we have

2
laall3 + IV gIF S i3+ [ Gu, )|} + S5,
On the other hand, we can use (3.42) to infer that

St = | (VLN + [0 < €7

u

Hence, (3.37) follows from the above two estimates.
Finally, to show (3.38), we take (i, k) = (2,1) in (3.35) to deduce that

Naael2 + 1V G2 S | (V20k, g, 020) |+ S%y S N2 + || et ) | + S
Keeping in mind that

Sta S [N NG g + oDl

SIAAB(NulZ + 1VqZ) + 1ANE ()3 + 1V 13) < EMDE,
we get (3.38) from the above two estimates. g

3.5 Lower-order energy inequality
L

Now, we are able to build the lower-order energy inequality. In what follows, the letters c;
and i = 1,...,7 will denote generic positive constants which may depend on the domain 2

and some physical parameters in the transformed MHD equations (2.15).

Proposition 3.1 Under the assumption (3.1), if § is sufficiently small, then there is an en-

ergy functional EL which is equivalent to E*, such that

d -~
EgL +DE<0 on(0,T). (3.43)
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Proof We choose § so small that
|Volu|y < |Vadull, 1<j<3. (3.44)

Then, thanks to (3.5), (3.6) and (3.44), we deduce from (3.12) and Lemmas 3.2-3.3 that
there are constants cf, ¢k and o > 1, such that

d - ~
EEIL +DF < cF(1 +0)VEHDE  forany o > oy, (3.45)

where oy depends on the domain and the known physical parameters, and

3

EL = 1V/Puclg + ollM - Vullg + 0 Y (Il/pull o + 2ollM - Vil o)
k=0

3
] A a1 AQ: M
+Z< Z //0311322'7'311322"‘dy+§||V77||12<,0)’

k=0 “ay+a=k

3
f)lL = C% (||”t||% + Z(”(’%M' Vi) ”/%,0 * ||u||,2(,1)>.

k=0

Utilizing (3.13), (3.36), the interpolation inequality, and the estimate
ImIE: S InlZo0 + 1M - Vil forany 0 <k <6, (3.46)

we find that

d
3 115, + 51 Vamllg) + e ([ (n ) 5+ IVl + lle )

< ([} + Inli3o + 13- Vnll3o + VEDY). (347)

Now, multiplying (3.47) by c5/(2c£) and adding the resulting inequality to (3.45), we obtain
d - -

555 +DF < ck(1+0)VEHDE, (3.48)

where £f and D* are defined by

Ex =L+ (I3, + 51 V.amelI3)/ (2cE),

D= D2 + ek (| u) |5+ 119013 + uee12)/(26E).

On the other hand, from (3.38) we get DF < DL 4+ V/EHDL, which implies DX < DL for
sufficiently small 8. Therefore, (3.48) can be rewritten as follows:

d -
555 + b DE < ck(1+o0)VEHDE, (3.49)

Next we show that £ can be controlled by £2L By virtue of Cauchy-Schwarz’s inequality,
(3.5) and (3.44), there is an appropriately large constant o, depending on p, 1 and €2, such
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that
Va0 + Inll3 + e} < &5
In view of (3.37), we further have
EL< &Ly JEHEL,

which implies £ < EF for sufficiently small 8. In addition, obviously £& < £F. Hence, the
energy functional &} is equivalent to £. Finally, letting § < c£/2cL(1 + o) and noting £ =
26~’2L /ck, we see that (3.49) immediately implies (3.43). Obviously, the energy functional EL
is still equivalent to £, This completes the proof. O

4 Higher-order and highest-order energy inequalities

In this section, we derive the estimates (2.20) and (2.21) for the transformed magnetic
RT problem. First we shall establish the higher-order version of Lemmas 3.1-3.4 in the
following:

Lemma 4.1 We have
d ) _ y - , .
E(Hﬁa;uuﬁ ol ol + [ v lq.D;fdy) o | Vil
<VELDH, j=2,3.

Proof We only prove the case j = 3, and the case j = 2 can be shown similarly. Multiplying
(3.10), with j = 3 by d2u, integrating (by parts) the resulting equation over 2, and using
(3.10); and (3.10)3, we obtain

d _
3 IVP3ulg + 2o llAT - Fuall§) + | V.a0Pulg

N =

3
= / 32qdivD5? dy + M/N;’S -ludy + /N;'S ~ludy:= ZI,I({ (4.1)
k-1

On the other hand, the integrals I}, I and I}’ can be estimated as follows:
H 3. 3 d 2 3 2 43
L'=-| Vd/q-D; dy:—& Vo;q-D;>dy+ | Vo;q-0.D;”dy

d 2 rd
S—dt/Wtq D, dy
+c|Varq|, (| 0F Al lallz + 07 Al e lly + I AwlloNosaellz + AN |07 ] )

d
=-% Valq- D5 dy + cVELDY,

5 < [)07 Al AN Nl + 11 Ao (1A 2 12lls + ([ All2 124 113)
+ 1Al (I Azl llzell2 + 1Al el + Al ltee 1)
+ 1Al (02 Al Natllz + 1A 2 loselly + | Asello e s + 1A llzeeell2) ]| 072
< JELDH,
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B (|02 Al IVl + 1 Aaliol Vel + 1A I Vauelo) | 83u]|, < VELDH.

Inserting the above three inequalities into (4.1), we get the desired conclusion immedi-
ately. O

Lemma 4.2 We have

d _
([ st sty S 190l l}) ol vofa;
5@(|\(n,u)||§+DH)+||8;fu||§ forany k =5 and 6.

Proof We only show the case k = 6, since the derivation of the case k =5 is similar. Since
the derivation involves the norm ||Vql||s5, we first estimate ||Vq||s. It follows from (3.35)
that

lell + 1Vglis < Inll7 + | Gee)| 5 + || (NENEY |, + | D]

The last two terms on the right-hand side of the above inequality can be bounded as fol-

lows:
| (N NG N5 + 1% < 1A el + 1L Alls | Vals.
Hence, if § is sufficiently small, then one gets from the above two estimates that
lelly + 1Vglls S linlly + VDA, (4.2)

Now, applying 9 to (3.24),, multiplying the resulting equality by 97, we utilize (3.24);
to have

p0:(35n - dpu) — (WAL, + oM - V(M - VdFn)) - 85n
= 3f (2pw(uze; — urey) + uN;! +N;’ -Vq)-n+ ,0|8;6,u|2.

Integrating (by parts) the above identity over €2, we obtain

d _
([ ptn-agucys L1vagal} )« aolit- vl

=2pw/8ﬁ(ugel—ulez)-8,?ndy+u/8,fN£’~3,fr/dy—/82N;’-8,Zr]dy
. 2
—/85qd1v8;?ndy+ ||ﬁ82u||0

S D Ui+ |05u

k=1

o (4.3)

where the first four integrals on the right-hand side are denoted by ]{{ ey ]f , respectively.
On the other hand, the four integrals ]lH Yeis ]f can be bounded as follows:

RS ol l9m (44)

0’
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];I:—M/‘a;?((-/ijlvz{jk"'vilk+Akl)3kui)ala;?7li dy
< (Il llzells + 1Al allis + 1Al Nli7) 1161
- ~ 1 1 1 1 -
< (1Al leells + 1ANZ 1ANZ Neell3 el 2 + 1Al laell7) 161

SVEL w3, (4.5)

LS (N6 Vgl + 1AL 1V gla + 1AV glls) Il
- ~ 3 .1 1 3 ~
< (16 IVl + 1AL TAIE IV Vgl + 1Al Vglls) Inll,
SVEL(Inl3 + DM, (4.6)
i = /afq-aﬁdivndys||Vq||5(||n||3||n||7+ In12)

S InlisliVals(inls + linllz) < VEL(Inli7 + DY), (4.7)

where the interpolation inequality (3.3) has been employed in (4.6) and (4.7). Conse-
quently, putting the above four estimates into (4.3), we obtain Lemma 4.2. d

Lemma 4.3 We have

d _
3 Nodiulg + 2o 41 Vain|g) + ] Vajul
< «/E_L(H(n,u)Hi +DH) fork =5 and 6.

Proof We only show the case k = 6, since the derivation of the case k = 5 is similar. Ap-
plying 97 to (3.24),, multiplying the resulting equality by 7%, we make use of (3.24); to
have

U - dpu — WA u - dpu — hom* DI N - Bp

= (2pwdf (uzer — urer) + PINL + 82N;’ -Varq) - opu.
Integrating (by parts) the above identity over €2, we get

1d _ uw
3 5i [ plal @y ot vagal} )« 5 vgu

3
:p,/a,fij.agudy—/agN;-a;udy+/a,fqdiva§udy =y M} (4.8)
k=1

Analogously to (4.4)-(4.7), the three integrals M, M4 and ML can be bounded as fol-
lows:

M{{ = —/ 32 [(./Z(ﬂ.%{jk + Alk + flkl)aku,-] . 313214 dy S @”(n, u)|

2
7

M SVEL(| (w3 + DY),
MY = /82q- oD dy < IValls(1AN6llulls + 1Al llzlls + 1Al ll2ll)

~ L1 1 1 ~ 2 1%
S IValls(Inlizllals + 1A 1A Nzl a7 + 1 All2llull7) S VEE(InlZ + D).
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Substituting the above three inequalities into (4.8), we obtain Lemma 4.3.

Lemma 4.4 The following estimates hold:

2
D (1l gt 1V al o) S Nl + [ (0 0F20) [+ £,
k=

(=]

d 2
e+ Il + Do (lofulgy + [ Vofall )
k=0

SnlZy + | (n vt e, 1, 9300) | + E4DT,

2
S (0fully e+ 1 V0Fals_) S N3l + | (e 070) [ + E DM,
k=1

where the norm ||n|[% , is equivalent to |||} and E™ := EM — | Vy||? ..
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(4.10)

(4.11)

Proof (1) We begin with the derivation of (4.9). Taking (i, k) = (4, 0) in the Stokes estimate

(3.35), we have
2
lully + 1Vqlly S Inlg + || (s u) |, + Sha
Noting that
u h h\ (|12 7|2
SOA = “ (Nu’Nq)||4 + ”DMHS
S ANl + 1ANZ N + ANV I? + 1AI31 V)2 S EFET,

we get
2
laallg + 1Vl < nlg + [ G )|, + EET.

Using the recursion formula (3.35) for i = 4 from k =1 to 2, we obtain

2 2
D (o ulle o+ 1Vakals o) < NoPGeun g + D (10F ullg_y + Sta)-
k=1 k=1

On the other hand, Sf; can be bounded from above by

2 2
> Sta= D (N + NOEDLNS i+ 9N 1)
k=1 k=1
SIAN (el + 1V qel13) + 1AN3 (et 13 + 11V guell3)
+ AN N l1F + DADZ (2elF + 1V N3) + 1A (13 + 1V e 15)
# IA3 N3 + 1Al (1ll3 + I V4T

< ELER,

(4.12)
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Therefore,
2 2 2 2 2 2
> (lofullgp + IVOfalyp) < 187 Goue) [+ D 05 ull gy + E°EY, (4.13)
k=1 k=1

which, together with (4.12), yields

2 2
> (0wl + 905 allyp) < Il + 07 o) g + D Jof ey + EE. (4.14)

k=0 k=1
In view of the interpolation inequality (3.3), we have
lulla < Cellullo +€llulle  and |luella S Celluello + € llue s (4.15)

Thus, inserting (4.15) into (4.14), one gets (4.9).
(2) We proceed to prove the estimate (4.10). Exploiting the recursion formula (3.39) for
i =4 from k = 0 to 4, we see that there are positive constants ¢, k =0, ..., 4, such that

48 4
= Dol oi+ g + 1V S el + iy + Y Sty
k=0 k=0
which combined with (4.13) gives
a4 2 , ,
e ettt o (bl vl )
k=0

k=0

2
Sl + 82 ue) |+ > 0k u])?_ + EXET + S5,
k=1

where we have used the fact that S, < S5, for 0 < k < 4. Since
Sea = | (N ND) |3 + | (D divan) |
S (LA 23 + LA N2l + 0131002 + 1AIZ1V I} + 11A13 1V qll3)
< ELEH
and E < DH, we further infer that
d . 2 2 2 ak 2 Vak 2
E ch||77||k,6_k +c| lnllg + Z(” t””e—zk +| tq”4_21<)
k=0 k=0

2
Sl + |02 u) g+ > |05 uly, + EXDM. (4.16)
k=1

Using the interpolation inequality (3.3), we get (4.10) from (4.16), where || ”é,* equals to

Zi:o cklln ||%’67 « multiplied by some positive constant.
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(3) Finally, we derive the estimate (4.11) for higher-order dissipation estimates. We use
the recursion formula (3.35) for i = 5 from k = 1 to 2 to deduce that

2 2
Do (ko + 1V0Fals ) <[9P [f 4 Do (10 ]y + Sts)- (4.17)
k=1 k=1
Noting that
2 2 ) )
> Sks = 2 (10F (NN 5o+ 196D 00)
k=1 k=1

SIAAGNll? + NANZ el + 1AV N5 + 1A 1 Va3
1 2 2 1112 2 112 2
+ 1A 202l + AN 13 + 1A 202112
1 2 2 1 12 2 112 2
+ 1A 120V GI? + ANV gl + 1AV

< gHDH,
we obtain (4.11) from (4.17). O

Now we are in a position to build the higher-order and highest-order energy inequal-
ities. In what follows, the letters c{’ and i = 1,...,6 will denote generic constants which
may depend on the domain Q and some physical parameters in the transformed MHD
equations (2.15).

Proposition 4.1 Under the assumption (3.1), if § is sufficiently small, then there are two

norms EH and || nll3 . which are equivalent to E" and ||n||3 respectively, such that

%SH + D S VEL (w2, (4.18)
d
I+ [ w7 €%+ D on (0,7]. (4.19)

Proof (1) We first prove (4.18). Similarly to (3.48), we make use of (3.5), (3.6), (3.44) and
(3.46) to deduce from Lemmas 4.1-4.3 and (4.10) that there are constants ¢/, c&f, cf and
oo > 1, such that

d - -
5511{‘*7){{ < c{{[(1+a)x/ﬁ(”(n,u) ”3 +’DH) + ||(n,u, uy) H(z)] for any o > a0, (4.20)

where « depends on the domain and the known physical parameters, and

3

&= 3 (Imotully e solit- ol [ Vot i )
k=2

6
o o o [0% I’L
+ Y /p811822n.Bllazzudy+25||V7]||,2<’0
k=5

5<a1+ap<6

+a(lvpullgy +rolM - Vilige) +c5 g .



Wang and Zhao Boundary Value Problems (2017) 2017:114 Page 23 of 31

3 6
P = g(z loful? + 3 |Gt vn, V)7, + Il

k=2 k=5

(ot uvafqni_z»).

2
k=0
Moreover, by (4.20) and Proposition 3.1 we find that

—EH L DM §cf(1+a)x/ﬁ(||(n,u)||§+DH), (4.21)

where £ := EF 4 (HEL and DM := DI + D By (4.11), we have D < DH + EADH. So,
(4.21) can be rewritten as

d -~
&%{ + c?DH < c{{(l +0)VEL H (n,u) Hi for sufficiently small §. (4.22)

Next, we show that £/ can be controlled by gg—[ . Keeping in mind that

3 3
> [vittq-ptays Y [vatal, 1921,
w2 k=2

3
< Je_H<|| wu), Y [oFA, + ||At||z||un||o>

k=2

<& )%, (4.23)

we use Cauchy-Schwarz’s inequality, (3.5) and (4.23) to infer that there is an appropriately
large constant o, depending on p, 1 and €2, such that

3

- 3

IVnIZg + Inl2 + > |okul; < & + (£7)2.
k=0

Recalling (4.9) and the fact that Ef < £, we have

3
2

EM<EM L erem 1 (eM)? < &M 4 2(eM)2,

which implies £ < 4‘2{ for sufficiently small 8.

On the other hand, 551 < &M obviously. Hence, the energy functional c‘:'f is equivalent to
&M Finally, letting § < ¢ /2¢§ (1+ ) and denoting £ = 26 /cH, we see that (4.22) implies
(4.18).

(2) We proceed to derive the highest-order estimate (4.19). We start with employing the
recursion formula (3.39) with i = 5 from k = 0 to 4 to find that there are positive constants
di (k =0,1,2), such that

5
d 2
2 2 2 2
3 2 s [ On ) [ < Nl + Il + Nl + S5
k=0
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On the other hand, by virtue of (4.2),

2 . 2
Sos = [N N [ + (Dl divn) |
SUANZ Nl + 1Al + ATV G2 + 112113 < D7+ E7Inli2.

Thus, we conclude

5
Z A2, + |, w2 S €M+ DM+ 7y 2.
k

Hence, (4.19) holds by defining |53, := 255, diInlZ_s provided § is sufficiently
small. O

The following lemma will be needed in the next section.
Lemma 4.5 Under the assumption (3.1), if § is sufficiently small, then
ENSE = IInl + llulls. (4.24)
Proof In view of (4.9), we have

>, gLeH,

EL S + | (s, ey, 07 |

which results in

EM Sl + | (ot s e, 9720) | ¢

”0 (4.25)

for sufficiently small §. Below we show that the L?>-norm of u; and 93u can be controlled
by V€.

(1) First, to bound #,;, we multiply (3.10), with j = 0 by &, and integrate the resulting
equation over 2 to obtain

IFul = [ (e au 2ot V- V) + 2pouses - me) -y

—/vq.Dgldy

SE+1Vallo

where the last term on the right-hand side can be bounded from above by £. Hence,
g S € (4.26)

(2) Then we control the term u,,. Multiplying (3.10); with j = 1 by u,, and integrating the
resulting equation over €2, we infer that

/o3 = /(MAAatu +AoM - V(M - Vu) + 2pw(uze; — urez) + N + N;'l)
-92udy

—querl’z dy,
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which yields
luaely S )5 + [N NG [ + 19460 | DE
Noting that
[N N g s €
and
IVaello] D5 o < 1Al leelly + [ Asellollellz < llaeell? + E,
we see that
loteellg < Noaell + €. (4.27)

(3) Finally, we estimate the term 92u. If we multiply (3.10); with j = 2 by 82u in L*(2),
we obtain

|vaul? = / (WA Gt + Ao - V(T - Vit
+ 2003} (urer — ue) + uN-* + N;'z) -33udy
- / V- D dy,
whence
|02u ]2 < lleell? + | (s ) |5 + | (NE2NE) |2 + 19 o | D o
On the other hand, it is easy to show that
| (N2 N2 g < el + €
and
IVaeello| D5 |y < Nuells + llueell} + €.
Therefore,
|03u))? < Notell? + luaell3 + €. (4.28)
Now, we control the term ||z, in (4.28). By (3.10), with j = 1, we deduce that

2 2 2 2 1 1 |12
luteell3 S Motellg + 11V gel3 + || (V20 N Ny )5

where the last term on the right-hand side can be bounded by £. Consequently,

Noteells S lluelly + IVl + E. (4.29)
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To estimate V¢;, we rewrite (3.24), as follows:
Aqe = fi,

with boundary condition
Vgq:-v=f-v onog,

where

fii= div(MBth: + 8tN;’ = Pty + WA + hoM - V(M - V) + 2pwdy (uze) — ure3)),

fo:= Ma,ij + BtN;’ + AU + oM - V(M - Vi) + 2pwd,(use; — uzer).
In view of the standard elliptic regularity estimates [19], we find that

1Vaells S AN + 113 < luely + e I + €.
Putting the above inequality into (4.29), we obtain

ot 13 < Noaell + lloeee 13 + €,
which, together with the interpolation inequality (3.3), yields

leteel3 S Notell + Nosee |15 + €. (4.30)
Consequently, from (4.28) and (4.30) it follows that

[2ullo < Nl + el + €. (431)

Next, we control | |4 in (4.31). Using (2.15),, we derive that

lete )2 S | (Dt V21,0,V a4q) |5 S Vg3 + €, (4.32)
where, by virtue of (3.24),, V¢ satisfies

Aq=f
with boundary condition

Vg-v=fi-v onoag,

and

f3:= div(uNf{’ +N;’ — pus + LAY+ AoM - V(M - Vi) + 2pw(uze; — ulez)),

far=(uNj + N} + wAu + 1M - V(M- V).
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Thus, we can use the elliptic regularity estimate to get
19I5 S W15 + Iallz < lluel + €.

Hence, from (4.32) we get
oty S Noell + E,

which, together with the interpolation inequality (3.3), implies that
el < Nuellg + €.

Inserting (4.33) into (4.31), we conclude

”83””(2) S ”(ut:utt)Hé +&.
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(4.33)

(4.34)

(4) Now we are able to show (4.24). Summing up the estimates (4.26), (4.27), (4.33) and

(4.34), we arrive at

3
> lofufs <€,
k=1

which, combined with (4.25), gives (4.24).

5 Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. Roughly speaking, Theorem 2.1 is

shown by combining the a priori stability estimate (2.17) and the local well-posedness of

the transformed MHD problem. Before we derive the a priori stability estimate (2.17), we

begin with estimating the terms G, ..., Ga.

Using (4.19), and recalling the equivalence of ||17||%,* and |12, we deduce that

t
% < lnollze™ + / e (ER () + D (1)) de
0

t t
<lnoll2e™ + 0sup EH(T)/ e dr +/ DH(r)dr
<v<t 0 0

Slnolize™ + Gs(2),

which yields
Gi(&) S lImoll? + Gs ().
Multiplying (4.19) by (1 + £)7>/2, we get

d inli3, L3 Inl3. . I, w7 €Y . DH
de(@+232 20 +8)52  (L+8)32 ™~ (1+2)32  (1+¢)32

(5.1)
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which implies that

G2(t) < limoll3 + Gs(). (5.2)

An integration of (4.18) with respect to ¢ gives

Gs(t) < EM(0) + /0 VEL@)|| (1, u)(x) | dz.
Let

Gs(0):= Gi(8) + sup EM () + Gu().

o<rt<t

From now on, we further assume /Gs(T') < §, which is a stronger requirement than (3.1).
Thus, we make use of (5.2) to find that

Gs(6) S E7(0) + / 5(1+ 12| (r,1)(0) |2 de
0
S EM(0) + 8(IImoll3 + Ga(2)),
which implies
Ga(t) < noll3 + £7(0). (5.3)

Finally, we show the time decay behavior of G4(t), noting that £- can be controlled by
DI, except the term || Vn]|30 in EL. To deal with || Vn]|3,0, we use (3.3) to get

199030 < Inlfglinls.
On the other hand, we combine (5.1) with (5.3) to get
EX 41l S EX+ Inli7 S lnoll? + €7(0).
Thus,
EL < EF < (D) (EX + ImIB)* < (DY) (Imo? + £7(0)) .
Putting the above estimate into the lower-order energy inequality (3.43), we obtain

dg  (EHi

+ <0
173~
dt 7

which yields

ol 5L o 1 _ lInoll2 + €(0)
~ Y (Zo/EE0))3 4+ £/3) 1+
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with Zy := ¢(EM(0) + [|1n0]12) for some positive constant c. Therefore,
Ga(®) S limoll3 + £7(0). (5.4)

Now we sum up the estimates (5.1)-(5.4) to conclude that

4
G(t) =Y Ge®) < lImoll3 + E7(0) S linoll? + lluo I3,
k=1

where (4.24) has been also used. Consequently, we have proved the following a priori
stability estimate.

Proposition 5.1 Let (1, u) be a solution of the transformed MHD problem with an associ-
ated perturbation pressure q. Then there is a sufficiently small 81, such that (n,u, q) enjoys
the following a priori stability estimate:

G(T1) < Ci(lmoll? + lluoll3), (5.5)

provided that \/Gs(T1) < 81 for some Ty > 0. Here C; > 1 denotes a constant depending on
the domain Q2 and other physical parameters in the transformed MHD equations.

Inview of the a priori stability estimate in Proposition 5.1 and the following result of local
existence of a small solution to the transformed MHD problem, we immediately obtain
Theorem 2.1.

Proposition 5.2 There is a sufficiently small §,, such that for any given initial data
(n0,uo) € H' x H® satisfying

V Imoll3 + lluollg < 8

and the compatibility conditions (i.e., 8{u(x, 0)lag =0,j=1,2), thereexista Ty := T5(53) >0
which depends on 8,, the domain Q2 and other known physical parameters, and a unique
classical solution (n,u) € C°([0, Ty],H” x HP®) to the transformed MHD problem (2.15),
(2.16) with an associated perturbation pressure q. Moreover, d/u € C°([0, T»], H*=%) for
1<i<3,q€C0, o], H%), EM(0) < Inoll? + lluo g, and

T
swp (@l + ) + [ (P40 + futo) |+ Ja ) <00

0<t<THy
and G(t) is continuous on [0, T,].

Proof The transformed MHD problem is very similar to the surface wave problem (1.4) in
[20]. Moreover, the current problem is indeed simpler than the surface wave problem due
to the non-slip boundary condition u|yq = 0. Using the standard method in [20], one can
easily establish Proposition 5.2, hence we omit its proof here. In addition, the continuity,
suchas (n,u,q) € C°([0, T], H” x H® x H®), G(¢t) and so on, can be verified by using the reg-
ularity of (1, 4, q), the transformed MHD equations and a standard regularized method. [J
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6 Conclusion

We have proved the existence of a unique time-decay solution to the initial-boundary
problem (1.2)-(1.4) of rotating MHD fluids in Lagrangian coordinates, which, together
with the inverse transformation of coordinates, implies the existence of a time-decay so-
lution to the original initial-boundary problem (1.2)-(1.4) with proper initial data in H’ (2).
Our result also holds for the case w = 0 (i.e., the absence of rotation), thus it improves Tan
and Wang’s result in [11], in which the sufficiently small initial data at least belongs to
H'%(R2). Hence our result reveals that rotation does not affect the existence of solutions of
rotating MHD fluids. We mention that the phenomenon of rotating MHD fluids widely ex-
ists in nature, so our result has potential applications. In addition, based on Theorem 2.1,
we will further study the Rayleigh-Taylor problem of rotating MHD fluids in the future;
please refer to [21-28] for relevant results on the Rayleigh-Taylor problem.
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