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Abstract
We have investigated an initial-boundary problem for the perturbation equations of
rotating, incompressible, and viscous magnetohydrodynamic (MHD) fluids with zero
resistivity in a horizontally periodic domain. The velocity of the fluid in the domain is
non-slip on both upper and lower flat boundaries. We switch the analysis of the
initial-boundary problem from Euler coordinates to Lagrangian coordinates under
proper initial data, and get a so-called transformed MHD problem. Then, we exploit
the two-tiers energy method. We deduce the time-decay estimates for the
transformed MHD problem which, together with a local well-posedness result, implies
that there exists a unique time-decay solution to the transformed MHD problem. By
an inverse transformation of coordinates, we also obtain the existence of a unique
time-decay solution to the original initial-boundary problem with proper initial data.

Keywords: magnetohydrodynamic fluid; equilibrium state; magnetic field; decay
estimates; rotation

1 Introduction
The three-dimensional (D) rotating, incompressible and viscous magnetohydrodynamic
(MHD) equations with zero resistivity in a domain � ⊂ R

 read as follows:

⎧
⎪⎨

⎪⎩

ρvt + ρv · ∇v + ∇(p + λ|M|/) + ρ( �ω × v) = μ�v + λM · ∇M,
Mt = M · ∇v – v · ∇M,
div v = div M = .

(.)

Here the unknowns v = v(x, t), M := M(x, t) and p = p(x, t) denote the velocity, the magnetic
field, and the pressure of the incompressible MHD fluid respectively; μ > , ρ and λ stand
for the coefficients of the shear viscosity, the density constant, and the permeability of
vacuum, respectively. ρ( �ω×v) represents the Coriolis force, and �ω = (, ,ω) denotes the
constant angular velocity in the vertical direction. In system (.), equation (.) describes
the balance law of momentum, while (.) is called the induction equation. As for the
constraint div M = , it can be seen just as a restriction on the initial value of M since
(div M)t =  due to (.).
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Let M̄ := (m, m, m) be a constant vector with m �= , and (, M̄, p̄) be a rest state of
the system (.). We denote the perturbation to an equilibrium state (, M̄) by

v = v – , N = M – M̄, q̃ = p – p̄.

Then, (v, N , q) satisfies the perturbation equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρvt + ρv · ∇v + ∇(q̃ + λ|N + M̄|/)
= μ�v + λ(N + M̄) · ∇(N + M̄) + ρω(ve – ve),

Nt = (N + M̄) · ∇v – v · ∇(N + M̄),
div v = div N = ,

(.)

where we have used the relation �ω × v = ω(ve – ve). For system (.), we impose the
initial and the boundary conditions:

(v, N)|t= = (v, N) in �, (.)

v(·, t)|∂� =  for any t > , (.)

where v and N should satisfy the compatibility conditions div v = div N = . We call the
initial-boundary value problem (.)-(.) the MHD problem (with rotation) for simplicity.
In this article, we always assume that the domain is horizontally periodic with finite height,
i.e.,

� :=
{

x :=
(
x′, x

) ∈R
 | x′ ∈ T ,  < x < h

}
with h > ,

where T := (πLT) × (πLT), T = R/Z, and πL, πL >  are the periodicity lengths.
The effects of magnetic fields and rotation on the motion of pure fluids were widely in-

vestigated; see [–] and the references cited therein. In particular, Tan and Wang []
showed that the well-posedness problem of the initial-boundary problem (.)-(.) for
ω =  (i.e., without the effect of rotation). In this article, we further consider ω �= , and
show that there also exists a unique time-decay solution to the initial-boundary problem
(.)-(.) in Lagrangian coordinates (see Theorem .), which, together with the inverse
transformation of coordinates, implies the existence of a time-decay solution to the origi-
nal initial-boundary problem (.)-(.) with proper initial data in H(�). Our result also
holds for the case ω = , thus improves Tan and Wang’s result in [], in which the suffi-
ciently small initial data at least belong to H(�).

In the next section we introduce the form of the initial-boundary problem (.)-(.) in
Lagrangian coordinates, and the details of our result.

2 Main results
2.1 Reformulation
In general, it is difficult to directly show the existence of a unique global-in-time solution
to (.)-(.). Instead, we switch our analysis to Lagrangian coordinates as in [, ]. To
this end, we assume that there is an invertible mapping ζ := ζ(y) : � → �, such that

∂� = ζ(∂�) and det∇ζ ≡ , (.)



Wang and Zhao Boundary Value Problems  (2017) 2017:114 Page 3 of 31

where ζ 
 denotes the third component of ζ. We define the flow map ζ as the solution to

{
ζt(y, t) = v(ζ (y, t), t),
ζ (y, ) = ζ.

(.)

We denote the Eulerian coordinates by (x, t) with x = ζ (y, t), where (y, t) ∈ � × R
+ stand

for the Lagrangian coordinates. In order to switch back and forth from Lagrangian to
Eulerian coordinates, we assume that ζ (·, t) is invertible and � = ζ (�, t). In other words,
the Eulerian domain of the fluid is the image of � under mapping ζ . In view of the non-
slip boundary condition v|∂� = , we have ∂� = ζ (∂�, t). In addition, since det∇ζ = , we
have

det(∇ζ ) =  (.)

due to div v = ; see [], Proposition ..
Now, we further define the Lagrangian unknowns by

(u, p̃, B)(y, t) =
(
v, p + λ|M|/, M

)(
ζ (y, t), t

)
for (y, t) ∈ � ×R

+. (.)

Thus in Lagrangian coordinates the evolution equations for u, p̃ and B read as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ζt = u,
ρut – μ�Au + ∇Ap̃ = λB · ∇AB + ρω(ue – ue),
Bt – B · ∇Au = ,
divA u = ,

(.)

with initial and boundary conditions

(u, ζ – y)|∂� =  and (ζ , u, B)|t= = (ζ, u, B).

Moreover, divA B =  if the initial data ζ and B satisfy

divA B = . (.)

Here A denotes the initial value of A, the matrix A := (Aij)× via AT = (∇ζ )– :=
(∂jζi)–

×, and the differential operators ∇A, divA and �A are defined by ∇Af :=
(Ak∂kf ,Ak∂kf ,Ak∂kf )T , divA(X, X, X)T := Alk∂kXl , and �Af := divA ∇Af for appro-
priate f and X. It should be noted that we have used the Einstein convention of summation
over repeated indices, and ∂k = ∂yk . In addition, in view of the definition of A and (.), we
can see that A = (A∗

ij)×, where A∗
ij is the algebraic complement minor of the (i, j)th entry

∂jζi. Since ∂kA∗
ik = , we can get an important relation

divA u = ∂l(Akluk) = , (.)

which will be used in the derivation of temporal derivative estimates.
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Our next goal is to eliminate B by expressing it in terms of ζ . This can be achieved in
the same manner as in [, ]. For the reader’s convenience, we give the derivation here.
In view of the definition of A, one has

∂iζkAkj = Aik∂kζj = δij,

where δij =  for i �= j, and δij =  for i = j. Thus, applying Ajl to (.), we obtain

Ajl∂tBj = BiAik∂kujAjl = BiAik∂t(∂kζj)Ajl = –BiAik∂kζj∂tAjl = –Bj∂tAjl,

which implies that ∂t(AjlBj) =  (i.e., (AT B)t = ). Hence,

AjlBj = A
jlB


j , (.)

which yields Bi = ∂lζiA
jlB


j , i.e.,

B = ∇ζAT
 B. (.)

Here and in what follows, the notation f  also denotes the initial data of the function f . To
obtain the asymptotic stability in time, we naturally expect

(ζ , B) converges to (y, M̄) as t → ∞. (.)

Thus (.) formally implies

AT
 B = M̄, i.e., B = M̄ · ∇ζ. (.)

Putting the above expression of B into (.), we get

B = M̄ · ∇ζ . (.)

Moreover, in view of (.), (.) and (.), the Lorentz force term can be represented by

B · ∇AB = BlAlk∂kB = A
lkB

l ∂k(M̄ · ∇ζ ) = M̄ · ∇(M̄ · ∇ζ ). (.)

Summing up the above analyses, we can see that, under the initial conditions (.) and
(.), one can use the relation (.) to change (.) into the following Navier-Stokes sys-
tem:

⎧
⎪⎨

⎪⎩

ζt = u,
ρut – μ�Au + ∇Ap̃ = λM̄ · ∇(M̄ · ∇ζ ) + ρω(ue – ue),
divA u = ,

and B is defined by (.). Now, we introduce the shift functions

η = ζ – y and q = p̃ – p̄. (.)
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Then the evolution equations for the shift functions (η, q) and u read as

⎧
⎪⎨

⎪⎩

ηt = u,
ρut – μ�Au + ∇Aq – λM̄ · ∇(M̄ · ∇ζ ) = ρω(ue – ue),
divA u = ,

(.)

where A = (I + ∇η)–, I = (δij)×. The associated initial and boundary conditions read as
follows:

(η, u)|t= = (η, u), (η, u)|∂� = . (.)

It should be noted that the shift function q is the sum of the perturbed fluid and the mag-
netic pressures in Lagrangian coordinates. Hence we still call q the perturbation pressure
for the sake of simplicity. In this article, we call the initial-boundary value problem (.)-
(.) the transformed MHD problem.

2.2 Main results
Before stating our first main result on the transformed MHD problem in detail, we intro-
duce some simplified notations that shall be used throughout this paper:

R
+
 := [,∞),

∫

:=
∫

�

, Lp := Lp(�) := W ,p(�) for  < p ≤ ∞,

H
 := W ,

 (�), Hk := W k,(�), ‖ · ‖k := ‖ · ‖Hk (�) for k ≥ ,

∂k
h denotes ∂

α
 ∂

α
 for any α + α = k, ‖ · ‖m,k :=

∑

α+α=m
‖∂α

 ∂
α
 · ‖

k ,

a � b means that a ≤ cb,

where, and in what follows, the letter c denotes a generic constant which may depend
on the domain � and some physical parameters, such as λ, M̄, g , μ and ρ in the MHD
equations (.). It should be noted that a product space (X)n of vector functions is still
denoted by X, for example, a vector function u ∈ (H) is denoted by u ∈ H with norm
‖u‖H := (

∑
k= ‖uk‖

H )/. Finally, we define some functionals:

EL := ‖∇η‖
, +

∥
∥(η, u)

∥
∥

 +
∥
∥(ut ,∇q)

∥
∥

 ,

DL :=
∥
∥(η, M̄ · ∇η,∇u)

∥
∥

, +
∥
∥(η, u)

∥
∥

 +
∑

k=

∥
∥∂k

t u
∥
∥

–k + ‖∇q‖
 + ‖∇qt‖

,

EH := ‖∇η‖
, + ‖η‖

 +
∑

k=

∥
∥∂k

t u
∥
∥

–k +
∑

k=

∥
∥∇∂k

t q
∥
∥

–k ,

DH :=
∥
∥(η, M̄ · ∇η,∇u)

∥
∥

, +
∥
∥(η, u)

∥
∥

 +
∑

k=

∥
∥∂k

t u
∥
∥

–k +
∑

k=

∥
∥∇∂k

t q
∥
∥

–k + ‖∇q‖
,

G(t) = sup
≤τ<t

∥
∥η(τ )

∥
∥

, G(t) =
∫ t



‖(η, u)(τ )‖


( + τ )/ dτ ,

G(t) = sup
≤τ<t

EH (τ ) +
∫ t


DH (τ ) dτ , G(t) = sup

≤τ<t
( + τ )EL(τ ).
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Next, we introduce our main result.

Theorem . Let � be a horizontally periodic domain with finite height, ω be an arbitrary
real number, and m �= . Then there is a sufficiently small constant δ > , such that for any
(η, u) ∈ H × H satisfying the following conditions:

() ‖η‖
 + ‖u‖

 ≤ δ;
() ζ := y + η satisfies (.);
() (η, u) satisfies necessary compatibility conditions (i.e., ∂ j

tu(x, )|∂� =  for j = 
and ),

there exists a unique global solution (η, u) ∈ C(R+
, H × H) to the transformed MHD

problem (.)-(.) with an associated perturbation pressure q. Moreover, (η, u, q) enjoys
the following stability estimate:

G(∞) :=
∑

k=

Gk(∞) ≤ c
(‖η‖

 + ‖u‖

)
. (.)

Here the positive constants δ and c depend on the domain � and other known physical
parameters λ, M̄, μ and ρ .

Remark . Exploiting the inverse transformation of ζ , we can easily deduce from Theo-
rem . the global well-posedness of the original MHD problem (.)-(.). More precisely,
there is a sufficiently small constant δ > , such that, for any (v, N) ∈ H satisfying the
following conditions:

() there exists an invertible mapping ζ := ζ(x) : � → �, such that (.) holds, where
AT

 = (∇ζ)–;
() (M̄ + N)(ζ) = M̄ · ∇ζ;
() ‖ζ – x‖

 + ‖v‖
 ≤ δ;

() the initial data �, v, N satisfy necessary compatibility conditions (i.e.,
∂

j
tv(x, )|∂� =  for j =  and ),

there exists a unique global solution (v, N) ∈ C(R+
, H) to the original MHD problem

(.)-(.) with an associated perturbation pressure q̃. Moreover, (v, N , q̃) enjoys the fol-
lowing stability estimate:

sup
≤t<∞

(

‖N‖
 +

∑

k=

∥
∥∂k

t v(t)
∥
∥

–k +
∑

k=

∥
∥∇∂k

t q̃(t)
∥
∥

–k

)

+ sup
≤t<∞

( + t)(∥∥(v, N)
∥
∥

 +
∥
∥(vt ,∇q̃)

∥
∥



) ≤ c
(‖ζ – x‖

 + ‖v‖

)
. (.)

Now we briefly describe the basic idea in the proof of Theorem .. By the standard
energy method, there are two functionals ẼL and Q of (η, u) satisfying the lower-order
energy inequality (see Proposition .)

d
dt

ẼL + DL ≤QDL, (.)

where the functional ẼL is equivalent to EL. Unfortunately, we can not close the energy
estimates only based on (.), since Q can not be controlled by ẼL. However, we observe
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that the structure of the energy inequality above is very similar to that of the surface wave
problem [], for which Guo and Tice developed a two-tier energy method to overcome
this difficulty. In the spirit of the two-tier energy method, we look after a higher-order
energy inequality to match the lower-order energy inequality (.). Since ẼL contains
‖η‖, we find that the higher-order energy at least includes ‖η‖. Thus, similar to (.),
we establish the higher-order energy inequality (see Proposition .)

d
dt

ẼH + DH ≤
√
EL

∥
∥(η, u)

∥
∥

, (.)

where the functional ẼH is equivalent to EH . Moreover, the highest-order norm ‖(η, u)‖


enjoys the highest-order energy inequality

d
dt

‖η‖
,∗ +

∥
∥(η, u)

∥
∥

 � EH + DH , (.)

where the norm ‖η‖,∗ is equivalent to ‖η‖. In the derivation of the a priori estimates, we
have Q� EH , and thus (.) implies (see Proposition .)

d
dt

ẼL + DL ≤ . (.)

Consequently, by the two-tier energy method, we can deduce the global-in-time stability
estimate (.) based on (.)-(.).

The rest of the sections are mainly devoted to the proof of Theorem .. In Section , we
first derive the lower-order energy inequality (.) for the transformed MHD problem.
Then in Section  we derive the higher-order energy inequality (.) and the highest-
order energy inequality (.). Based on these three energy inequalities, we prove Theo-
rem . by adapting the two-tier energy method in Section .

3 Lower-order energy inequality
In this section, we start to derive the lower-order energy inequality in the a priori estimates
for the transformed MHD problem. To this end, let (η, u) be a solution of the transformed
MHD problem with perturbed pressure q, such that

√
G(T) + sup

≤τ≤T
EH (τ ) ≤ δ ∈ (, ) for some T > , (.)

where δ is sufficiently small. It should be noted that the smallness depends on the known
physical parameters in (.), and will be repeatedly used in what follows. Moreover, we
assume that the solution (η, u, q) possesses proper regularity, so that the formal calcu-
lation makes sense. We remind the reader that in the calculations, we shall repeatedly
use Cauchy-Schwarz’s inequality, Hölder’s inequality, the embedding inequalities (see [],
. Theorem)

‖f ‖Lp � ‖f ‖ for  ≤ p ≤  and ‖f ‖L∞ � ‖f ‖, (.)

and the interpolation inequalities (see [], . Theorem)

‖f ‖j � ‖f ‖– j
i

 ‖f ‖
j
i
i ≤ Cε‖f ‖ + ε‖f ‖Hi (.)
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for any  ≤ j < i and any constant ε > , where the constant Cε depends on the domain �

and ε. In addition, we shall also frequently use the following two estimates:

‖fg‖j � ‖f ‖j‖g‖κ(j) for j ≥  (.)

and

‖f ‖ � ‖∂f ‖ for f ∈ H
, (.)

where κ(j) = j for j ≥  and κ(j) =  for j ≤ . We also introduce the following inequality,
see (.) in []:

‖f ‖ ≤ h‖M̄ · ∇f ‖/π . (.)

Before deriving the lower-order energy inequality defined on (, T], we first give some
preliminary estimates, temporal derivative estimates, horizontal spatial estimates and
Stokes estimates in sequence.

3.1 Preliminary estimates
In this subsection, we derive some preliminary estimates for A. To begin with, we give an
expression of A. Using (.), we have

∂t det(I + ∇η) =
∑

≤i,j≤

∂t∂jηiA∗
ij =

∑

≤i,j≤

A∗
ij∂jui, (.)

where A∗
ij is the algebraic complement minor of the (i, j)th entry in the matrix I + ∇η.

Recalling the definition of A, we see that

A =
(
A∗

ij
)

×/ det(I + ∇η).

Inserting this relation into (.), we get

∂t det(I + ∇η) = det(I + ∇η)
∑

≤i,j,≤

Aij∂jui = ,

which, together with initial condition det(I + ∇η) = , implies

det(I + ∇η) = .

Thus we obtain

A =
(
A∗

ij
)

×. (.)

Now, exploiting (.), (.), (.) and (.), we easily see that

‖A‖j �  + ‖η‖j+
(
 + ‖η‖j+

)
�  for  ≤ j ≤ , (.)

‖∇A‖j ≤ ‖η‖j+
(
 + ‖η‖j+

)
� ‖η‖j+ for  ≤ j ≤ .
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Similarly, we further deduce that

∥
∥∂ i

tA
∥
∥

j �
i–∑

k=

∥
∥∂k

t ∇u
∥
∥

j for any  ≤ i ≤  and  ≤ j ≤  – i.

Letting Ã := A – I , we next bound Ã. To this end, we assume that δ is so small that the
following expansion holds:

AT = I – ∇η + (∇η)
∞∑

i=

(–∇η)i = I – ∇η + (∇η)AT ,

whence

ÃT = (∇η)AT – ∇η.

Using (.), (.) and (.), we find that

‖Ã‖j � ‖∇η‖j for  ≤ j ≤ .

3.2 Temporal derivative estimates
In this subsection, we try to control temporal derivatives. For this purpose, we apply ∂

j
t to

(.) to get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
j+
t η = ∂

j
tu,

ρ∂
j+
t u – μ�A∂

j
tu + ∇A∂

j
tq

= λ∂
j
tM̄ · ∇(M̄ · ∇ζ ) + ρω∂

j
t(ue – ue) + μNt,j

u + Nt,j
q ,

divA ∂
j
tu = div Dt,j

u ,

(.)

where

Nt,j
u :=

∑

≤m<j,≤n≤j

∂
j–m–n
t Ail∂l

(
∂n

t Aik∂
m
t ∂ku

)
,

Nt,j
q := –

∑

≤l<j

(
∂

j–l
t Aik∂

l
t∂kq

)

×,

Dt,j
u :=

(

–
∑

≤l<j

Cj–l
j ∂

j–l
t Aki∂

l
t uk

)

×
, (.)

Cj–l
j denotes the number of (j – l)-combinations from a given set S of j elements,

and we have used relation (.) in (.). Then from (.) we show the following estimates:

Lemma . It holds that for j =  and ,

d
dt

(∥
∥√

ρ∂
j
tu

∥
∥

 + λ
∥
∥M̄ · ∇∂

j
tη

∥
∥



)
+ μ

∥
∥∇A∂

j
tu

∥
∥

 �
√
EHDL, (.)

d
dt

‖∇Aut‖
 +


μ

‖√ρutt‖
 � ‖u‖

 + ‖ut‖
 +

√
EHDL. (.)
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Proof () We only prove (.) for j = , since the derivation of the case j =  is similar.
Multiplying (.) with j =  by ut , integrating (by parts) the resulting equality over �,
and using (.), we get




d
dt

(‖√ρut‖
 + λ‖M̄ · ηt‖


)

+ μ‖∇Aut‖


= ρω

∫

∂t(ue – ue) · ut dy +
∫

qt divA ut dy

+ μ

∫

Nt,
u · ut dy +

∫

Nt,
q · ut dy

:=
∑

k=

IL
k . (.)

The last three integrals IL
 , . . . , IL

 can be estimated as follows:

IL
 := –

∫

∇qt · Dt,
u dy � ‖∇qt‖‖At‖L‖u‖L � ‖∇qt‖‖At‖‖u‖

�
√
EHDL, (.)

IL
 � ‖A‖‖At‖‖u‖‖ut‖ �

√
EHDL, (.)

IL
 � ‖At‖‖∇q‖L∞‖ut‖ � ‖At‖‖∇q‖‖ut‖ �

√
EHDL, (.)

where we have used (.) in (.). Consequently, the desired estimate (.) follows
from (.)-(.).

() Now we turn to the proof of (.). Multiplying (.) with j =  by utt , integrating
(by parts) the resulting equality over �, and using (.), we conclude

μ


d
dt

‖∇Aut‖
 + ‖√ρutt‖



=
∫

(
ρω∂t(ue – ue) · utt + λM̄ · ∇(M̄ · ∇u) · utt

)
dy

+
∫

qt divA utt dy + μ

∫

Nt,
u · utt dy +

∫

Nt,
q · utt dy

+ μ

∫

∇Aut : ∇At ut dy

:=
∑

k=

JH
k . (.)

On the other hand, the five integrals JH
 , . . . , JH

 can be bounded as follows:

JH
 �

(‖ut‖ + ‖u‖
)‖utt‖, (.)

JH
 = –

∫

∇qt · Dt,
u dx � ‖∇qt‖

(‖Att‖‖u‖ + ‖At‖‖ut‖
)

�
√
EHDL, (.)

JH
 � ‖A‖‖At‖‖u‖‖utt‖ �

√
EHDL, (.)
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JH
 � ‖At‖‖∇q‖‖utt‖ �

√
EHDL, (.)

JH
 � ‖A‖‖At‖‖ut‖

 �
√
EHDL. (.)

Thus, substituting (.)-(.) into (.) and using Cauchy-Schwarz’s inequality, we im-
mediately get (.). �

3.3 Horizontal spatial estimates
In this subsection, we establish the estimates of horizontal spatial derivatives. For this
purpose, we rewrite (.) as the following non-homogeneous linear form:

⎧
⎪⎨

⎪⎩

ηt = u,
ρut – μ�u + ∇q – λM̄ · ∇(M̄ · ∇η) = ρω(ue – ue) + μNh

u + Nh
q ,

div u = Dh
u,

(.)

where

Nh
u := ∂l

[
(ÃjlÃjk + Ãlk + Ãkl)∂kui

]

×,

Nh
q := –(Ãik∂kq)× and Dh

u := Ãlk∂kul.

Then we have the following estimate on horizontal spatial derivatives of η.

Lemma . It holds that

d
dt

(∫

ρ∂
j
hη · ∂ j

hu dy +
μ


∥
∥∇∂

j
hη

∥
∥



)

+ λ
∥
∥M̄ · ∇∂

j
hη

∥
∥



�
√
EHDL + ‖u‖

j,,  ≤ j ≤ .

Proof We only show the case j = ; the remaining three cases can be verified similarly.
Applying ∂

h to (.), multiplying the resulting equation by ∂
hη, and then using (.),

we get

ρ∂t
(
∂

hη · ∂
h u

)
–

(
μ�∂

hηt + λM̄ · ∇(
M̄ · ∇∂

hη
)) · ∂

hη

=
(
ρω∂

h (ue – ue) + μ∂
h Nh

u + ∂
h Nh

q – ∇∂
h q

) · ∂
hη + ρ

∣
∣∂

h u
∣
∣.

If we integrate (by parts) the above identity over �, we obtain

d
dt

(∫

ρ∂
hη · ∂

h u dy +
μ


∥
∥∇∂

hη
∥
∥



)

+ λ
∥
∥M̄ · ∇∂

hη
∥
∥



= ρω

∫

∂
h (ue – ue) · ∂

hη dy +
∫

(
μ∂

h Nh
u + ∂

h Nh
q
) · ∂

hη dy

+
∫

∂
h q div ∂

hη dy +
∥
∥√

ρ∂
h u

∥
∥



�
∑

k=

KL
k + ‖u‖

,, (.)

where the first three integrals on the right-hand side of the first equality in (.) are de-
noted by KL

 , KL
 and KL

 , respectively.
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We have the boundedness

KL
 ≤ ∥

∥∂
h u

∥
∥



∥
∥∂

hη
∥
∥

. (.)

Noting that

∥
∥μ∂

h Nh
u + ∂

h Nh
q
∥
∥

 � ‖Ã‖‖u‖ + ‖Ã‖‖u‖ + ‖Ã‖‖∇q‖ + ‖Ã‖‖∇q‖

�
√
EHDL,

we find that

KL
 �

∥
∥μ∂

h Nh
u + ∂

h Nh
q
∥
∥



∥
∥∂

hη
∥
∥

 �
√
EHDL. (.)

Next we estimate the third integral KL
 . To start with, we analyze the property of divη.

Since

det(I + ∇η) = ,

we have by Sarrus’ rule

divη = ∂η∂η + ∂η∂η + ∂η∂η – ∂η∂η – ∂η∂η – ∂η∂η

+ ∂η(∂η∂η – ∂η∂η) + ∂η(∂η∂η – ∂η∂η)

+ ∂η(∂η∂η – ∂η∂η).

Multiplying the above identity by a smooth test function φ, and then integrating (by parts)
the resulting identity over �, we derive that

∫

φ divη dy = –
∫

∇φ · ψ dy,

where

ψ :=

⎛

⎜
⎝

η(∂η + ∂η) + η(∂η∂η – ∂η∂η)
η∂η – η∂η + η(∂η∂η – ∂η∂η)

–η∂η – η∂η + η(∂η∂η – ∂η∂η)

⎞

⎟
⎠ .

This means that

divη = divψ .

Thus, it follows immediately that

KL
 = –

∫

∂
h∇q · ∂

hψ dy = –
∫

∂h∇q · ∂
hψ dy

� ‖∇q‖
∥
∥∂

hψ
∥
∥

 � ‖η‖‖∇q‖‖η‖ �
√
EHDL. (.)
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Now, substituting (.), (.) and (.) into (.), we immediately obtain the desired
estimate for the case j = . �

Similarly, we also establish the following estimates of horizontal spatial derivatives of u:

Lemma . We have

d
dt

(∥
∥√

ρ∂
j
hu

∥
∥

 + λ
∥
∥M̄ · ∇∂

j
hη

∥
∥



)
+ μ

∥
∥∇∂

j
hu

∥
∥

 �
√
EHDL, j = , , .

Proof We only prove the case j = ; the remaining two cases can be shown similarly. Ap-
plying ∂

h to (.), and multiplying the resulting equality by ∂
h u, we make use of (.)

to get

ρ∂
h ut · ∂

h u – μ�∂
h u · ∂

h u – λM̄ · ∇(
M̄ · ∇∂

hη
) · ∂

hηt

=
(
ρω∂

h (ue – ue) + μ∂
h Nh

u + ∂
h Nh

q – ∇∂
h q

) · ∂
h u.

Integrating (by parts) the above identity over �, we have




d
dt

(∫

ρ
∣
∣∂

h u
∣
∣ dy + λ

∥
∥M̄ · ∇∂

hη
∥
∥



)

+
μ


∥
∥∇∂

h u
∥
∥



=
∫

(
μ∂

h Nh
u + ∂

h Nh
q
) · ∂

h u dy +
∫

∂
h q div ∂

h u dy =: ML
 + ML

 . (.)

On the other hand, similarly to (.) and (.), the two integrals ML
 and ML

 can be
estimated as follows:

ML
 �

∥
∥μ∂

h Nh
u + ∂

h Nh
q
∥
∥



∥
∥∂

h u
∥
∥

 �
√
EHDL, (.)

ML
 = –

∫

∂
h q∂

h Dh
u dy � ‖∇q‖‖Ã‖‖u‖ �

√
EHDL, (.)

where we have used (.) in (.). Consequently, putting the above two estimates into
(.), we obtain Lemma . for the case j = . �

3.4 Stokes problem and stability condition
In this subsection, we use the regularity theory of the Stokes problem to derive more esti-
mates of (η, u). To this end, we rewrite (.) and (.) as the following Stokes problem:

⎧
⎪⎨

⎪⎩

–�w + ∇q
= λM̄ · ∇(M̄ · ∇η) – λm

�η + ρω(ue – ue) – ρut + μNh
u + Nh

q ,
div w = μDh

u + λm
 divη,

(.)

coupled with boundary condition

ω|∂� = , (.)

where ω = λm
η + μu.
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Now, applying ∂k
h to (.) and (.), we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�∂k
h w + ∇∂k

h q
= ∂k

h (λM̄ · ∇(M̄ · ∇η) – λm
�η + ρω(ue – ue)) – ρ∂k

h ut + μ∂k
h Nh

u + Nh
q ,

div ∂k
h w = μ∂k

h Dh
u + λm

 div ∂k
hη,

∂k
hω|∂� = .

Then we apply the classical regularity theory to the Stokes problem as in [], Proposition
., to deduce that

‖ω‖
k,i–k+ + ‖∇q‖

k,i–k � ‖∇η‖
k+,i–k +

∥
∥(u, ut)

∥
∥

k,i–k + Sω
k,i, (.)

where

Sω
k,i :=

∥
∥
(
Nh

u , Nh
q
)∥
∥

k,i–k +
∥
∥
(
Dh

u, divη
)∥
∥

k,i–k+.

In addition, applying ∂k
t to (.)-(.), we see that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–μ�∂k
t u + ∇∂k

t q
= λM̄ · ∂k

t ∇(M̄ · ∇η) + ρω∂k
t (ue – ue) – ρ∂k+

t u + μ∂k
t Nh

u + ∂k
t Nh

q ,
div ∂k

t u = ∂k
t Dh

u,
∂k

t u|∂� = .

Hence, we apply again the classical regularity theory to the Stokes problem to get

∥
∥∂k

t u
∥
∥

i–k+ +
∥
∥∇∂k

t q
∥
∥

i–k �
∥
∥∂k

t
(∇η, u, ut

)∥
∥

i–k + Su
k,i, (.)

where Su
k,i := ‖∂k

t (Nh
u , Nh

q )‖
i–k + ‖∂k

t Dh
u‖

i–k+. As a result of (.) and (.), one has the
following estimates.

Lemma . We have

d
dt

‖η‖
,∗ + c

(∥
∥(η, u)

∥
∥

 + ‖∇q‖

)
�

∥
∥(u, ut)

∥
∥

 + ‖η‖
, + EHDL, (.)

‖u‖
 + ‖∇q‖

 � ‖η‖
 +

∥
∥(u, ut)

∥
∥

 + EHEL, (.)

‖ut‖
 + ‖∇qt‖

 � ‖u‖
 +

∥
∥(ut , utt)

∥
∥

 + EHDL, (.)

where EL := EL – ‖∇η‖
, and ‖η‖,∗ is equivalent to ‖η‖.

Proof Noting that, by virtue of (.),

‖ω‖
k,i–k+ =

∥
∥
(
λm

η,μu
)∥
∥

k,i–k+ +
λm

μ


d
dt

‖η‖
k,i–k+,

we deduce from (.) that

d
dt

‖η‖
k,i–k+ + c

(∥
∥(η, u)

∥
∥

k,i–k+ + ‖∇q‖
k,i–k

)

� ‖u‖
k,i–k + ‖η‖

k+,i–k+ + ‖ut‖
i + Sω

k,i. (.)
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In particular, we take (i, k) = (, ) and (i, k) = (, ) to get

d
dt

‖η‖
 + c

(∥
∥(η, u)

∥
∥

 + ‖∇q‖

)
�

∥
∥(u, ut)

∥
∥

 + ‖η‖
, + Sω

, (.)

and

d
dt

‖η‖
, + c

(∥
∥(η, u)

∥
∥

, + ‖∇q‖
,

)
�

∥
∥(u, ut)

∥
∥

 + ‖η‖
, + Sω

,. (.)

On the other hand, it is easy to show that

Sω
, + Sω

, ≤ ∥
∥
(
Nh

u , Nh
q
)∥
∥

 +
∥
∥
(
Dh

u, divη
)∥
∥

 � ‖Ã‖

(‖u‖

 + ‖∇q‖

)

+ ‖η‖


� EHEL � EHDL. (.)

Thus we immediately obtain (.) from (.)-(.).
Now we turn to the derivation of (.). In view of (.) with (i, k) = (, ), we have

‖u‖
 + ‖∇q‖

 � ‖η‖
 +

∥
∥(u, ut)

∥
∥

 + Su
,.

On the other hand, we can use (.) to infer that

Su
, =

∥
∥
(
Nh

u , Nh
q
)∥
∥

 +
∥
∥Dh

u
∥
∥

 � EHEL.

Hence, (.) follows from the above two estimates.
Finally, to show (.), we take (i, k) = (, ) in (.) to deduce that

‖ut‖
 + ‖∇qt‖

 �
∥
∥
(∇u, ut , utt

)∥
∥

 + Su
, � ‖u‖

 +
∥
∥(ut , utt)

∥
∥

 + Su
,.

Keeping in mind that

Su
, �

∥
∥∂t

(
Nh

u , Nh
q
)∥
∥

 +
∥
∥∂tDh

u
∥
∥



� ‖Ãt‖

(‖u‖

 + ‖∇q‖

)

+ ‖Ã‖

(‖ut‖

 + ‖∇qt‖

)
� EHDL,

we get (.) from the above two estimates. �

3.5 Lower-order energy inequality
Now, we are able to build the lower-order energy inequality. In what follows, the letters cL

i

and i = , . . . ,  will denote generic positive constants which may depend on the domain �

and some physical parameters in the transformed MHD equations (.).

Proposition . Under the assumption (.), if δ is sufficiently small, then there is an en-
ergy functional ẼL which is equivalent to EL, such that

d
dt

ẼL + DL ≤  on (, T]. (.)
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Proof We choose δ so small that

∥
∥∇∂

j
tu

∥
∥

 �
∥
∥∇A∂

j
tu

∥
∥

,  ≤ j ≤ . (.)

Then, thanks to (.), (.) and (.), we deduce from (.) and Lemmas .-. that
there are constants cL

 , cL
 and σ ≥ , such that

d
dt

ẼL
 + D̃L

 ≤ cL
 ( + σ )

√
EHDL for any σ ≥ σ, (.)

where σ depends on the domain and the known physical parameters, and

ẼL
 := ‖√ρut‖

 + λ‖M̄ · ∇u‖
 + σ

∑

k=

(‖√ρu‖
k, + λ‖M̄ · ∇η‖

k,
)

+
∑

k=

( ∑

α+α=k

∫

ρ∂
α
 ∂

α
 η · ∂α

 ∂
α
 u dy +

μ


‖∇η‖

k,

)

,

D̃L
 := cL



(

‖ut‖
 +

∑

k=

(∥
∥(η, M̄ · ∇η)

∥
∥

k, + ‖u‖
k,

)
)

.

Utilizing (.), (.), the interpolation inequality, and the estimate

‖η‖
k, � ‖η‖

k+, + ‖M̄ · ∇η‖
k, for any  ≤ k ≤ , (.)

we find that

d
dt

(‖η‖
,∗ + cL

‖∇Aut‖

)

+ cL

(∥
∥(η, u)

∥
∥

 + ‖∇q‖
 + ‖utt‖


)

≤ cL

(∥
∥(u, ut)

∥
∥

 + ‖η‖
, + ‖M̄ · ∇η‖

, +
√
EHDL). (.)

Now, multiplying (.) by cL
/(cL

) and adding the resulting inequality to (.), we obtain

d
dt

ẼL
 + D̃L ≤ cL

( + σ )
√
EHDL, (.)

where ẼL
 and D̃L are defined by

ẼL
 := ẼL

 + cL

(‖η‖

,∗ + cL
‖∇Aut‖


)
/
(
cL


)
,

D̃L := D̃L
 / + cL

cL

(∥
∥(η, u)

∥
∥

 + ‖∇q‖
 + ‖utt‖


)
/
(
cL


)
.

On the other hand, from (.) we get DL � D̃L +
√
EHDL, which implies DL � D̃L for

sufficiently small δ. Therefore, (.) can be rewritten as follows:

d
dt

ẼL
 + cL

DL ≤ cL
( + σ )

√
EHDL. (.)

Next we show that EL can be controlled by ẼL
 . By virtue of Cauchy-Schwarz’s inequality,

(.) and (.), there is an appropriately large constant σ , depending on ρ , μ and �, such
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that

‖∇η‖
, + ‖η‖

 + ‖ut‖
 � ẼL

 .

In view of (.), we further have

EL � ẼL
 +

√
EHEL,

which implies EL � ẼL
 for sufficiently small δ. In addition, obviously ẼL

 � EL. Hence, the
energy functional ẼL

 is equivalent to EL. Finally, letting δ ≤ cL
/cL

( + σ ) and noting ẼL =
ẼL

 /cL
 , we see that (.) immediately implies (.). Obviously, the energy functional ẼL

is still equivalent to EL. This completes the proof. �

4 Higher-order and highest-order energy inequalities
In this section, we derive the estimates (.) and (.) for the transformed magnetic
RT problem. First we shall establish the higher-order version of Lemmas .-. in the
following:

Lemma . We have

d
dt

(
∥
∥√

ρ∂
j
tu

∥
∥

 + λ
∥
∥M̄ · ∇∂

j–
t u

∥
∥

 +
∫

∇∂
j–
t q · Dt,j

u dy
)

+ μ
∥
∥∇A∂

j
tu

∥
∥



�
√
ELDH , j = , .

Proof We only prove the case j = , and the case j =  can be shown similarly. Multiplying
(.) with j =  by ∂

t u, integrating (by parts) the resulting equation over �, and using
(.) and (.), we obtain




d
dt

(∥
∥√

ρ∂
t u

∥
∥

 + λ‖M̄ · ∇utt‖

)

+ μ
∥
∥∇A∂

t u
∥
∥



=
∫

∂
t q div Dt,

u dy + μ

∫

Nt,
u · ∂

t u dy +
∫

Nt,
q · ∂

t u dy :=
∑

k=

IH
k . (.)

On the other hand, the integrals IH
 , I and IH

 can be estimated as follows:

IH
 = –

∫

∇∂
t q · Dt,

u dy = –
d
dt

∫

∇∂
t q · Dt,

u dy +
∫

∇∂
t q · ∂tDt,

u dy

≤ –
d
dt

∫

∇∂
t q · Dt,

u dy

+ c
∥
∥∇∂

t q
∥
∥



(∥
∥∂

t A
∥
∥

‖u‖ +
∥
∥∂

t A
∥
∥

‖ut‖ + ‖Att‖‖utt‖ + ‖At‖
∥
∥∂

t u
∥
∥



)

≤ –
d
dt

∫

∇∂
t q · Dt,

u dy + c
√
ELDH ,

IH
 �

[∥
∥∂

t A
∥
∥

‖A‖‖u‖ + ‖Att‖
(‖At‖‖u‖ + ‖A‖‖ut‖

)

+ ‖At‖
(‖Att‖‖u‖ + ‖At‖‖ut‖ + ‖A‖‖utt‖

)

+ ‖A‖
(∥
∥∂

t A
∥
∥

‖u‖ + ‖Att‖‖ut‖ + ‖Att‖‖ut‖ + ‖At‖‖utt‖
)]∥

∥∂
t u

∥
∥



�
√
ELDH ,
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IH
 �

(∥
∥∂

t A
∥
∥

‖∇q‖ + ‖Att‖‖∇qt‖ + ‖At‖‖∇qtt‖
)∥
∥∂

t u
∥
∥

 �
√
ELDH .

Inserting the above three inequalities into (.), we get the desired conclusion immedi-
ately. �

Lemma . We have

d
dt

(∫

ρ∂k
hη · ∂k

h u dy +
μ


∥
∥∇∂k

hη
∥
∥



)

+ λ
∥
∥M̄ · ∇∂k

hη
∥
∥



�
√
EL

(∥
∥(η, u)

∥
∥

 + DH)
+

∥
∥∂k

h u
∥
∥

 for any k =  and .

Proof We only show the case k = , since the derivation of the case k =  is similar. Since
the derivation involves the norm ‖∇q‖, we first estimate ‖∇q‖. It follows from (.)
that

‖u‖ + ‖∇q‖ � ‖η‖ +
∥
∥(u, ut)

∥
∥

 +
∥
∥
(
Nh

u , Nh
q
)∥
∥

 +
∥
∥Dh

u
∥
∥

.

The last two terms on the right-hand side of the above inequality can be bounded as fol-
lows:

∥
∥
(
Nh

u , Nh
q
)∥
∥

 +
∥
∥Dh

u
∥
∥

 � ‖Ã‖‖u‖ + ‖Ã‖‖∇q‖.

Hence, if δ is sufficiently small, then one gets from the above two estimates that

‖u‖ + ‖∇q‖ � ‖η‖ +
√
DH . (.)

Now, applying ∂
h to (.), multiplying the resulting equality by ∂

h η, we utilize (.)

to have

ρ∂t
(
∂

h η · ∂
h u

)
–

(
μ�∂

h ηt + λM̄ · ∇(
M̄ · ∇∂

h η
)) · ∂

h η

= ∂
h
(
ρω(ue – ue) + μNh

u + Nh
q – ∇q

) · ∂
h η + ρ

∣
∣∂

h u
∣
∣.

Integrating (by parts) the above identity over �, we obtain

d
dt

(∫

ρ∂
h η · ∂

h u dy +
μ


∥
∥∇∂

h η
∥
∥



)

+ λ
∥
∥M̄ · ∇∂

h η
∥
∥



= ρω

∫

∂
h (ue – ue) · ∂

h η dy + μ

∫

∂
h Nh

u · ∂
h η dy –

∫

∂
h Nh

q · ∂
hη dy

–
∫

∂
h q div ∂

h η dy +
∥
∥√

ρ∂
h u

∥
∥



�
∑

k=

JH
k +

∥
∥∂

h u
∥
∥

, (.)

where the first four integrals on the right-hand side are denoted by JH
 , . . . , JH

 , respectively.
On the other hand, the four integrals JH

 , . . . , JH
 can be bounded as follows:

JH
 �

∥
∥∂

h η
∥
∥



∥
∥∂

h u
∥
∥

, (.)
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JH
 = –μ

∫

∂
h
(
(ÃjlÃjk + Ãlk + Ãkl)∂kui

)
∂l∂


h ηi dy

�
(‖Ã‖‖u‖ + ‖Ã‖‖u‖ + ‖Ã‖‖u‖

)‖η‖,

�
(‖Ã‖‖u‖ + ‖Ã‖ 


 ‖Ã‖ 


 ‖u‖ 


 ‖u‖ 


 + ‖Ã‖‖u‖

)‖η‖,

�
√
EL

∥
∥(η, u)

∥
∥

, (.)

JH
 �

(‖Ã‖‖∇q‖ + ‖Ã‖‖∇q‖ + ‖Ã‖‖∇q‖
)‖η‖

�
(‖Ã‖‖∇q‖ + ‖Ã‖ 


 ‖Ã‖ 


 ‖∇q‖ 


 ‖∇q‖ 


 + ‖Ã‖‖∇q‖

)‖η‖

�
√
EL

(‖η‖
 + DH)

, (.)

JH
 =

∫

∂
h q · ∂

h divη dy � ‖∇q‖
(‖η‖‖η‖ + ‖η‖


)

� ‖η‖‖∇q‖
(‖η‖ + ‖η‖

)
�

√
EL

(‖η‖
 + DH)

, (.)

where the interpolation inequality (.) has been employed in (.) and (.). Conse-
quently, putting the above four estimates into (.), we obtain Lemma .. �

Lemma . We have

d
dt

(∥
∥√

ρ∂k
h u

∥
∥

 + λ
∥
∥M̄ · ∇∂k

hη
∥
∥



)
+ μ

∥
∥∇∂k

h u
∥
∥



�
√
EL

(∥
∥(η, u)

∥
∥

 + DH)
for k =  and .

Proof We only show the case k = , since the derivation of the case k =  is similar. Ap-
plying ∂

h to (.), multiplying the resulting equality by ∂
h u, we make use of (.) to

have

ρ∂
h ut · ∂

h u – μ�∂
h u · ∂

h u – λm∂
 ∂

h η · ∂
h ηt

=
(
ρω∂

h (ue – ue) + μ∂
h Nh

u + ∂
h Nh

q – ∇∂
h q

) · ∂
h u.

Integrating (by parts) the above identity over �, we get




d
dt

(∫

ρ
∣
∣∂

h u
∣
∣ dy + λ

∥
∥M̄ · ∇∂

h η
∥
∥



)

+
μ


∥
∥∇∂

h u
∥
∥



= μ

∫

∂
h Nh

u · ∂
h u dy –

∫

∂
h Nh

q · ∂
h u dy +

∫

∂
h q div ∂

h u dy =:
∑

k=

MH
k . (.)

Analogously to (.)-(.), the three integrals MH
 , MH

 and MH
 can be bounded as fol-

lows:

MH
 = –

∫

∂
h
[
(ÃjlÃjk + Ãlk + Ãkl)∂kui

] · ∂l∂

h u dy �

√
EL

∥
∥(η, u)

∥
∥

,

MH
 �

√
EL

(∥
∥(η, u)

∥
∥

 + DH)
,

MH
 =

∫

∂
h q · ∂

h Dh
u dy � ‖∇q‖

(‖Ã‖‖u‖ + ‖Ã‖‖u‖ + ‖Ã‖‖u‖
)

� ‖∇q‖
(‖η‖‖u‖ + ‖Ã‖ 


 ‖Ã‖ 


 ‖u‖ 


 ‖u‖ 


 + ‖Ã‖‖u‖

)
�

√
EL

(‖η‖
 + DH)

.
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Substituting the above three inequalities into (.), we obtain Lemma .. �

Lemma . The following estimates hold:

∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)
� ‖η‖

 +
∥
∥
(
u, ut , utt , ∂

t u
)∥
∥

 + ELEH , (.)

d
dt

‖η‖
,∗ + ‖η‖

 +
∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)

� ‖η‖
, +

∥
∥
(
η, u, ut , utt , ∂

t u
)∥
∥

 + ELDH , (.)

∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)
� ‖u‖

 +
∥
∥
(
ut , utt , ∂

t u
)∥
∥

 + EHDH , (.)

where the norm ‖η‖
,∗ is equivalent to ‖η‖

 and EH := EH – ‖∇η‖
,.

Proof () We begin with the derivation of (.). Taking (i, k) = (, ) in the Stokes estimate
(.), we have

‖u‖
 + ‖∇q‖

 � ‖η‖
 +

∥
∥(u, ut)

∥
∥

 + Su
,.

Noting that

Su
, =

∥
∥
(
Nh

u , Nh
q
)∥
∥

 +
∥
∥Dh

u
∥
∥



� ‖Ã‖
‖u‖

 + ‖Ã‖
‖u‖

 + ‖Ã‖
‖∇q‖

 + ‖Ã‖
‖∇q‖

 � ELEH ,

we get

‖u‖
 + ‖∇q‖

 � ‖η‖
 +

∥
∥(u, ut)

∥
∥

 + ELEH . (.)

Using the recursion formula (.) for i =  from k =  to , we obtain

∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)
�

∥
∥∂

t (u, ut)
∥
∥

 +
∑

k=

(∥
∥∂k–

t u
∥
∥

–k + Su
k,

)
.

On the other hand, Su
k, can be bounded from above by

∑

k=

Su
k, =

∑

k=

(∥
∥∂k

t Nh
u
∥
∥

–k +
∥
∥∂k

t Dh
u
∥
∥

–k +
∥
∥∂k

t Nh
q
∥
∥

–k

)

� ‖Ã‖

(‖ut‖

 + ‖∇qt‖

)

+ ‖Ã‖

(‖utt‖

 + ‖∇qtt‖

)

+ ‖Ã‖
‖ut‖

 + ‖Ãt‖

(‖u‖

 + ‖∇q‖

)

+ ‖Ãt‖

(‖ut‖

 + ‖∇qt‖

)

+ ‖Ãt‖
‖u‖

 + ‖Ãtt‖

(‖u‖

 + ‖∇q‖

)

� ELEH .
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Therefore,

∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)
�

∥
∥∂

t (u, ut)
∥
∥

 +
∑

k=

∥
∥∂k–

t u
∥
∥

–k + ELEH , (.)

which, together with (.), yields

∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)
� ‖η‖

 +
∥
∥∂

t (u, ut)
∥
∥

 +
∑

k=

∥
∥∂k–

t u
∥
∥

–k + ELEH . (.)

In view of the interpolation inequality (.), we have

‖u‖ ≤ Cε‖u‖ + ε‖u‖ and ‖ut‖ � Cε‖ut‖ + ε‖ut‖. (.)

Thus, inserting (.) into (.), one gets (.).
() We proceed to prove the estimate (.). Exploiting the recursion formula (.) for

i =  from k =  to , we see that there are positive constants ck , k = , . . . , , such that

d
dt

∑

k=

ck‖η‖
k,–k +

∥
∥(η, u)

∥
∥

 + ‖∇q‖
 � ‖ut‖

 + ‖η‖
, +

∑

k=

Sω
k,,

which combined with (.) gives

d
dt

∑

k=

ck‖η‖
k,–k + c

(

‖η‖
 +

∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)
)

� ‖η‖
, +

∥
∥∂

t (u, ut)
∥
∥

 +
∑

k=

∥
∥∂k–

t u
∥
∥

–k + ELEH + Sω
,,

where we have used the fact that Sω
k, ≤ Sω

, for  ≤ k ≤ . Since

Sω
, =

∥
∥
(
Nh

u , Nh
q
)∥
∥

 +
∥
∥
(
Dh

u, divη
)∥
∥



�
(‖Ã‖

‖u‖
 + ‖Ã‖

‖u‖
 + ‖η‖

‖η‖
 + ‖Ã‖

‖∇q‖
 + ‖Ã‖

‖∇q‖

)

� ELEH

and EH ≤DH , we further infer that

d
dt

∑

k=

ck‖η‖
k,–k + c

(

‖η‖
 +

∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)
)

� ‖η‖
, +

∥
∥∂

t (u, ut)
∥
∥

 +
∑

k=

∥
∥∂k–

t u
∥
∥

–k + ELDH . (.)

Using the interpolation inequality (.), we get (.) from (.), where ‖η‖
,∗ equals to

∑
k= ck‖η‖

k,–k multiplied by some positive constant.
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() Finally, we derive the estimate (.) for higher-order dissipation estimates. We use
the recursion formula (.) for i =  from k =  to  to deduce that

∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)
�

∥
∥∂

t (u, ut)
∥
∥

 +
∑

k=

(∥
∥∂k–

t u
∥
∥

–k + Su
k,

)
. (.)

Noting that

∑

k=

Su
k, =

∑

k=

(∥
∥∂k

t
(
Nh

u , Nh
q
)∥
∥

–k +
∥
∥∂k

t Dh
u
∥
∥

–k

)

� ‖Ãt‖
‖u‖

 + ‖Ã‖
‖ut‖

 + ‖Ãt‖
‖∇q‖

 + ‖Ã‖
‖∇qt‖



+ ‖Ãtt‖
‖u‖

 + ‖Ãt‖
‖ut‖

 + ‖Ã‖
‖utt‖



+ ‖Ãtt‖
‖∇q‖

 + ‖Ãt‖
‖∇qt‖

 + ‖Ã‖
‖∇qtt‖



� EHDH ,

we obtain (.) from (.). �

Now we are in a position to build the higher-order and highest-order energy inequal-
ities. In what follows, the letters cH

i and i = , . . . ,  will denote generic constants which
may depend on the domain � and some physical parameters in the transformed MHD
equations (.).

Proposition . Under the assumption (.), if δ is sufficiently small, then there are two
norms ẼH and ‖η‖

,∗ which are equivalent to EH and ‖η‖
 respectively, such that

d
dt

ẼH + DH �
√
EL

∥
∥(η, u)

∥
∥

, (.)

d
dt

‖η‖
,∗ +

∥
∥(η, u)

∥
∥

 � EH + DH on (, T]. (.)

Proof () We first prove (.). Similarly to (.), we make use of (.), (.), (.) and
(.) to deduce from Lemmas .-. and (.) that there are constants cH

 , cH
 , cH

 and
α ≥ , such that

d
dt

ẼH
 + D̃H

 ≤ cH

[
( + α)

√
EL

(∥
∥(η, u)

∥
∥

 +DH)
+

∥
∥(η, u, ut)

∥
∥



]
for any α ≥ α, (.)

where α depends on the domain and the known physical parameters, and

ẼH
 :=

∑

k=

(
∥
∥√

ρ∂k
t u

∥
∥

 + λ
∥
∥M̄ · ∇∂k–

t u
∥
∥

 +
∫

∇∂k–
t q · Dt,k

u dy
)

+
∑

≤α+α≤

∫

ρ∂
α
 ∂

α
 η · ∂α

 ∂
α
 u dy +

∑

k=

μ


‖∇η‖

k,

+ α
(‖√ρu‖

, + λ‖M̄ · ∇η‖
,

)
+ cH

 ‖η‖
,∗,
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D̃H
 := cH



( ∑

k=

∥
∥∂k

t u
∥
∥

 +
∑

k=

∥
∥(η, M̄ · ∇η,∇u)

∥
∥

k, + ‖η‖


+
∑

k=

(∥
∥∂k

t u
∥
∥

–k +
∥
∥∇∂k

t q
∥
∥

–k

)
)

.

Moreover, by (.) and Proposition . we find that

d
dt

ẼH
 + D̃H ≤ cH

 ( + σ )
√
EL

(∥
∥(η, u)

∥
∥

 + DH)
, (.)

where ẼH
 := ẼH

 + cH
 ẼL and D̃H := D̃H

 + cH
 DL. By (.), we have DH � D̃H + EHDH . So,

(.) can be rewritten as

d
dt

ẼH
 + cH

 DH ≤ cH
 ( + σ )

√
EL

∥
∥(η, u)

∥
∥

 for sufficiently small δ. (.)

Next, we show that EH can be controlled by ẼH
 . Keeping in mind that

∑

k=

∫

∇∂k–
t q · Dt,k

u dy �
∑

k=

∥
∥∇∂k–

t q
∥
∥



∥
∥Dt,k

u
∥
∥



�
√
EH

(
∥
∥(u, ut)

∥
∥



∑

k=

∥
∥∂k

t A
∥
∥

 + ‖At‖‖utt‖

)

�
(
EH) 

 , (.)

we use Cauchy-Schwarz’s inequality, (.) and (.) to infer that there is an appropriately
large constant α, depending on ρ , μ and �, such that

‖∇η‖
, + ‖η‖

 +
∑

k=

∥
∥∂k

t u
∥
∥

 � ẼH
 +

(
EH) 

 .

Recalling (.) and the fact that EH ≤ EH , we have

EH � ẼH
 + ELEH +

(
EH) ≤ ẼH

 + 
(
EH) 

 ,

which implies EH � ẼH
 for sufficiently small δ.

On the other hand, ẼH
 � EH obviously. Hence, the energy functional ẼH

 is equivalent to
EH . Finally, letting δ ≤ cH

 /cH
 ( +σ ) and denoting ẼH = ẼH

 /cH
 , we see that (.) implies

(.).
() We proceed to derive the highest-order estimate (.). We start with employing the

recursion formula (.) with i =  from k =  to  to find that there are positive constants
dk (k = , , ), such that

d
dt

∑

k=

dk‖η‖
k,–k +

∥
∥(η, u)

∥
∥

 � ‖u‖
 + ‖η‖

, + ‖ut‖
 + Sω

,.
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On the other hand, by virtue of (.),

Sω
, =

∥
∥
(
Nh

u , Nh
q
)∥
∥

 +
∥
∥
(
Dh

u, divη
)∥
∥



� ‖Ã‖
‖u‖

 + ‖Ã‖
‖u‖

 + ‖Ã‖
‖∇q‖

 + ‖η‖
‖η‖

 �DH + EH‖η‖
.

Thus, we conclude

d
dt

∑

k=

dk‖η‖
k,–k +

∥
∥(η, u)

∥
∥

 � EH + DH + EH‖η‖
.

Hence, (.) holds by defining ‖η‖
,∗ := 

∑
k= dk‖η‖

k,–k , provided δ is sufficiently
small. �

The following lemma will be needed in the next section.

Lemma . Under the assumption (.), if δ is sufficiently small, then

EH � E := ‖η‖
 + ‖u‖

. (.)

Proof In view of (.), we have

EH � ‖η‖
 +

∥
∥
(
u, ut , utt , ∂

t u
)∥
∥

 + ELEH ,

which results in

EH � ‖η‖
 +

∥
∥
(
u, ut , utt , ∂

t u
)∥
∥

 (.)

for sufficiently small δ. Below we show that the L-norm of ut and ∂
t u can be controlled

by
√
E .

() First, to bound ut , we multiply (.) with j =  by ut and integrate the resulting
equation over � to obtain

‖√ρut‖
 =

∫
(
μ�Au + λM̄ · ∇(M̄ · ∇u) + ρω∂t(ue – ue)

) · ut dy

–
∫

∇q · Dt,
u dy

� E + ‖∇q‖
∥
∥Dt,

u
∥
∥

,

where the last term on the right-hand side can be bounded from above by E . Hence,

‖ut‖
 � E . (.)

() Then we control the term utt . Multiplying (.) with j =  by utt and integrating the
resulting equation over �, we infer that

‖√ρutt‖
 =

∫
(
μ�A∂tu + λM̄ · ∇(M̄ · ∇u) + ρω(ue – ue) + μNt,

u + Nt,
q

)

· ∂
t u dy

–
∫

∇qt · Dt,
u dy,
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which yields

‖utt‖
 �

∥
∥(u, ut)

∥
∥

 +
∥
∥
(
Nt,

u , Nt,
q

)∥
∥

 + ‖∇qt‖
∥
∥Dt,

u
∥
∥

.

Noting that

∥
∥
(
Nt,

u , Nt,
q

)∥
∥

 � E

and

‖∇qt‖
∥
∥Dt,

u
∥
∥

 � ‖At‖‖ut‖ + ‖Att‖‖u‖ � ‖ut‖
 + E ,

we see that

‖utt‖
 � ‖ut‖

 + E . (.)

() Finally, we estimate the term ∂
t u. If we multiply (.) with j =  by ∂

t u in L(�),
we obtain

∥
∥√

ρ∂
t u

∥
∥

 =
∫

(
μ�A∂

t u + λM̄ · ∇(M̄ · ∇ut)

+ ρω∂
t (ue – ue) + μNt,

u + Nt,
q

) · ∂
t u dy

–
∫

∇qtt · Dt,
u dy,

whence

∥
∥∂

t u
∥
∥

 � ‖u‖
 +

∥
∥(ut , utt)

∥
∥

 +
∥
∥
(
Nt,

u , Nt,
q

)∥
∥

 + ‖∇qtt‖
∥
∥Dt,

u
∥
∥

.

On the other hand, it is easy to show that

∥
∥
(
Nt,

u , Nt,
q

)∥
∥

 � ‖ut‖
 + E

and

‖∇qtt‖
∥
∥Dt,

u
∥
∥

 � ‖ut‖
 + ‖utt‖

 + E .

Therefore,

∥
∥∂

t u
∥
∥

 � ‖ut‖
 + ‖utt‖

 + E . (.)

Now, we control the term ‖utt‖ in (.). By (.) with j = , we deduce that

‖utt‖
 � ‖ut‖

 + ‖∇qt‖
 +

∥
∥
(∇u, Nt,

u , Nt,
q

)∥
∥

,

where the last term on the right-hand side can be bounded by E . Consequently,

‖utt‖
 � ‖ut‖

 + ‖∇qt‖
 + E . (.)
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To estimate ∇qt , we rewrite (.) as follows:

�qt = f,

with boundary condition

∇qt · ν = f · ν on ∂�,

where

f := div
(
μ∂tNh

u + ∂tNh
q – ρutt + μ�ut + λM̄ · ∇(M̄ · ∇u) + ρω∂t(ue – ue)

)
,

f := μ∂tNh
u + ∂tNh

q + μ�ut + λM̄ · ∇(M̄ · ∇u) + ρω∂t(ue – ue).

In view of the standard elliptic regularity estimates [], we find that

‖∇qt‖
 � ‖f‖

 + ‖f‖
 ≤ ‖ut‖

 + ‖utt‖
 + E .

Putting the above inequality into (.), we obtain

‖utt‖
 � ‖ut‖

 + ‖utt‖
 + E ,

which, together with the interpolation inequality (.), yields

‖utt‖
 � ‖ut‖

 + ‖utt‖
 + E . (.)

Consequently, from (.) and (.) it follows that

∥
∥∂

t u
∥
∥

 � ‖utt‖
 + ‖ut‖

 + E . (.)

Next, we control ‖ut‖ in (.). Using (.), we derive that

‖ut‖
 �

∥
∥
(
�Au,∇η, u,∇Aq

)∥
∥

 � ‖∇q‖
 + E , (.)

where, by virtue of (.), ∇q satisfies

�q = f

with boundary condition

∇q · ν = f · ν on ∂�,

and

f := div
(
μNh

u + Nh
q – ρut + μ�u + λM̄ · ∇(M̄ · ∇η) + ρω(ue – ue)

)
,

f :=
(
μNh

u + Nh
q + μ�u + λM̄ · ∇(M̄ · ∇η)

)
.
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Thus, we can use the elliptic regularity estimate to get

‖∇q‖
 � ‖f‖

 + ‖f‖
 � ‖ut‖

 + E .

Hence, from (.) we get

‖ut‖
 � ‖ut‖

 + E ,

which, together with the interpolation inequality (.), implies that

‖ut‖
 � ‖ut‖

 + E . (.)

Inserting (.) into (.), we conclude

∥
∥∂

t u
∥
∥

 �
∥
∥(ut , utt)

∥
∥

 + E . (.)

() Now we are able to show (.). Summing up the estimates (.), (.), (.) and
(.), we arrive at

∑

k=

∥
∥∂k

t ut
∥
∥

 � E ,

which, combined with (.), gives (.). �

5 Proof of Theorem 2.1
This section is devoted to the proof of Theorem .. Roughly speaking, Theorem . is
shown by combining the a priori stability estimate (.) and the local well-posedness of
the transformed MHD problem. Before we derive the a priori stability estimate (.), we
begin with estimating the terms G, . . . ,G.

Using (.), and recalling the equivalence of ‖η‖
,∗ and ‖η‖

, we deduce that

‖η‖
 � ‖η‖

e–t +
∫ t


e–(t–τ )(EH (τ ) + DH (τ )

)
dτ

� ‖η‖
e–t + sup

≤τ≤t
EH (τ )

∫ t


e–(t–τ ) dτ +

∫ t


DH (τ ) dτ

� ‖η‖
e–t + G(t),

which yields

G(t) � ‖η‖
 + G(t). (.)

Multiplying (.) by ( + t)–/, we get

d
dt

‖η‖
,∗

( + t)/ +



‖η‖
,∗

( + t)/ +
‖(η, u)‖


( + t)/ � EH

( + t)/ +
DH

( + t)/ ,
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which implies that

G(t) � ‖η‖
 + G(t). (.)

An integration of (.) with respect to t gives

G(t) � EH () +
∫ t



√
EL(τ )

∥
∥(η, u)(τ )

∥
∥

 dτ .

Let

G(t) := G(t) + sup
≤τ≤t

EH (τ ) + G(t).

From now on, we further assume
√
G(T) ≤ δ, which is a stronger requirement than (.).

Thus, we make use of (.) to find that

G(t) � EH() +
∫ t


δ( + τ )–/∥∥(η, u)(τ )

∥
∥

 dτ

� EH() + δ
(‖η‖

 + G(t)
)
,

which implies

G(t) � ‖η‖
 + EH(). (.)

Finally, we show the time decay behavior of G(t), noting that EL can be controlled by
DL, except the term ‖∇η‖, in EL. To deal with ‖∇η‖,, we use (.) to get

‖∇η‖, � ‖η‖ 

,‖η‖ 


,.

On the other hand, we combine (.) with (.) to get

EL + ‖η‖
 � ẼL + ‖η‖

 � ‖η‖
 + EH ().

Thus,

ẼL � EL �
(
DL) 


(
EL + ‖η‖


) 

 �
(
DL) 


(‖η‖

 + EH()
) 

 .

Putting the above estimate into the lower-order energy inequality (.), we obtain

d
dt

ẼL +
(ẼL) 



I/


� ,

which yields

EL � ẼL � I

((I/EL())/ + t/) � ‖η‖
 + EH()
 + t
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with I := c(EH () + ‖η‖
) for some positive constant c. Therefore,

G(t) � ‖η‖
 + EH(). (.)

Now we sum up the estimates (.)-(.) to conclude that

G(t) :=
∑

k=

Gk(t) � ‖η‖
 + EH() � ‖η‖

 + ‖u‖
,

where (.) has been also used. Consequently, we have proved the following a priori
stability estimate.

Proposition . Let (η, u) be a solution of the transformed MHD problem with an associ-
ated perturbation pressure q. Then there is a sufficiently small δ, such that (η, u, q) enjoys
the following a priori stability estimate:

G(T) ≤ C
(‖η‖

 + ‖u‖

)
, (.)

provided that
√
G(T) ≤ δ for some T > . Here C ≥  denotes a constant depending on

the domain � and other physical parameters in the transformed MHD equations.

In view of the a priori stability estimate in Proposition . and the following result of local
existence of a small solution to the transformed MHD problem, we immediately obtain
Theorem ..

Proposition . There is a sufficiently small δ, such that for any given initial data
(η, u) ∈ H × H satisfying

√

‖η‖
 + ‖u‖

 ≤ δ

and the compatibility conditions (i.e., ∂ j
tu(x, )|∂� = , j = , ), there exist a T := T(δ) > 

which depends on δ, the domain � and other known physical parameters, and a unique
classical solution (η, u) ∈ C([, T], H × H) to the transformed MHD problem (.),
(.) with an associated perturbation pressure q. Moreover, ∂ i

t u ∈ C([, T], H–i) for
 ≤ i ≤ , q ∈ C([, T], H), EH () � ‖η‖

 + ‖u‖
, and

sup
≤τ≤T

(∥
∥η(τ )

∥
∥

 + EH (τ )
)

+
∫ T



(
DH (τ ) +

∥
∥u(τ )

∥
∥

 +
∥
∥q(τ )

∥
∥



)
dτ < ∞,

and G(t) is continuous on [, T].

Proof The transformed MHD problem is very similar to the surface wave problem (.) in
[]. Moreover, the current problem is indeed simpler than the surface wave problem due
to the non-slip boundary condition u|∂� = . Using the standard method in [], one can
easily establish Proposition ., hence we omit its proof here. In addition, the continuity,
such as (η, u, q) ∈ C([, T], H ×H ×H), G(t) and so on, can be verified by using the reg-
ularity of (η, u, q), the transformed MHD equations and a standard regularized method. �
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6 Conclusion
We have proved the existence of a unique time-decay solution to the initial-boundary
problem (.)-(.) of rotating MHD fluids in Lagrangian coordinates, which, together
with the inverse transformation of coordinates, implies the existence of a time-decay so-
lution to the original initial-boundary problem (.)-(.) with proper initial data in H(�).
Our result also holds for the case ω =  (i.e., the absence of rotation), thus it improves Tan
and Wang’s result in [], in which the sufficiently small initial data at least belongs to
H(�). Hence our result reveals that rotation does not affect the existence of solutions of
rotating MHD fluids. We mention that the phenomenon of rotating MHD fluids widely ex-
ists in nature, so our result has potential applications. In addition, based on Theorem .,
we will further study the Rayleigh-Taylor problem of rotating MHD fluids in the future;
please refer to [–] for relevant results on the Rayleigh-Taylor problem.
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