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Abstract
This paper proves the global well-posedness for the 2D Cahn-Hilliard-Boussinesq and
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1 Introduction
Let � ⊂ R be a bounded domain with smooth boundary ∂� and ν be the unit outward
normal vector to ∂�. First, we consider the following inviscid Cahn-Hilliard-Boussinesq
system []:

∂tu + u · ∇u + ∇π = μ∇φ + θe, (.)

∂tθ + u · ∇θ = �θ , (.)

div u = , (.)

∂tφ + u · ∇φ = �μ, (.)

μ = –�φ + f ′(φ), f (φ) =



(
 – φ), (.)

in � × (,∞) with the boundary and initial conditions

u · ν = ,
∂θ

∂ν
= ,

∂φ

∂ν
=

∂μ

∂ν
=  on ∂� × (,∞), (.)

(u, θ ,φ)(·, ) = (u, θ,φ) in �. (.)

Here u, π , and θ denote the velocity, pressure and temperature of the fluid, respectively.
φ is the order parameter and μ is a chemical potential and e :=

( 


)
.

Zhao [] proved the global existence and uniqueness of smooth solutions to problem
(.)-(.) with smooth initial data u, θ ∈ H and φ ∈ H. Zhou and Fan [] considered
the vanishing limit for a D Cahn-Hilliard-Navier-Stokes system with a slip boundary con-
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dition. We refer the readers to [, , ] and the references therein for more discussions in
this direction.

When φ = , the system reduces to the well-known Boussinesq system. Very recently,
Zhou and Li [] proved the global well-posedness of the D Boussinesq system with zero
viscosity (.)-(.) and (.), (.) for rough initial data u ∈ L, rot u ∈ L∞ and θ ∈ B– 

r
q,r

with  < r < ∞ and  < q < ∞, which improves the results in [, ] with smooth initial data
u, θ ∈ H. Several results for the related models can be found in [, ].

The first aim of this paper is to prove a similar result for problem (.)-(.), we will prove
the following.

Theorem . Let φ ∈ H, u ∈ L, rot u ∈ L∞ and θ ∈ B– 
r

q,r with  < r < ∞ and  < q <
∞. Then problem (.)-(.) has a unique solution (u, θ ,φ) satisfying

u ∈ L∞(
, T ; L), rot u ∈ L∞(

, T ; L∞)
,

θ ∈ C
(
[, T]; B– 

r
q,r

) ∩ Lr(, T ; W ,q), θt ∈ Lr(, T ; Lq), (.)

φ ∈ L∞(
, T ; H) ∩ L(, T ; H), φt ∈ L∞(

, T ; L) ∩ L(, T ; H)

for any fixed T > .

Next, we consider the following Cahn-Hilliard-Boussinesq system:

∂tu + u · ∇u + ∇π – �u = μ∇φ + θe, (.)

∂tθ + u · ∇θ = , (.)

div u = , (.)

∂tφ + u · ∇φ = �μ, (.)

μ = –�φ + f ′(φ), f (φ) :=



(
 – φ), (.)

u = ,
∂φ

∂ν
=

∂μ

∂ν
=  on ∂� × (,∞), (.)

(u, θ ,φ)(·, ) = (u, θ,φ) in �. (.)

When φ = , Zhou [] showed the global well-posedness of the problem with rough
initial data

u ∈D– 
r ,r

Aq
∩ H

 with  < r < ∞,  < q < ∞ and θ ∈ H,

which improved the results in [] for (u, θ) ∈ H ×H and in [] for (u, θ) ∈ H ×H.
Here the space D– 

r ,r
Aq

denotes some fractional domain of the Stokes operator in Lq with
 – 

r derivatives (see Danchin []); moreover, we have

D– 
r ,r

Aq
↪→ B– 

r
q,r ∩ Lq. (.)

The second aim of this paper is to prove a similar result to problem (.)-(.), we will
prove the following.
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Theorem . Let u ∈ D– 
r ,r

Aq
∩ H

 with  < r < ∞,  < q < ∞ and θ ∈ Lq, φ ∈ H. Then
problem (.)-(.) has a unique solution (u, θ ,φ) satisfying

u ∈ L∞(
, T ; H


) ∩ L(, T ; H),

u ∈ C
(
[, T];D– 

r ,r
Aq

) ∩ Lr(, T ; W ,q), ut ∈ Lr(, T ; Lq),

θ ∈ L∞(
, T ; Lq), φ ∈ L∞(

, T ; H) ∩ L(, T ; H),

φt ∈ L∞(
, T ; L) ∩ L(, T ; H)

(.)

for any fixed T > .

Finally, we consider the following model in electrohydrodynamics []:

∂tu + u · ∇u + ∇π = (n – p)∇ψ , (.)

div u = , (.)

∂tn + u · ∇n – div(∇n – n∇ψ) = , (.)

∂tp + u · ∇p – div(∇p + p∇ψ) = , (.)

–�ψ = p – n + D(x) (.)

in � × (,∞) with the boundary and initial conditions

u · ν = ,
∂n
∂ν

=
∂p
∂ν

=
∂ψ

∂ν
=  on ∂� × (,∞), (.)

(u, n, p)(·, ) = (u, n, p) in �. (.)

Here n, p and ψ denote the anion concentration, cation concentration and electric po-
tential, respectively. D(x) is the doping profile.

Equations (.), (.) and (.) appear in the context as the Nernst-Plank equation in
astronomy [] and as the Van Roosbroeck system in semiconductor devices [].

The third aim of this paper is to prove a similar result to problem (.)-(.), we will
prove the following.

Theorem . Let u ∈ L, rot u ∈ L∞ and n, p ∈ B– 
r

q,r with  < r < ∞ and  < q < ∞ and
n, p ≥  in � and D ∈ L∞(�). Then problem (.)-(.) has a unique solution (u, n, p,ψ)
satisfying

u ∈ L∞(
, T ; L), rot u ∈ L∞(

, T ; L∞)
,

 ≤ n, p ∈ C
(
[, T]; B– 

r
q,r

) ∩ Lr(, T ; W ,q), nt , pt ∈ Lr(, T ; Lq),

ψ ∈ C
(
[, T]; W ,q) ∩ Lr(, T ; W ,q), ψt ∈ Lr(, T ; W ,q)

(.)

for any fixed T > .

Since the proof of Theorem . is very similar to that of Theorem . and that of [], we
omit the details here.
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Now we recall the maximal regularity for the heat equation [] and the Stokes system
[], which are critical to the proof of our main theorems.

Lemma . ([]) Assume that θ ∈ B– 
r

q,r and f ∈ Lr(, T ; Lq) with  < r, q < ∞. Then the
problem

⎧
⎪⎨

⎪⎩

∂tθ – �θ = f ,
∂θ
∂n =  on ∂� × (, T),
θ (·, ) = θ in �,

(.)

has a unique solution θ satisfying the following inequality for any fixed T > :

‖θ‖
C([,T];B

– 
r

q,r )
+ ‖θ‖Lr (,T ;W ,q) + ‖θt‖Lr(,T ;Lq)

≤ C
(‖θ‖

B
– 

r
q,r

+ ‖f ‖Lr(,T ;Lq)
)
, (.)

with C := C(r, q,�).

Lemma . ([]) Assume that u ∈D– 
r ,r

Aq
and g ∈ Lr(, T ; Lq) with  < r, q < ∞. Then the

problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu – �u + ∇π = g,
div u = ,
u =  on ∂� × (, T),
u(·, ) = u in �,

(.)

has a unique solution (u,π ) satisfying the following estimate for any fixed T > :

‖u‖
C([,T];D– 

r ,r
Aq )

+ ‖u‖Lr (,T ;W ,q) + ‖ut‖Lr (,T ;Lq) + ‖∇π‖Lr (,T ;Lq)

≤ C
(‖u‖

D– 
r ,r

Aq

+ ‖g‖Lr (,T ;Lq)
)
, (.)

with C := C(r, q,�).

2 Proof of Theorem 1.1
This section is devoted to the proof of Theorem .. To prove the existence part, we only
need to show a priori estimates (.). The uniqueness can be proved by the standard energy
method of Yudovich [], and thus we omit the details here.

Testing (.) by θ and using (.), we see that

‖θ‖
L + 

∫ T


‖∇θ‖

L dt ≤ ‖θ‖
L . (.)
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Testing (.) by u and (.) by μ, respectively, summing up the resulting equations and
using (.), (.) and (.), we find that




d
dt

∫ (|u| + |∇φ| + f (φ)
)

dx +
∫

|∇μ| dx

=
∫

θeu dx ≤ ‖θ‖L‖u‖L ≤ C‖u‖L ≤ C‖u‖
L + C,

which gives

sup
≤t≤

∫ (|u| + |∇φ| + f (φ)
)

dx +
∫ T



∫
|∇μ| dx dt ≤ C. (.)

Taking ∇ to (.) and testing by ∇�φ, we infer that

∫ T



∫
|∇�φ| dx dt = –

∫ T



∫
∇μ · ∇�φx dt –

∫ T



∫
∇(

φ – φ) · ∇�φ dx dt

= –
∫ T



∫
∇μ · ∇�φ dx dt –

∫ T



∫
∇φ · ∇�φ dx dt

– 
∫ T



∫
φ(�φ) dx dt – 

∫ T



∫
φ|∇φ|�φ dx dt

≤ –
∫ T



∫
∇μ · ∇�φ dx dt –

∫ T



∫
∇φ · ∇�φ dx dt

+ C
∫ T



∫
|∇φ| dx dt

≤ –
∫ T



∫
∇μ · ∇�φ dx dt –

∫ T



∫
∇φ · ∇�φ dx dt

+ C
∫ T


‖∇φ‖

L‖∇�φ‖L dt + C
∫ T


‖∇φ‖

L dt

≤ 


∫ T



∫
|∇�φ| dx dt + C

∫ T



∫
|∇μ| dx dt

+ C
∫ T



∫
|∇φ| dx dt + C

∫ T


‖∇φ‖

L dt + C
∫ T


‖∇φ‖

L dt

≤ 


∫ T



∫
|∇�φ| dx dt + C,

which leads to

∫ T



∫
|∇�φ| dx dt ≤ C. (.)

Here we used the Gagliardo-Nirenberg inequality

‖∇φ‖L ≤ C‖∇φ‖ 

L‖∇�φ‖ 


L + C‖∇φ‖L . (.)
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It follows from (.), (.), (.) and the H-regularity of the Poisson equation that

∫ T


‖φ‖

H dt ≤ C. (.)

Denote the vorticity ω := rot u := ∂u – ∂u and a × b := ab – ab for vectors a :=
(a, a) and b := (b, b).

Applying rot to (.), we deduce that

∂tω + u · ∇ω = –∇�φ × ∇φ + ∂θ . (.)

Testing (.) by ω and using (.), we get

‖ω‖L
d
dt

‖ω‖L =
∫

(–∇�φ × ∇φ + ∂θ )ω dx

≤‖ω‖L
(‖∇�φ‖L‖∇φ‖L∞ + ‖∂θ‖L

)
,

whence

d
dt

‖ω‖L ≤ ‖∇�φ‖L‖∇φ‖L∞ + ‖∂θ‖L .

Integrating the above inequality, we observe that

sup
≤t≤T

‖ω‖L ≤ ‖ω‖L +
∫ T



(‖∇�φ‖L‖∇φ‖L∞ + ‖∂θ‖L
) ≤ C. (.)

Similarly, testing (.) by |ω|s–ω and using (.), we derive

‖ω‖s–
Ls

d
dt

‖ω‖Ls ≤ (‖∇�φ‖Ls‖∇φ‖L∞ + ‖∂θ‖Ls
)‖ω‖s–

Ls ,

whence

d
dt

‖ω‖Ls ≤ ‖∇�φ‖Ls‖∇φ‖L∞ + ‖∂θ‖Ls .

Integrating the above inequality, one has

sup
≤t≤T

‖ω‖Ls ≤ ‖ω‖Ls +
∫ T



(‖∇�φ‖Ls‖∇φ‖L∞ + ‖∂θ‖Ls
)

dt. (.)

Taking s → +∞, we have

sup
≤t≤T

‖ω‖L∞ ≤ ‖ω‖L∞ +
∫ T



(‖∇�φ‖L∞‖∇φ‖L∞ + ‖∂θ‖L∞
)

dt. (.)
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Using Lemma . with f := –u · ∇θ , we have

‖θ‖
C([,T];B

– 
r

q,r )
+ ‖θ‖Lr (,T ;W ,q) + ‖θt‖Lr(,T ;Lq)

≤ C‖θ‖
B

– 
r

q,r
+ C‖u · ∇θ‖Lr(,T ;Lq)

≤ C + C‖u‖L∞(,T ;Lq)‖∇θ‖Lr (,T ;L∞) ≤ C + C‖∇θ‖Lr (,T ;L∞)

≤ C + Cε‖∇θ‖Lr(,T ;Lq) + C‖θ‖Lr (,T ;L),

which yields

‖θ‖
C([,T];B

– 
r

q,r )
+ ‖θ‖Lr (,T ;W ,q) + ‖θt‖Lr (,T ;Lq) ≤ C. (.)

Here we used the interpolation inequality

‖∇θ‖L∞ ≤ ε‖∇θ‖Lq + C‖θ‖L (.)

for any  < ε < .
It follows from (.) that

‖∇θ‖L(,T ;L∞) ≤ C. (.)

Testing (.) by �φ, using (.) and (.), we obtain that




d
dt

∫
(�φ) dx +

∫ (
�φ

) dx = –
∫

u · ∇φ�φ dx +
∫

�f ′(φ)�φ dx

≤ ‖u‖L‖∇φ‖L‖�φ‖L +
∥∥�f ′(φ)

∥∥
L‖�φ‖L

≤ C‖∇φ‖L‖�φ‖L + C
(‖φ‖

L∞‖�φ‖L + ‖φ‖L∞‖∇φ‖
L + ‖�φ‖L

)‖�φ‖L

≤ C‖∇φ‖L‖�φ‖L + C
(‖�φ‖L‖�φ‖ 


L + C‖�φ‖L + 

)‖�φ‖L

≤ 

‖�φ‖

L + C‖�φ‖
L + C‖�φ‖

L + C,

which implies

‖φ‖L∞(,T ;H) ≤ C, ‖φ‖L(,T ;H) ≤ C. (.)

Here we used the Gagliardo-Nirenberg inequalities

‖φ‖L∞ ≤ C‖φ‖ 

L‖�φ‖ 


L + C‖φ‖L , (.)

‖∇φ‖
L ≤ C‖∇φ‖L‖�φ‖L + C‖∇φ‖

L . (.)

It follows from (.), (.) and (.) that

‖ω‖L∞(,T ;Ls) ≤ C for any  ≤ s < ∞. (.)
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Testing (.) by ut and using (.), (.), (.) and (.), we have

‖ut‖L ≤ ‖u · ∇u‖L + ‖�φ∇φ‖L + ‖θ‖L

≤ ‖u‖L‖∇u‖L + ‖�φ‖L‖∇φ‖L∞ + ‖θ‖L

≤ C + C‖∇φ‖L∞ . (.)

Applying ∂t to (.), testing by φt , using (.), (.), and (.), we reach




d
dt

∫
φ

t dx +
∫

(�φt) dx =
∫

∂t f ′(φ)�φt dx –
∫

ut · ∇φφt dx

=
∫ (

φφt – φt
)
�φt dx +

∫
utφ∇φt dx

≤ C‖φt‖L‖�φt‖L + ‖ut‖L‖φ‖L∞‖∇φt‖L

≤ C‖φt‖L‖�φt‖L + C
(
 + ‖∇φ‖L∞

)‖∇φt‖L

≤ 

‖�φt‖

L + C‖φt‖
L + C + C‖∇φ‖

L∞ ,

which gives

‖φt‖L∞(,T ;L) ≤ C, ‖φt‖L(,T ;H) ≤ C. (.)

Here we used the inequality

‖∇φt‖L ≤ C‖�φt‖L

due to the inequality

‖v‖L ≤ C‖div v‖L + C‖ rot v‖L

for v = ∇φt and v · n =  on ∂�.
By the standard Hs-regularity theory of elliptic equations, it follows from (.), (.),

(.), (.) and (.) that

‖φ‖L∞(,T ;H) + ‖φ‖L(,T ;H) ≤ C, (.)

whence

‖∇�φ‖L(,T ;L∞) ≤ C. (.)

It follows from (.), (.) and (.) that

‖ω‖L∞(,T ;L∞) ≤ C. (.)

This completes the proof. �
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3 Proof of Theorem 1.2
This section is devoted to the proof of Theorem .. To prove the existence part, we only
need to show a priori estimates (.).

First, testing (.) by |θ |q–θ and using (.), we see that

‖θ‖L∞(,T ;Lq) ≤ ‖θ‖Lq . (.)

Next, we still have (.) and (.).
In the following proofs, we will use the Gagliardo-Nirenberg inequalities

‖∇φ‖L ≤ C‖∇φ‖ 

L‖φ‖ 


H , (.)

‖�φ‖L ≤ C‖∇φ‖ 

L‖φ‖ 


H . (.)

Denoting π̃ := π – f (φ), testing (.) by ∇π̃ – �u, using (.), (.), (.), (.) and (.),
we find that




d
dt

∫
|∇u| dx +

∫
|∇π̃ – �u| dx

=
∫

(�φ∇φ + θe – u · ∇u)(∇π̃ – �u) dx

≤ (‖�φ‖L‖∇φ‖L + ‖θ‖L + ‖u‖L‖∇u‖L
)‖∇π̃ – �u‖L

≤ C
(‖φ‖H +  + ‖u‖ 


L‖∇u‖ 


L · ‖∇u‖ 


L‖∇π̃ – �u‖ 


L

)‖∇π̃ – �u‖L

≤ 

‖∇π̃ – �u‖

L + C‖φ‖
H + C + C‖∇u‖

L ,

which gives

‖u‖L∞(,T ;H) + ‖u‖L(,T ;H) ≤ C. (.)

Here we used the H-estimates of the Stokes system

‖u‖H ≤ C‖∇π̃ – �u‖L . (.)

We still have (.).
It follows from (.), (.), (.) and (.) that

‖ut‖L(,T ;L) ≤ C. (.)

We still have (.).
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Using Lemma . with g := θe + �φ∇φ – u · ∇u and π̃ := π – f (φ), we have

‖u‖
C([,T];D– 

r ,r
Aq )

+ ‖u‖Lr (,T ;W ,q) + ‖ut‖Lr (,T ;Lq)

≤ C
(‖u‖

D– 
r ,r

Aq

+ ‖u · ∇u‖Lr (,T ;Lq) + ‖�φ · ∇φ‖Lr (,T ;Lq) + ‖θ‖Lr (,T ;Lq)
)

≤ C + C‖u · ∇u‖Lr (,T ;Lq)

≤ C + C‖u‖L∞(,T ;Lq)‖∇u‖Lr (,T ;L∞)

≤ C + C‖∇u‖Lr (,T ;L∞)

≤ C + Cε‖∇u‖Lr (,T ;Lq) + C‖u‖Lr (,T ;Lq),

which gives

‖u‖
C([,T];D– 

r ,r
Aq )

+ ‖u‖Lr (,T ;W ,q) + ‖ut‖Lr (,T ;Lq) ≤ C. (.)

Here we used inequality (.) for θ = u.
This completes the proof of (.).
Now we are in a position to prove the uniqueness part. To this end, let (ui,πi, θi,φi)

(i = , ) be two solutions to problem (.)-(.), set

δu := u – u, δπ := π – π, δθ := θ – θ,

δφ := φ – φ, π̃i = πi + f (φi), δπ̃ := π̃ – π̃

and define ξ satisfying

–�ξ = δθ ,

ξ =  on ∂� × (,∞).
(.)

Then (δu, δθ , δφ) satisfy

∂tδu + u · ∇δu + δu∇u + ∇δπ̃ – �δu = �φ∇δφ + �δφ∇φ + δθe, (.)

∂tδθ + u · ∇δθ + δu · ∇θ = , (.)

∂tδφ + u · ∇δφ + δu · ∇φ = –�δφ + �
(
f ′(φ) – f ′(φ)

)
. (.)

Testing (.) by δu and using (.) and (.), we derive




d
dt

∫
|δu| dx +

∫
|∇δu| dx

= –
∫

δu · ∇u · δu dx +
∫

�φ · ∇δφ · δu dx

+
∫

�δφ∇φ · δu dx –
∫

�ξeδu dx

≤ ‖∇u‖L‖δu‖
L + ‖�φ‖L∞‖∇δφ‖L‖δu‖L
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+ ‖∇φ‖L∞‖�δφ‖L‖δu‖L + ‖∇ξ‖L‖∇δu‖L

≤ C‖δu‖
L + C‖∇δφ‖L‖δu‖L + C‖�δφ‖L‖δu‖L + ‖∇ξ‖L‖∇δu‖L

≤ 

‖∇δu‖

L + C‖δu‖
L + C‖δφ‖

L +


‖�δφ‖

L + C‖∇ξ‖
L . (.)

Testing (.) by ξ and using (.) and (.), we obtain




d
dt

∫
|∇ξ | dx =

∫
u∇�ξ · ξ dx –

∫
δu∇θξ dx

= –
∫

u�ξ∇ξ dx +
∫

δuθ∇ξ dx

= –
∑

i,j

∫
∂jui∂iξ∂jξ dx +

∫
δuθ∇ξ dx

≤ C‖∇u‖L∞‖∇ξ‖
L + ‖θ‖Lq‖δu‖

L
q

q–
‖∇ξ‖L

≤ C‖∇u‖L∞‖∇ξ‖
L + C‖δu‖– 

q
L ‖∇δu‖


q
L‖∇ξ‖L

≤ 

‖∇δu‖

L + C‖∇u‖L∞‖∇ξ‖
L + C‖∇ξ‖

L + C‖δu‖
L . (.)

Testing (.) by δφ and using (.) and (.), we have




d
dt

∫
(δφ) dx +

∫
(�δφ) dx

= –
∫

δu · ∇φ · δφ dx +
∫ (

f ′(φ) – f ′(φ)
)
�δφ dx

≤ ‖∇φ‖L∞‖δu‖L‖δφ‖L + C‖δφ‖L‖�δφ‖L

≤ C‖δu‖
L + C‖δφ‖

L +


‖�δφ‖

L . (.)

Summing up (.), (.) and (.), and using the Gronwall inequality, we conclude
that

δu = , ξ =  and δφ = .

This completes the proof. �

4 Concluding remarks
The Cahn-Hilliard-Boussinesq system and a related system play an important role in the
mathematical study of multi-phase flows. The applications of these systems cover a very
wide range of physical objects, such as complicated phenomena in fluid mechanics involv-
ing phase transition, two-phase flow under shear through an order parameter formulation,
the spinodal decomposition of binary fluid in a Hele-Shaw cell, tumor growth, cell sorting,
and two phase flows in porous media.

In this paper, we have obtained the following global well-posedness results:
() If initial data φ ∈ H, u ∈ L, rot u ∈ L∞ and θ ∈ B– 

r
q,r with  < r < ∞ and

 < q < ∞, then problem (.)-(.) admits a unique global solution.
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() If initial data u ∈D– 
r ,r

Aq
∩ H

 with  < r < ∞,  < q < ∞ and θ ∈ Lq, φ ∈ H, then
problem (.)-(.) admits a unique global solution.

() If initial data u ∈ L, rot u ∈ L∞ and n, p ∈ B– 
r

q,r with  < r < ∞ and  < q < ∞
and n, p ≥  in � and D ∈ L∞(�), then problem (.)-(.) admits a unique
global solution.
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