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Abstract
This paper considers the following coupled chemotaxis system:

⎧
⎪⎨

⎪⎩

ut =∇ · (φ(u)∇u) –χ1∇ · (u∇w) +μ1u(1 – u – a1v),

vt =∇ · (ψ (v)∇v) –χ2∇ · (v∇w) +μ2v(1 – a2u – v),

wt =�w – γw + αu + βv,

with homogeneous Neumann boundary conditions in a bounded domain 	 ⊂ R
N

(N ≥ 3) with smooth boundaries, where χ1, χ2, μ1, μ2, a1, a2, α, β and γ are positive.
Based on the maximal Sobolev regularity, the existence of a unique global bounded
classical solution of the problem is established under the assumption that bothμ1

and μ2 are sufficiently large.

MSC: 92C17; 35K55; 35K35; 35B40
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1 Introduction
In this paper, we consider the higher dimension quasilinear fully parabolic two-species
chemotaxis system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (φ(u)∇u) – χ∇ · (u∇w) + μu( – u – av), (x, t) ∈ 	 × (, T),

vt = ∇ · (ψ(v)∇v) – χ∇ · (v∇w) + μv( – au – v), (x, t) ∈ 	 × (, T),

wt = �w – γ w + αu + βv, (x, t) ∈ 	 × (, T),
∂u
∂n = ∂v

∂n = ∂w
∂n = , (x, t) ∈ ∂	 × (, T),

u(x, ) = u(x), v(x, ) = v(x), w(x, ) = w(x), x ∈ 	,

(.)

where 	 ⊂ R
N (N ≥ ) is a bounded domain with smooth boundaries ∂	, and the con-

stants χ, χ, μ, μ, a, a, α, β and γ are positive. The functions φ,ψ ∈ C([,∞))
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satisfy

⎧
⎨

⎩

φ(s) > , s ≥ , ksp ≤ φ(s), s ≥ s,

ψ(s) > , s ≥ , ksq ≤ ψ(s), s ≥ s,
(.)

with k, k > , s > , p, q ∈R.
The system (.) arises in mathematical biology as a model for two biological species

which move in the direction of higher concentration of a signal produced by themselves.
Here, u = u(x, t) and v = v(x, t) represent the densities of the two populations, respectively,
and w = w(x, t) denotes the concentration of the chemical.

There are many results about the one-species chemotaxis systems with logistic source
when v ≡  in (.), that is,

⎧
⎨

⎩

ut = ∇ · (φ(u)∇u) – χ∇ · (u∇w) + μu( – u), (x, t) ∈ 	 × (, T),

wt = �w – γ w + αu, (x, t) ∈ 	 × (, T).
(.)

All solutions are global in time and remain bounded whenever n ≤  and μ >  is arbitrary
[], or n ≥  and μ > μ with some constant μ(χ) >  [, ]. Especially, the convexity of
	 which is required in [] is unnecessary in [].

As for two-species models without logistic-type growth restrictions, that is, when μ =
μ = , the resulting system inherits some important properties from the original Keller-
Segel model for single-species chemotaxis; see [, ] and the references therein. In partic-
ular, the striking phenomenon of finite-time blow-up, known to occur in both parabolic-
elliptic and fully parabolic versions of the latter ([, ]), has also been detected in parabolic-
parabolic-elliptic two-species systems ([–]).

Apart from the aforementioned system, a source of logistic type is included in (.). For
the semilinear parabolic-parabolic-elliptic version of (.), in the case of weak competition
when both a <  and a < , the large time behavior has been addressed in [], and also
in []. Here we point out that the smallness condition on the chemotactic strengths in
[] seems more natural than that in []. When a >  and  ≤ a < , it has been shown
in [] that the solution (u, v, w) converges to (, , β

γ
) as t → ∞ under some assumptions

on χ, χ, a, a. For the currently considered fully parabolic system (.), when φ(u) ≡ u,
ψ(v) ≡ v, the authors in [] have proved that the system (.) possesses a global solution
for n ≤  and any positive constant μ, μ. For the case n ≥ , the large time behavior has
been obtained but there lacks a proof of the existence of a global solution. Especially, the
authors in [] proved that for the bounded convex domain 	 and γ ≥ 

 , the problem (.)
possesses a global solution with large μ and μ.

Our goal in this paper is to investigate the global existence and boundedness of solutions
to (.). The main result of the present paper is the following theorem.

Theorem . Suppose that 	 ⊂R
N (N ≥ ) is a bounded domain with smooth boundaries,

and φ and ψ satisfy (.). Then there is μ >  such that if max{μ,μ} > μ, for each
nonnegative u(x), v(x) ∈ C(	̄) and w(x) ∈ W ,r(	) with r > N , system (.) admits a
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unique classical solution (u, v, w) such that

u ∈ C(	̄ × [,∞)
) ∩ C,(	̄ × (,∞)

)
,

v ∈ C(	̄ × [,∞)
) ∩ C,(	̄ × (,∞)

)
,

w ∈ C(	̄ × [,∞)
) ∩ C,(	̄ × (,∞)

) ∩ L∞
Loc

(
[,∞); W ,r(	)

)
.

Moreover, (u, v, w) is bounded in 	 × (,∞).

2 Preliminaries
The local existence of solutions to (.) can be addressed by methods involving standard
parabolic regularity theory in a suitable fixed point approach.

Lemma . Suppose 	 ⊂R
N (N ≥ ) is a bounded domain with smooth boundaries, and

φ and ψ satisfy (.); let r > N . Then for each nonnegative u(x), v(x) ∈ C(	̄) and w(x) ∈
W ,r(	), there exists Tmax ∈ (,∞] and a uniquely determined triple (u, v, w) of functions

u ∈ C(	̄ × [, Tmax)
) ∩ C,(	̄ × (, Tmax)

)
,

v ∈ C(	̄ × [, Tmax)
) ∩ C,(	̄ × (, Tmax)

)
,

w ∈ C(	̄ × [, Tmax)
) ∩ C,(	̄ × (, Tmax)

) ∩ L∞
Loc

(
[, Tmax); W ,r(	)

)
,

which solves (.) classically in 	 × (, Tmax). Moreover, Tmax < ∞ if and only if

lim sup
t↗Tmax

(∥
∥u(·, t)

∥
∥

L∞(	) +
∥
∥v(·, t)

∥
∥

L∞(	)

)
= ∞.

Let us cite the following auxiliary statement from [].

Lemma . Let r ∈ (,∞). Consider the following evolution equation:

⎧
⎪⎪⎨

⎪⎪⎩

wt = �w – γ w + αu + βv, (x, t) ∈ 	 × (, T),
∂w
∂n = , (x, t) ∈ ∂	 × (, T),

w(x, ) = w(x), x ∈ 	.

(.)

For each w ∈ W ,r(	) (r > N ) with ∂w
∂n =  on ∂	 and any u, v ∈ Lr((, T); Lr(	)), there

exists a unique solution

w ∈ W ,r((, T); Lr(	)
) ∩ Lr((, T); W ,r(	)

)
. (.)

Moreover, there exists Cr > , such that if s ∈ [, T), w(·, s) ∈ W ,r(	) (r > N ) with ∂w(·,s)
∂n =

, then

∫ T

s

∫

	

eγ rs|�w|r ≤ Cr

∫ T

s

∫

	

eγ rsur + Cr

∫ T

s

∫

	

eγ rsvr

+ Cr
(∥
∥w(·, s)

∥
∥r

Lr (	) +
∥
∥�w(·, s)

∥
∥r

Lr(	)

)
. (.)



Zhou and Yang Boundary Value Problems  (2017) 2017:115 Page 4 of 8

Proof Let h(x, s) = eγ sw(x, s). We derive that h satisfies

⎧
⎪⎪⎨

⎪⎪⎩

hs(x, s) = �h(x, s) + αeγ su(x, s) + βeγ sv(x, s), (x, s) ∈ 	 × (, T),
∂h
∂n = , (x, s) ∈ ∂	 × (, T),

h(x, ) = w(x), x ∈ 	.

(.)

Applying the maximal Sobolev regularity ([], Theorem .) to h, and using the Hölder
inequality, we have

∫ T



∫

	

∣
∣�h(x, s)

∣
∣r ≤ Cr

∫ T



∫

	

eγ rsur + Cr

∫ T



∫

	

eγ rsvr

+ Cr
(‖w‖r

Lr(	) + ‖�w‖r
Lr (	)

)
. (.)

Consequently, for any s > , replacing v(t) by v(t + s), we prove (.). �

The following lemma, which can be proved by applying Moser-type iteration tech-
niques, which can be found in [], will be used to prove global existence and boundedness:

Lemma . Let N ≥ , and suppose that there exists k ≥  such that k > N/ and

sup
t∈(,Tmax)

(∥
∥u(·, t)

∥
∥

Lk (	) +
∥
∥v(·, t)

∥
∥

Lk (	)

)
< ∞. (.)

Then Tmax = ∞ and

sup
t>

(∥
∥u(·, t)

∥
∥

L∞(	) +
∥
∥v(·, t)

∥
∥

L∞(	) +
∥
∥w(·, t)

∥
∥

L∞(	)

)
< ∞. (.)

3 Proof of Theorem 1.1
In this section, we prove our main result.

Lemma . Suppose 	 ⊂ R
N (N ≥ ) is a bounded domain with smooth boundaries,

χ,χ ∈ R
+. For any k > , η >  and s > , there exists μk,η >  and C = C(k, |	|,μ,μ,

χ,χ,η, u, v, w) >  such that if min{μ,μ} > μk,η , then

∥
∥u(·, t)

∥
∥

Lk (	) +
∥
∥v(·, t)

∥
∥

Lk (	) ≤ C (.)

for all t ∈ (s,∞).

Proof We fix s ∈ (, Tmax) such that s ≤ . For any constant k > , we take uk– as a test
function for the first equation in (.) and integrate by parts. Then we have


k

d
dt

∫

	

uk = –(k – )
∫

	

uk–φ(u)|∇u| + χ(k – )
∫

	

uk–∇u · ∇w

+ μ

∫

	

uk – μ

∫

	

uk+ – μa

∫

	

ukv

≤ χ
k – 

k

∫

	

∇uk · ∇w + μ

∫

	

uk – μ

∫

	

uk+ – μa

∫

	

ukv
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= –χ
k – 

k

∫

	

uk�w + μ

∫

	

uk – μ

∫

	

uk+ – μa

∫

	

ukv

≤ –
γ (k + )

k

∫

	

uk – χ
k – 

k

∫

	

uk�w

+
(

μ +
γ (k + )

k

)∫

	

uk – μ

∫

	

uk+ (.)

for all t ∈ (s, Tmax). Then Young’s inequality implies the following two inequalities for any
ε >  (to be determined) and some constants c and c:

(

μ +
γ (k + )

k

)∫

	

uk ≤ ε

∫

	

uk+ + c|	| (.)

and

–χ
k – 

k

∫

	

uk�w ≤ χ

∫

	

uk|�w| ≤ η

∫

	

uk+ + cη
–kχ k+



∫

	

|�w|k+, (.)

where c = c(μ, ε, k,γ ) = 
k ( + 

k )–(k+)ε–k(μ + γ (k+)
k )k+ and c = supk>


k ( + 

k )–(k+) < ∞.
By substituting (.) and (.) into (.), we find that

d
dt

(

k

∫

	

uk
)

≤ –γ (k + )
(


k

∫

	

uk
)

– (μ – ε – η)
∫

	

uk+

+ cη
–kχ k+



∫

	

|�w|k+ + c|	|. (.)

Similarly, for some constants c and c, we have

d
dt

(

k

∫

	

vk
)

≤ –γ (k + )
(


k

∫

	

vk
)

– (μ – ε – η)
∫

	

vk+

+ cη
–kχ k+



∫

	

|�w|k+ + c|	|. (.)

Applying the variation-of-constants formula to the above inequalities shows that


k

∫

	

uk(·, t) ≤ e–γ (k+)(t–s) 
k

∫

	

uk(·, s) – (μ – ε – η)
∫ t

s

e–γ (k+)(t–s)
∫

	

uk+

+ cη
–kχ k+



∫ t

s

e–γ (k+)(t–s)
∫

	

|�w|k+ + c|	|
∫ t

s

e–γ (k+)(t–s)

≤ –(μ – ε – η)e–γ (k+)t
∫ t

s

∫

	

eγ (k+)suk+

+ cη
–kχ k+

 e–γ (k+)t
∫ t

s

∫

	

eγ (k+)s|�w|k+ + c (.)

and


k

∫

	

vk(·, t) ≤ –(μ – ε – η)e–γ (k+)t
∫ t

s

∫

	

eγ (k+)svk+

+ cη
–kχ k+

 e–γ (k+)t
∫ t

s

∫

	

eγ (k+)s|�w|k+ + c (.)
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for all t ∈ (s, Tmax), where

c = c|	|
∫ t

s

e–γ (k+)(t–s) +

k

∫

	

uk(·, s)

and

c = c|	|
∫ t

s

e–γ (k+)(t–s) +

k

∫

	

vk(·, s)

are independent of t. Now, we apply Lemma . to see that there is Ck >  such that

∫ t

s

∫

	

eγ (k+)s|�w|k+ ≤ Ck

∫ t

s

∫

	

eγ (k+)suk+ + Ck

∫ t

s

∫

	

eγ (k+)svk+

+ Ck
∥
∥w(·, s)

∥
∥k+

W ,k+(	). (.)

Put the inequalities (.) and (.) together and apply (.); then we arrive at


k

(∫

	

uk(·, t) +
∫

	

vk(·, t)
)

≤ –
(
μ – ε – η – cη

–kχ k+
 Ck

)
∫ t

s

∫

	

eγ (k+)suk+

–
(
μ – ε – η – cη

–kχ k+
 Ck

)
∫ t

s

∫

	

eγ (k+)svk+ + c (.)

for all t ∈ (s, Tmax), with the constant c >  being independent of t.
Let μk,η = max{η + cη

–kχ k+
 Ck ,η + cη

–kχ k+
 Ck}, which is independent of ε. We can

choose ε ∈ (, min{μ,μ} – μk,η) such that

μ – ε – η – cη
–kχ k+

 Ck > , μ – ε – η – cη
–kχ k+

 Ck > .

It entails


k

(∫

	

uk(·, t) +
∫

	

vk(·, t)
)

≤ c (.)

for all t ∈ (s, Tmax), with the constant c = c(μ, ε,η, k,γ , w(s)) being independent of t.
This completes the proof. �

In order to prove Theorem ., we should give an estimation for (u, v.w) when t ∈ (, s).
We know by Lemma . that u(·, s), v(·, s), w(·, s) ∈ C(	̄) with ∂w(·,s)

∂n =  on ∂	, so that
we can pick M >  such that

⎧
⎨

⎩

sup≤t≤s ‖u(·, t)‖L∞(	) ≤ M, sup≤t≤s ‖v(·, t)‖L∞(	) ≤ M,

sup≤t≤s ‖w(·, t)‖L∞(	) ≤ M, sup≤t≤s ‖�w(·, t)‖L∞(	) ≤ M.
(.)

Combining Lemma . with the estimates (.), we readily arrive at our main result.
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Proof of Theorem . Let μ = infη> μk,η . We know by Lemma . and (.) that (.)
holds when min{μ,μ} > μ, and hence (.) is true. Lemma (.) shows that (u, v) is
global. �

4 Conclusion
The paper considers a quasilinear fully parabolic two-species chemotaxis system of higher
dimension. The existence of a unique global bounded classical solution of problem (.)
is established under the assumption that the coefficients of the kinetic terms are large
enough. We point out that the convexity of 	 and the assumption γ ≥ 

 , which are re-
quired in [], are unnecessary in our theorem due to the technique used here. We also
notice that the result of Theorem . is independent of the value of p and q in (.), and
thus extends the result for the semilinear case.
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