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Abstract

This paper proves the global well-posedness for the 2D Cahn-Hilliard-Boussinesg and
a related system with partial viscous terms on bounded domains.
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1 Introduction
Let Q C R? be a bounded domain with smooth boundary 92 and v be the unit outward

normal vector to 9. First, we consider the following inviscid Cahn-Hilliard-Boussinesq

system [1]:
O+ u-Vu+Vr=uVeo + e, (1.1)
00 +u-V0 = A0, (1.2)
divu =0, (1.3)
dd+u-Vo=Apu, (1.4)
1
w=-2¢+f9), f@)=701-¢")", (15)

in Q x (0, 00) with the boundary and initial conditions

20 0 0

wov=0, 2_o 0 __\ onaex(000) (1.6)
av v dv

(M,9,¢)(,0) = (MO: 90r ¢0) in Q. (17)

Here u, 7, and 6 denote the velocity, pressure and temperature of the fluid, respectively.
¢ is the order parameter and u is a chemical potential and e; := (?)

Zhao [2] proved the global existence and uniqueness of smooth solutions to problem
(1.1)-(1.7) with smooth initial data ug,6, € H*> and ¢y € H°. Zhou and Fan [3] considered
the vanishing limit for a 2D Cahn-Hilliard-Navier-Stokes system with a slip boundary con-
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dition. We refer the readers to [2, 4, 5] and the references therein for more discussions in
this direction.

When ¢ = 0, the system reduces to the well-known Boussinesq system. Very recently,
Zhou and Li [6] proved the global well-posedness of the 2D Boussinesq system with zero
viscosity (1.1)-(1.3) and (1.6), (1.7) for rough initial data o € L2, rotuy € L> and 6, € B;,_r%
with 1 <r <00 and 2 < g < 0o, which improves the results in [7, 8] with smooth initial data
ug, 6y € H>. Several results for the related models can be found in [9, 10].

The first aim of this paper is to prove a similar result for problem (1.1)-(1.7), we will prove
the following.

_2
Theorem 1.1 Let ¢y € H*, uy € L?, rotug € L*® and 6, € B;,,’ withl<r<ooand2 <q<
00. Then problem (1.1)-(1.7) has a unique solution (u,0, ¢) satisfying

uel™®(0,T;L%),  rotueL™(0,T;L™),

0 c (0, TLBS ) NI (0, T; W), 6, 17(0, T;L7), (1.8)

¢ €L®(0, T;H*) NL*(0, T;H), ¢ €L®(0,T;L*) NL*(0, T; H)
forany fixed T > 0.

Next, we consider the following Cahn-Hilliard-Boussinesq system:

u+u-Vu+Vr — Au=uVe +6Oe, (1.9)
00 +u-Vo =0, (1.10)
divu =0, (1.11)
dp+u-Vo=Apu, (1.12)
1
w=-0¢+f@), f@):= (197" (113)
u=0, % = o =0 ondQ2 x (0,00), (1.14)
v dv
(M79! ¢)(¢0) = (u0)90¢¢0) in Q. (115)

When ¢ = 0, Zhou [11] showed the global well-posedness of the problem with rough
initial data

1-1, .
uoeDAq’rﬂHé with1<r<00,2<g<0coandf € H',

which improved the results in [12] for (u9,60) € H> x H? and in [13] for (u¢,6,) € H? x H'.
_1
Here the space D}qq”r denotes some fractional domain of the Stokes operator in L7 with
2 - % derivatives (see Danchin [14]); moreover, we have

-1,

_2
D, Bo, e, (1.16)

The second aim of this paper is to prove a similar result to problem (1.9)-(1.15), we will
prove the following.
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_1

Theorem 1.2 Let ug € D; "N H} with1<r<o00,2<q<o0and by €L, ¢y € H:. Then
q

problem (1.9)-(1.15) has a unique solution (u,0, ¢) satisfying

u € L>(0,T;Hy) NL*(0, T; H?),

ueC([o, T];Dij") NL' (0, T; W),  u,eL’(0,T;L7),

(1.17)
0 eL®(0,T;L7), ¢ eL™(0,T;H*)NL*(0,T;H),
¢ € L°(0, T;L*) N L*(0, T; H?)
for any fixed T > 0.

Finally, we consider the following model in electrohydrodynamics [15]:
u+u-Vu+Vr =m-p)\Vy, (1.18)
divu =0, (1.19)
on+u-Vn—div(Vn-—nVy) =0, (1.20)
ap+u-Vp—div(Vp + pVir) =0, (1.21)
—-AY =p-n+D(x) (1.22)

in Q x (0, 00) with the boundary and initial conditions
0 p 0
u-v= —n:—p:—w:O on 92 x (0, 00), (1.23)
v dv v
(u,n,p)(-,0) = (1o, o, po) in 2. (1.24)

Here n, p and ¢ denote the anion concentration, cation concentration and electric po-
tential, respectively. D(x) is the doping profile.

Equations (1.20), (1.21) and (1.22) appear in the context as the Nernst-Plank equation in
astronomy [16] and as the Van Roosbroeck system in semiconductor devices [17].

The third aim of this paper is to prove a similar result to problem (1.18)-(1.24), we will
prove the following.

_2
Theorem 1.3 Let ug € L?, rotug € L™ and ng, po € B;/ withl<r<ooand?2 < q<ooand
1o, po > 0in Qand D € L*®°(2). Then problem (1.18)-(1.24) has a unique solution (u, n, p, )

satisfying
uel®(0,T;L%),  rotueL™(0,T;L),

0 <npecC([o, T];Bj;%) NL'(0,T;W>7),  n,p, €L’ (0,T;L%), (1.25)

v e C([0, T W) NL'(0, T; W), 4, € L'(0,T; W)
for any fixed T > 0.

Since the proof of Theorem 1.3 is very similar to that of Theorem 1.1 and that of [6], we
omit the details here.

Page 3 of 12
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Now we recall the maximal regularity for the heat equation [18] and the Stokes system

[14], which are critical to the proof of our main theorems.

2

Lemma 1.1 ([18]) Assume that 6y € B;,_,’ and f € L"(0, T;L9) with 1 <r,q < co. Then the

problem
36— A6 =f,
¥=0 ondx(0,T), (1.26)

6(,0)=60 inQ,
has a unique solution 6 satisfying the following inequality for any fixed T > 0:

el _2 + 101l 0,r;w2ay + 16|70, 7519
(o, T)B, ") O.5W2) O1:L0

< C(||90||Bz_2 + |lf||L’(0,T;Lq)), (1.27)
q,r

with C:= C(r,q, ).

_1,
Lemma 1.2 ([14]) Assume that uy € Diq" and g € L'(0, T; L) with1 < r,q < 0o. Then the
problem

u—Au+Vm =g,
divu =0,

u=0 ondQ2x(0,T),
u(-,0)=uy inS,

(1.28)

has a unique solution (u, ) satisfying the following estimate for any fixed T > 0:

fla] 1, o, rwaay + luellro,mizey + IV llir o, 7524
c([o,T];D;q"r) LOLWE OTLD O1L0

< C(||Mo||D1,;,, + gl o,7:29))» (1.29)

Aq

with C := C(r,q, ).

2 Proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1. To prove the existence part, we only
need to show a priori estimates (1.8). The uniqueness can be proved by the standard energy
method of Yudovich [19], and thus we omit the details here.

Testing (1.2) by 8 and using (1.3), we see that

T
1617 + 2/ IVOI7, dt < [16]I72- (2.1)
0
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Testing (1.1) by u and (1.4) by p, respectively, summing up the resulting equations and
using (1.5), (1.3) and (2.1), we find that

S (|”|2+|V¢|2+2f(¢))dx+/lvu|2dx

2
= fGeszxS 1002 llullz2 < Cllullz2 < Cllullp, + C,

which gives

T
sup / (11l + [V P +£(9)) da + /0 / Vil drdt < C. (2.2)

0<t<1

Taking V to (1.5) and testing by VA¢, we infer that

T T T
/ /|VA¢>|2dxdt=—/ /Vu~VA¢>xdt—/ /V(¢—¢3)~VA¢dxdt
0 0 0
T T
:—/ /Vu,~VA¢dxdt—/ qu%VAqﬁdxdt
0 0
T T
—3/ /¢2(A¢)2dxdt—6/ /¢>|V¢|2A¢dxdt
0 0
T T
5—/ /Vu-VA¢dxdt—/ /V¢~VA¢dxdt
0 0
T
+C[ f|V¢|4dxdt
0
T T
5-/ /VM-VAqbdxdt—f /V¢~VA¢dxdt
0 0
T T
+C/ VI IV A2 dt+Cf IV}, dt
0 0
1 T 2 r 2
5—/ f|VA¢>| dxdt+C/ /|w| dxdt
2 0 0
T T T
+C/ /|V¢|2dxdt+C/ ||v¢||§2dt+cf IV, dt
0 0 0

1 )
<= IVA@|“dxdt + C,

2 Jo

which leads to

T
/ /|VA¢|2dxdt§C. (2.3)
0
Here we used the Gagliardo-Nirenberg inequality

3 1
IVolie < CIVOILIVASI L, + CIIVAI 2. (2.4)
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It follows from (2.2), (2.3), (1.6) and the H3-regularity of the Poisson equation that

T
/0 16112 dt < C. 25)

Denote the vorticity w := rotu := d1up — 9341 and a x b := a1b, — ayb; for vectors a :=
(a1,a2) and b := (by, by).
Applying rot to (1.1), we deduce that
oiw+u-Vo=-VAp x V¢ + 06. (2.6)
Testing (2.6) by w and using (1.3), we get
d
Ileleallwlle = [ (-VA¢ x V¢ + 010)wdx
<llwll2 (VAR I V@l + [8161122),
whence

d
@l = IVASI2IVElLe + 18612,

Integrating the above inequality, we observe that

T
sup [lollz2 < llwollz2 +/ (IVAQI IVl + [3:61,2) < C. 2.7)
0

0=<t<T

Similarly, testing (2.6) by |w|*"2w and using (1.3), we derive

a3 d _
”(UHSLSI%”U)”LS < (IVAQlIs V@l + 1010 1ls) 5=

whence

d
@l = IVARIL [Vl + 10105

Integrating the above inequality, one has

T
sup [|@l|zs < llwollzs +/ (IVAQ s IVl + [|816]l1s) dt. (2.8)
0

0<t<T

Taking s — +00, we have

T
sup |lwllzee < [lao |l +/ (IVAQl= IVl + 316]|1) dt. (2.9)
0

0<t<T
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Using Lemma 1.1 with f := - - VO, we have

o]l -2+ 10N o, w2ay + 10l 0,1529)
C([0,T];By,"

= Cllboll -2 + Cllu- VOro,1:29)

qr

< C+ Cllullzooo,1:00) I VO Lr(0,15200) < C + ClIVO | Lr(0,132)

< C+Ce|V*0|rro,r19) + ClIO 7 (0,1:02)»

which yields

el -2+ 10N ro,m;w2a) + 10l ro,1529) < C. (2.10)
c(o,T ;Bq,rr

Here we used the interpolation inequality
VOl < €l|V20la + Cl16] 2 (2.11)

forany O <e <1.
It follows from (2.10) that

VOl 10,0009 < C. (2.12)

Testing (1.4) by A2¢, using (2.2) and (2.7), we obtain that
1d
2dt

< el a VI ll APl 2 + [ AF ()] 21| A% ]2
< ClIVelallA*@li2 + C(I@ 117 1Al 2 + 1Dl VPIZs + [ Al 2) Al 12

/(A¢)2dx+/(A2¢)2dx:—/u-V¢A2¢dx+/Af'(¢)A2¢dx

1
< ClIVPlal DGz + C(IIAG 211 A1 15 + ClAGlI 12 +1) [ A%l 12

Lo o, 2 2 4
< §||A 72 + CllAGN;2 + CllAGI > + C,
which implies
&Nl L0 0, 7502) < C, léN20, 7504 < C. (2.13)

Here we used the Gagliardo-Nirenberg inequalities

3 1
gl < Cligll L1421 + Cligll 2, (2.14)
IVolI7: < CIVRl2 A8 + CIVAIZ. (2.15)

It follows from (2.8), (2.12) and (2.13) that

llollzo,r;s) < C forany 2 <s < oo. (2.16)
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Testing (1.1) by u; and using (1.3), (2.1), (2.13) and (2.16), we have

luellz < llu- Vulz + | A@V @l 2 + [16]]2
< llullalVulips + [1A@1 2Vl + 1101l 2

=C+ClIV|r=.

Applying 9; to (1.4), testing by ¢, using (1.3), (2.13), and (2.17), we reach

1d

T ¢>§dx+/(A¢,)2dx:/aLf/(cp)Aqs,dx—/u[.v¢>¢tdx

= / (3¢%¢: — ¢:) A dx + / u Ve, dx

= Cllell 2 1 Agellz2 + [luaell 2 1PNl oo IV el 2
< Clgell2 1 Adell2 + CL+ [Vl ) I Vel 2

=< %IIAdhlliz +Cligell72 + C + ClIVO | 7w,
which gives
l@ell Loogo,mr2) < C, B¢l 20,302) < C.
Here we used the inequality
Voell2 < CllAdll 2
due to the inequality
[vilz2 < Clldivv]| ;2 + Cllrotv]| 2

forv=V¢,andv-n=0on Q.

Page 8 of 12

(2.17)

(2.18)

By the standard H*-regularity theory of elliptic equations, it follows from (1.4), (1.5),

(2.13), (2.16) and (2.18) that
&Nl oo 0, 7505y + NN 200, 715) < C,
whence
VAl 2(0,1;000) < C.
It follows from (2.9), (2.12) and (2.20) that
lwllzoo,15r00) < C.

This completes the proof.

(2.19)

(2.20)

(2.21)
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3 Proof of Theorem 1.2
This section is devoted to the proof of Theorem 1.2. To prove the existence part, we only
need to show a priori estimates (1.17).

First, testing (1.10) by |6|7720 and using (1.11), we see that

10100, 7529y < 160l za. (3.1

Next, we still have (2.2) and (2.5).

In the following proofs, we will use the Gagliardo-Nirenberg inequalities

3 1

IVells < CIVPI 19l (32)
13

[AGls < CIVOI L lI@ s (3.3)

Denoting 7 := 7w — f(¢), testing (1.9) by V& — Au, using (3.2), (3.3), (2.2), (2.5) and (3.1),
we find that

1d

——fqulzdx+/|V7~r—Au|2dx
2 dt

= /(A¢V¢ +0ey—u-Vu)(Va — Au)dx
< (I1AGlIVPla + 1012 + el o | Vetllpa) VA — Al 2
1 1 1 - 1 -
< C(||¢||1-13 +1+ ||M||L22||VM||L22 : ||VM||L22||V7T - AM||L22)||V7T — Aull2

< %IIVﬁ — Aull7, + Cllgl3s + C+ Cl| Vaullpa,
which gives
l2tll oo o, ;e + N1l 20, 732) < C- (3.4)
Here we used the H2-estimates of the Stokes system
ol < CIVA = Aull 2. (3.5)

We still have (2.13).
It follows from (1.9), (3.1), (3.4) and (2.13) that

lletell 20,722y < C. (3.6)

We still have (2.19).
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Using Lemma 1.2 with g := 0ey; + A¢pVe —u - Vu and 7 := 7 — f(¢), we have

|zl _v, + el pro, w2y + e llzro,1iza
co.mmy, ) L@ Tw=) O

< C(||M0||D1,;,, + it - Vullpro,riza) + 1 A¢ - Vo llro,rizay + 101lr0,7:29))
Agq

<C+Cllu-Vullro,rL)
< C+ Cllullrooo, ;e I Vutl (0, Tiz00)
< C+C||Vullgro,1:00)

< C + Ce||V2ullrro,r.29) + Cllullzro,7.09),
which gives

oyl mwzay + el < C. (3.7)

[lael]
clo1D,,

Here we used inequality (2.11) for 6 = u.

This completes the proof of (1.17).

Now we are in a position to prove the uniqueness part. To this end, let (u;,7;,6;, ¢;)
(i =1,2) be two solutions to problem (1.9)-(1.15), set

Su = U, — Uy, O = T, — T, 80 := 01—92,

3¢ = ¢1 — ¢, 7 = + f (), 0T := T — Ty

and define £ satisfying

—AE =50,
(3.8)
£=0 ondQ x (0,00).
Then (8u, 86, 8¢) satisfy
88U + 1y - Vou +8uVuy + V87 — Adu= Ad Vg + ASpV ¢y + 86e,, (3.9)
9,80 + 1y - V80 + 8u - Vo, =0, (3.10)
08¢ +uy - V8P +8u - Vepy = —A28¢) + A(f'(¢1) - f'(#2)). (3.11)

Testing (3.9) by u and using (1.17) and (1.11), we derive

1d
——/|8u|2dx+/|V8u|2dx
2 dt

:—/8u~Vu2~8udx+/A¢1~V8¢~8udx
+/A8¢V¢2-3udx—/AEe23udx

< IVl [8ul7s + 1A llzoe | VI 21| Suall 2
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+[IVallze | Ad@ 2 18ull 2 + IVE N 2 VEull 2

< Cllsulls + ClIVEPll218ull2 + CllASP | 2 118ull 2 + | VE 2 [ VSull 2

<l||V5uII2 + Clisull}, + Cllégl; +l||A<3<75II2 + ClIVE |1} (312)
-8 12 12 12 8 12 2° .

Testing (3.10) by & and using (1.17) and (1.11), we obtain

2dt/| E1*dx = /mVAS Edx— /&tV@zig‘dx

—fulASVédx+/6u92V§dx

:—Z/ajuuaisa,gdmfweﬂs dx
ij
< Cl\Vaullz< V&7 + 1624 151 2 V& IlL2

_3
<CIIVM1||Loo||V§||Lz+C||5u|| qIIVMII 2 [IVEIl2

< gIIV&tIIiz + IVl V&I + CIVEND + Cllsullf.  (313)

Testing (3.11) by ¢ and using (1.17) and (1.11), we have

2 2
2dt/(8¢) dx+/(A5¢) dx

fau Ve, - 6¢dx+/(f ®1) — f'($2)) Ad¢ dx
< IV@alizelldull2[18¢1lz2 + Clld@l 2| Adp Il

1
< Cllsull?, + Cllsg|?, + §||A5¢||12‘2' (3.14)

Summing up (3.12), (3.13) and (3.14), and using the Gronwall inequality, we conclude
that

du=0, £=0 and 8¢ =0.
This completes the proof. d

4 Concluding remarks
The Cahn-Hilliard-Boussinesq system and a related system play an important role in the
mathematical study of multi-phase flows. The applications of these systems cover a very
wide range of physical objects, such as complicated phenomena in fluid mechanics involv-
ing phase transition, two-phase flow under shear through an order parameter formulation,
the spinodal decomposition of binary fluid in a Hele-Shaw cell, tumor growth, cell sorting,
and two phase flows in porous media.

In this paper, we have obtained the following global well- posedness results:

(1) Ifinitial data ¢g € H*, uy € L?, rotuy € L™ and 6, € Bq, with 1 <7 < 00 and

2 < g < 00, then problem (1.1)-(1.7) admits a unique global solution.
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_1
(2) Ifiinitial data ug € D;q"r NHj with1<r<o0,2<g<ooand by €L, ¢y € H, then
problem (1.9)-(1.15) admits a unique global solution.
_2
(3) Ifinitial data uy € L?, rotug € L™ and ng, po € B;r’ withl<r<ooand2<g<oo
and ng,po > 0 in Q and D € L*°(Q), then problem (1.18)-(1.24) admits a unique
global solution.
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