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1 Introduction and results

In this paper, we consider the Schrodinger differential operator
L=-A+V(x) onR"n>3,

where V() is a non-negative potential belonging to the reverse Holder class RH,, for g >
n/2.

A non-negative locally L, integrable function V'(x) on R” is said to belong to RH,, 1 <
q < 00, if there exists C > 0 such that the reverse Holder inequality

1 1/q C
B e Vo) 11
(o L ro9) < (G [ vorw) W)

holds for every x € R” and 0 < r < 0o, where B(x, r) denotes the ball centered at x with

radius r. In particular, if V' is a non-negative polynomial, then V' € RH,. Obviously,
RH,, C RH,,if q1 < q». It is worth pointing out that the RH, class is such that, if V € RH,,
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for some g > 1, then there exists an € > 0, which depends only # and the constant C in (1.1),
such that V € RH .. Throughout this paper, we always assume that 0 # V € RH,5.
For x € R”, the function p(x) is defined by

1 1
ox):= :sup{r: 2/ V(y)dyfl}.
mV(x) >0 - B(x,r)

Obviously, 0 < my (x) < 0o if V # 0. In particular, my (x) = 1 when V = 1and my (x) ~ 1+ ||
when V(x) = |x|2.

According to [1], the new BMO space BMOy(p) with 6 > 0 is defined as a set of all locally
integrable functions b such that

1 0
b(y)-bgldy<C _r
|B(x’ I")| /B(x,r)| ()/) B| y = (1 + ( )>

forallx € R” and r > 0, where bg = ;7‘ fB b(y) dy. A norm for b € BMOy(p), denoted by [b]y,
is given by the infimum of the constants in the inequality above. Clearly, BMO C BMOy(p).

The classical Morrey spaces were originally introduced by Morrey in [2] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the reader to [2—4]. The
classical version of Morrey spaces is equipped with the norm

Ilfllas,,, == sup supr- ’ Iz, (B
xeR” r>0

where 0 < A <nand 1 < p < co. The generalized Morrey spaces are defined with r* re-
placed by a general non-negative function ¢(x,r) satisfying some assumptions (see, for
example, [5-8]).

The vanishing Morrey space VM,,, in its classical version was introduced in [9], where
applications to PDE were considered. We also refer to [10] and [11] for some properties of
such spaces. This is a subspace of functions in M, (R"), which satisfy the condition

A
lim  sup £ 2|fllL,@Bwn = 0.
=0 xeR1,0<t<r
We now present the definition of generalized Morrey spaces (including weak version)
associated with Schrodinger operator, which introduced by second author in [12].

Definition 1.1 Let ¢(x,r) be a positive measurable function on R” x (0,00), 1 < p < 00,
a > 0,and V € RHy, g > 1. We denote by MZ,’;/ = Mz;(;/ (R™) the generalized Morrey space

associated with Schrodinger operator, the space of all functions f € L; (R”) with finite

10c
norm

Iy = sup (1+—) 06 If i

x€R?,r>0 ( )

Also WM/ V- = WMy, V(R”) we denote the weak generalized Morrey space associated with
Schrodmger operator, the space of all functions f € WL} (R") with

o
Wl wageer = sup (1 + —) @@, 1) P Nl w8y < 00
x€R",r>0 ( )



Akbulut et al. Boundary Value Problems (2017) 2017:121 Page 3 of 16

Remark 1.1
(i) When o =0, and ¢(x,r) = r*=-2/p, M;‘:(X(R”) is the classical Morrey space L, , (R")

introduced by Morrey in [2].

(i) When @(x,r) = 4", MZ,'(/‘,/ (R™) is the Morrey space associated with Schrodinger
operator LZ")Y (R") studied by Tang and Dong in [13].

(iii) When a =0, M;:;’ (R™) is the generalized Morrey space M, ,(R") introduced by
Mizuhara and Nakai in [7, 8].

(iv) The generalized Morrey space associated with Schrodinger operator M;,’;/ (R") was
introduced by the second author in [12].

For brevity, in the sequel we use the notations

o
r
AV (Fim,r)i= 1+ — ) r"Po(x, 7)™
o (1) ( p(x)) 0 P 1 ey ot

and
W,a,V r ¢ -nlp -1
Q|'<I>,<p (f; X, }") =1+ p(x) r go(x, }") ”f” WLp(B(x,r))-

Definition 1.2 The vanishing generalized Morrey space VM;;V‘)/ (R") associated with
Schrédinger operator is defined as the spaces of functions f € MZ:;,/ (R™) such that

lim sup 2% (f;x,r) = 0. (1.2)

r—>0  crn

The vanishing weak generalized Morrey space VWM (R") associated with
Schrodinger operator is defined as the spaces of functions f € WM;‘:X (R") such that

lim sup QLK/;“’V(f;x, r)=0.
r=>0xern

The vanishing spaces VM;_’;/ (R™) and VWMZ}';,/ (R™) are Banach spaces with respect to

the norm

W llvagzy = W llymy = sup Ap(fa, 1),

xeR”,r>0

v = v=sup A%V (fix,r
|V||VWM;.<X |V’||WM;.«X xERnE>0 W,p,(p(f’ ) );

respectively.
We define the Marcinkiewicz integral associated with the Schrodinger operator L by

00 2 d 1/2
nir - ( [ 5)

where I(].L(x,y) = KjL (x,9)|x — | and KjL(x,y) is the kernel ofR/L = a%L‘”Z,j =1,...,n.

Let b be alocally integrable function, the commutator generalized by M,L and b be defined

by
[e%) dt 1/2
b= (| 5)

/I Ko
x—y|<t

2

f K (b - b)) 0 dy
x—y|<t
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Let KjA(x, y) denote the kernel of the classical Riesz transform R; = %A‘l/z. When

V =0, then KjA(x, y) = I(jA (x)lx -yl = % Obviously, /,L]«Af (x) is the classical
Marcinkiewicz integral. Therefore, it will be an interesting thing to study the property
of M,L

The area of Marcinkiewicz integral associated with the Schrodinger operator has been
under intensive research recently. Gao and Tang in [14] showed that ,uf is bounded on
L,(R") for 1 < p < 00, and bounded from L;(IR") to weak WL;(R"). Chen and Zou in [15]
proved that the commutator [b, uf] is bounded on L,(R") for 1 < p < oo, where b belongs
to BMOy(p). In [16—18], Akbulut et al. obtained the boundedness of ,ujL and [b, [,L]-L] on the
generalized Morrey space M,,,, Chen and Jin in [19] showed the boundedness of /,L/L and
[b, ,uI.L] on the Morrey spaces LZ,’AV associated with Schrodinger operator.

In this paper, we study the boundedness of the Marcinkiewicz integral operators leL on
generalized Morrey space M;‘"(/‘,/ (R™) associated with Schrodinger operator and vanishing
generalized Morrey space VM;”X (R") associated with Schrodinger operator. When b be-
longs to the new BMO function spaces BMOy(p), we also show that [, ,ujL] is bounded on
MZ;;’ (R™).

Definition 1.3 We denote by QZ'V the set of all positive measurable functions ¢ on R” x
(0, 00) such that, for all ¢ > 0,

r\Y rr r \“ a
sup |[{ 1+ — <oo, and sup||l+—— ) @(x,7) < 00,
xeR" px) ) @) Loo(£,00) xeR" p(x) Loo(0,2)
respectively.

For the non-triviality of the space Mg,’(/‘,/ (R") we always assume that ¢ € QZ’V. Our main
results are as follows.

Theorem 1.1 Let V € RH,pp, > 0,1 <p<ooand ¢1,¢; € QZ'V satisfy the condition

® esss , P odt
/ upt<s<oo (01(96 S)S 7 < o (x’ 7‘), (13)
r

tp

where ¢y does not depend on x and r. Then the operator ;LjL is bounded from M*) to M%Y

PoL P
% )
for p>1and from My, to WMiw‘; Moreover, for p > 1

127 Ny, = CU gy
and forp =1
“MJLf” WM%}’W‘Q = C”f”Mi,w\;.

Theorem 1.2 Let V € RH,,5, b € BMOy(p), 1 < p < 00, and ¢1,¢; € QI‘;"V satisfy the con-
dition

o0 ¢\ essinf;. , v odt
/ (1 +1In —) S inficseco 106,53 e < copa(x,7), (1.4)
P r

tp
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where co does not depend on x and r. Then the operator [b, uf] is bounded from M*) to

P91
o,V
M o and

106153 g = IOV I gy

Definition 1.4 We denote by QZ:IV the set of all positive measurable functions ¢ on R” x
(0, 00) such that

inf inf| 1+ T ¢(x,r) >0, forsomesd >0, (1.5)
x€R™ r>4 p(x)

and

im(1s——) % o
im(1+— =
r—0 px) ) ox,r)

For the non-triviality of the space VM;:;/ (R™) we always assume that ¢ € QZ:l‘/ .

Theorem 1.3 Let V € RHypp, @ > 0,1 < p <00 and ¢, ¢, € Qzlv satisfy the condition

o0 dt
Cs = sup ¢1(x, ) — < 00
5 xeRr ¢

forevery § >0, and
o dt
/ @1, t) ik Copa(x, 1), (1.6)

where Cy does not depend on x € R" and r > 0. Then the operator ,uf is bounded from

o,V o,V a,V o,V
VM, to VMy . forp>1and from VM, to VWM, .

Theorem 1.4 Let V € RH 5, b € BMOy(p), 1 < p < 00, and ¢, ¢, € Q;:l‘/ satisfy the con-
dition

/ (1 +In ;)401(96, t) ? < copa(x, 1), (L7)

where ¢y does not depend on x and r,

fim 0 (L8)
0 infycpr @2 (%,7) .
and
o0 dt
cs= | (1+]In¢]) sup g1(x,£) — < 00 (1.9)
k) xeR” z

forevery § > 0.

Then the operator [b, ;Lf] is bounded from VM;;‘;;(1 to VM;"’;/Z.
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In this paper, we shall use the symbol A < B to indicate that there exists a universal
positive constant C, independent of all important parameters, such that A < CB. A~ B
means that A < Band B < A.

2 Some preliminaries
We would like to recall the important properties concerning the function p(x).

Lemma 2.1 ([20]) Let V € RH, . For the associated function p there exist C and ko > 1

such that
2
—y\ o 9\ T+
C o) (1 Ly ') < p() < Cp(x)(l Sy ') ° 1)
0(x) p(x)
forall x,y e R".
Lemma 2.2 Let x € B(xo,r). Then for k € N we have
1 < 1
2k N~ (4 25 NIk +1)
(1+ p(x)) (1+ p(Xo)) o
Proof By (2.1) we get
lk < lk
1+ %)N 1+ ﬁ)]\(
plxo)(1+ 520 Fo+1
— koN
—X0 +1
< (1+ P(xo)) 0 < 1
2k ~ 2k ’
1 p(x(r)))N 1+ W;))N/(koﬂ) O

We give some inequalities about the new BMO space BMOy(p).

Lemma 2.3 ([1]) Let1 <s<o00.Ifb € BMOy(p), then

1 s 1/s . o
(E/B‘b@)‘bB’ dy) S[b]9<1+m)

forall B=B(x,r),withx € R" andr > 0, where 0’ = (ko +1)0 and k is the constant appearing
in (2.1).

Lemma 2.4 ([1]) Let1 <s< 00, b€ BMOy(p), and B = B(x,r). Then

1 s Vs 2kr 0’
(% /2k3|b(y)-b3| dy) < [b]9k<1+ M)

forall k € N, with 0" as in Lemma 2.3.

The following results give the estimates of the kernel of ,ujL the boundedness of pch and

their commutators on L,,.
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Lemma 2.5 ([20]) IfV € RH,, then, for every N, there exists a constant C such that

o 1

: (2.2)
(1+ ZHW =y

K} (x,9)| <

Lemma 2.6 ([16]) Let V € RH,». Then

”“iL(f)”Lp(Rn) < Cllfllz, @

holds for 1 < p < 00, and

HMIL(f)” WL RR) = CIlf 2y wny.

Lemma 2.7 ([15]) Let V € RH 3,1 < p < 00 and b € BMOy(p). Then

L
I[B, 17 1) ||Lp(Rn) < CIDlollf Iz, n)-
Finally, we recall a relationship between essential supremum and essential infimum.

Lemma 2.8 ([21]) Letf be a real-valued non-negative function and measurable on E. Then

-1 1
f =
(csptf @) =essp 75

Lemma2.9 Let ¢(x,r) be a positive measurable function on R" x (0,00),1 <p <00, > 0,
and V € RH,;, g > 1.
G If

n

r \* rer
sup |1+ — =00 forsomet >0 and for all x € R”, (2.3)
t<r<I<)>o( p(x)) P(x,7) f f

then MZ‘,’X (R") = ©, where O is the set of all functions equivalent to 0 on R”.
(i) 1f

sup (1 + ﬂ) o, r) =00  forsomet >0 and for all x € R", (2.4)
O<r<t

then M) (R") = ©

Proof (i) Let (2.3) be satisfied and f be not equivalent to zero. Then sup, g [|f ||z, Bx) > 0,
hence

o
r o
I/l g = sup sup ( —> @) |If L)

xeR” t<r<co p(x)

xeR” t<r<oo

o
> sup [|fllz, B Sup (1 + ﬂ) o).

Therefore ||f| jov = 0.
124
(ii) Let f € MZ‘;X (R™) and (2.4) be satisfied. Then there are two possibilities:
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Case L: supg,,(1 + 55) ¢, )" = 0o for all £ > 0.

Case 2: supg,, (1 + 5) @l 7 r)™! < oo for some ¢ € (0, 7).

p(x
For Case 1, by the Lebesgue differentiation theorem, for almost all x € R”,

m ”fXer)”Lp lf( )| (2.5)

r—>0+ ”XB (%,7) ”Lp

We claim that f(x) = 0 for all those x. Indeed, fix x and assume |f(x)| > 0. Then by (2.5)
there exists £y > 0 such that

1
_n g
P f Ly Ben = 27 v [f()]

for all 0 < r < ¢y, where v, is the volume of the unit ball in R”. Consequently,

r \“ _n
|Lf||MOt v = Ssup 1+ — (0(?6, r)ilr p ”f”L (B(x,7))
[y /a4

O<r<ty :O(x)

>2° vﬁVx)’ sup <1+ e )>ago(x, .

O<r<ty

Hence |[f||M;,;/ =00, so f ¢ M, ,(R") and we arrive at a contradiction.

Note that Case 2 implies that sup,,.. (1 + 575)¢ (%, )™ = 00, hence

o o
sup (1 + L) @(x,r)'r P > sup (1 + L) o, r) e
S<r<00 ,O(x) t<r<t /O(X)

o
> 1T 7 sup (1 + —) olx, Nt =o00

I<r<t ( )

which is the case in (i). g

3 Proof of Theorem 1.1
We first prove the following conclusions.

Theorem 3.1 Let V € RH 2. If1 < p < 00, then the inequality

oo
O, gy S5 [ Loy 2t
J Lp(B(xo,r)) ~ o ; z ¢

holds for any f € LlOC(R"). Moreover, for p =1 the inequality
oo
L w7 W lla@en dt
”“1’ () ” WL1(B(xo,r) S /2r e i
holds for any f € L} (R").

Proof For arbitrary xy € R”, set B = B(xo,7) and AB = B(x, Ar) for any A > 0. We write f as
f =A +fo, where fi(y) =f(¥) XB(xo,2)(¥) and xp(x,,2r) denotes the characteristic function of
B(xg,2r). Then

“/‘jL(f)“Lp(B(xo,r)) = ”“fL(ﬂ)”Lp(B(xo,r)) + ||’LL]L(f2)”Lp(B(xO,r))'
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Since f; € L,(R") and from the boundedness of ,u,}L on L,(R"), p > 1, it follows that

“/‘J‘L(fl) “LP(B(xo,r)) S Wil 3oy

n © dt
S P fllz, Beo2r) / T
tr

2r

1 [ llz,Beon) dt
Srh / W heyimizosn dt. (3.1)
2r tp t

To estimate ||Mf(fé)||Lp(B(x0,2r)) obverse that x € B, y € (2B)¢ implies %|xo -y <|x-y| <
%|x0 —y|. Then by (2.2) and Minkowski’s inequality

FON (> ar\"”
Sup  f4; )(x)</ — =
x€B(x0,r) ! (fZ (2B)¢ [x0 —y|n71 [0 -y £

2k+1 / lf(y)| dy

kl

By Holder’s inequality we get

00 ok+1
qn
sup 11/ (H)®) S Y Il kg (2571r) / dt
x€B(xq,r) k=1 2r
ok+1, ”f”L d
(B x0,t)) t
< I At e
2 N T
< /°° M dt. (3.2)
2r tr t
Then
[ llL, (oo dt
L < yp e Akl il .
DIl e 3
holds for 1 < p < 00. Therefore, by (3.1) and (3.3) we get
1 (% Wl dt
L <yp O 3.4
% (f)”Lp(B(xo,r» ~ /Zr 7 t oy

holds for 1 < p < co.
When p =1, from the boundedness of /L}L from L;(R") to WL;(R"), we get

L < e [T W lL@e.w dt
|5 s gy S W Maeto.m S 7 e

From (3.3) we have

Nz B,y Bt
”/“LIL(fZ)” WL1(B(x0,7)) = ”Mf(ﬁ)”Ll(B(on)) S /2r 27”960 7
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Then

© dt
”/’LL(f)H < ”f”Ll(B(xo,t)) =
J WL1(B(xo,r) ~ oy th t

Remark 3.1 Note that another proof of Theorem 3.1 is given in [16].

Proof of Theorem 1.1 From Lemma 2.8, we have

1

— = esssup

E—
essinfyseco @1(X,8)sP  t<s<oo @y (x,5)sP

Note the fact that ||f |z, 5wo,») is @ nondecreasing function of ¢, and f € M;"’(X , then

(1 + p(;o))a ”f”Lp(B(xo,t)) < esssu (1 + p(io))a ”f”Lp(B(xo,t))

n n
essinfy .00 @1 (%, 5)sP £<8<00 @1(x, s)sP

A+ o) W B0

)
< sup E < llypev
0<s<00 (pl(x,s)sﬂ Pl

Since « > 0, and (¢, ) satisfies the condition (1.3), then

/°° 1Lz, Beo.0) dt
2

, tr ¢

) /‘°° 1+ p(io))aﬂflle(B(xo,t)) essinf.s oo 1 (%, 5)s7 dt
2,

n n
r essinfy.oo @1 (%, 5)s? L+ )t t

n
/  essinfy g0 1(x, 5)s? dt
2

¢ 2 t
d @+ ﬂ(xo))atp

S ”.f”Mg:(le

r \% [ essinf., X, P dt
< ”f”Mor,V 1+ / t<s oongﬂl( ) at
pe1 ,O(JC()) r tr 1

Page 10 of 16

S WLy (1 ' @) @ali0,7) (3.5)

Then by Theorem 3.1 we have

”“f(f) HM“’V

Py2

o
r “1_-nlp|,,L
S up (1 * P(X)> #260,7) " anM/ () ”Lp(B(xo,r))

x0€R”,r>0
a %)
r W1l By dt
< sup (1+—) Nl B
x0€R”,r>0 14 (x) 2r tPT t
< .
~ Hf”Mg:Vyl

Let p = 1. Similar to (3.5) we get

00 —a
Iz, Bixo.c)) At ( r )
——= — Sl ev {1+ —— ) @2(x0,7).
/2r " t 4 Mgy o (x0)
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From Theorem 3.1 we have

r\* 1
145 vy S r>o(l ' @) @220 | OO iy

r \* *© dt
< sup <1+ —) wz(xo,r)_lf —W”Ll(f(xo’t)) —
2

x0€R™r>0 r Lty l
S ”f”MOf)V . g
Lop

4 Proof of Theorem 1.2

Similar to the proof of Theorem 1.1, it suffices to prove the following result.

Theorem 4.1 Let V € RH 2, b € BMOy(p). If 1 < p < 00, then the inequality

n [ t\ W Ny B0 dt
b, ut <bp/11—7‘”n'— 41
1 < 61 [~ (1007 ) 000 G (1)
holds for any f € LY (R").
Proof We write f as f = fi + fo, where fi(¥) = f(¥) XB(x,2r)(¥). Then
| (B, 17](F) “Lp(B(xo,r)) =|[e. “ﬂ(ﬂ)”LP(B(xo,r)) + [ I'LI'L](fz)”Lp(B(xo,r))'
From the boundedness of [b, /,L/«L] on L,(R") and (3.1) we get
{6, 1471 (H) HLP(B(,CO,,)) S [6lof llz, Bexo,2r)
n o0 X dt
Stplyrs [ Vatpon 2t
2r tp L
n o t X0 dt
< [Blors / (1 +1n_>—”f”LP‘f( o 2 (4.2)
2r r tﬁ t

We now turn to deal with the term || [, /Lf](fg)” L,(B(xo.)- For any given x € B(xo, 2r) we

2 dt 1/2
3

have

bl - ([~

< [b) = baa |- () @) + 1 ((b - bas)f) ().

/| _ K@ b6 = b0))f ) dy
x—y| <t

By (2.2), Lemma 2.2 and (3.2) we have

oS 1/2
sop i) < [ SO ([ )
x€B(xq,r) (2B)¢ (1 + T;;)N |x0 _.y| lxo -y t

1 = n
S arZy > (24 f)| dy
k=1

e ok+1p

< 1 /°° W llz, Berot) dt
~ (1+%)N/(ko+1) 9r t% t
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Then by Lemma 2.3, and taking N > (ko + 1)0 we get

2r \INED oo £ B dt
[ () = b26) 1 (), 5 x0,>~[b10“’( (xo)) /2 B a——

tr t
n [ t ) dt
,S[b]grl’/ (1+1n-)w—. (4.3)
2r r tr 1

Finally, let us estimate ||/L] ((b = b2g)f2) 1, (Bxo,r))- BY (2.2), Lemma 2.2 and (3.2) we have

1 |b(y)—b23|1f(y>|</°° ﬂ)”
|

B (1+ @)N lxo — y" 1

U (B~ b)) @) < /(

3
oyl T

< b b 4
~ k; (Zkr 1+ for) N / i (y) ZB|V(Y)| Y
: Z (Zkf 2k )N/ ko+1) /k+13|b@) - b23| Lf(y)| dy.

Note that

A Y
[ oo =ballroldr < ([ 15006 ) 11

n

2kr \” P
§[b]9/<<1+p(xo)> (2°r)» W Nz, g 261

Then

k

kr )N/(k 0+1
pxo

sup  u; ((b bB)f2 (x) < [b]g Z v (2";’)7 I[fIILp(B(xO'Zku,))

x€B(x0,r) k=1 (1 + =
i n
k-1

< [blo Zk(Z r)? W Nz, Bexo 2611

k+1
i 2 "f“Lp B(xg,t)) dt

GZ/f

Ky tP
Since 2Ky < ¢ < 281y k ~1In L. Thus

X\l Beeny dt
sup 1 ((b—bp)f) () <[b02k/ Wheytaimn ot
2

x€B(x0,r) Py Ky tp t

k+1
2 t ”f”Lp B(xg,t)) dt

< [bls Z/ —7

” t dt
5“’]8/ (1+1n—)w_'
2r r tp t

Then

n [ £\ Iz, B0 dt
i (6 5.005) S Wl [ (1m0 ) iz €1 4)

2 tr
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Combining (4.2), (4.3) and (4.4), the proof of Theorem 4.1 is completed. O
Remark 4.1 Note that, in the case b € BMO, Theorem 4.1 was proved in [18].

Proof of Theorem 1.2 Since f € My (;/1 and (g1, ¢,) satisfies the condition (1.4), by (3.5) we

f°°(1 - ) Ul m00) dt
2r r tl’ t

~ /°° ( to))a”f”Lp(B(xo,t)) <1 ol t) essinfy .00 @1 (%, s)s!ﬂ’ dt
2r  €ss inft<s<o<> 1 (x: S)Sg ¢

r

o £ ess infks<oo o1 (x, s)s!ﬂﬂ dt
1+In- —

r (1 + oo )"’tﬂ 4

< ”f”Ma L B /OO 1+ lnE css inft<s<oc:l§01(x,s)sz7 ﬂ
P ,O(xo) r r 5 ¢

S WLy (1 . @) P2(i0,7)

have

S Wiy, [

2r

Then from Theorem 4.1 we get
16,1160

r * ~1.-n/
sxoesﬂgnr,)r>0(1+ %) ¢2(x0:7") lr le“ [b’ /’L]L](f) “Lp(B(xO:V))

dt
Sl sup (1+ r )%(xo,r) / ( )ufan wny dt
x0€R”,r>0 (x o ;

SOl gy O

5 Proof of Theorem 1.3
The statement is derived from the estimate (3.4). The estimation of the norm of the oper-
ator, that is, the boundedness in the non-vanishing space, immediately follows from The-

orem 1.1. So we only have to prove that

lir% sup Ql;‘q‘,/l(f;x,r)zo = ]11‘[(1) sup Ql;‘q‘,/z( L(f); x r):O (5.1)
=0 xeRn
and
hm sup Ay wl(f % =0 = hm sup leg’v(uf(f);x, r) =0. (5.2)
0 xR 0 xeRrr

To show that sup,cgs(l + 575)¢2(x, r)r ”/pll,u, ()L, B < € for small r, we split the
right-hand side of (3.4):

( + ﬂ) (02(96, r)—lr—n/p ”M/L(f) ”Lp(B(x,r)) 5 C[IS() (x, r) +]50 (x’ I’)], (53)
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where 8y > 0 (we may take § > 1), and

i D [
I x,rzzif £ P fllL, e dt
0 (/)2(95) I") . p(B(x,t))
and
1+ L) poo
(%) -2
Jso (,7) = — 22— £ 7NNz, (B dt
0 (02(96,7’) 80 v

and it is supposed that r < 9. We use the fact that f VMZ}% (R™) and choose any fixed
8o > 0 such that

&
<
2CCy

xeR”

t o
sup 1+ — x,8) 1P
p( ,o(x)) o1(x, £) Wz, B0

where C and Cj are constants from (1.6) and (5.3). This allows us to estimate the first term
uniformly in r € (0, §y):

sup Cls,(x,7) < %, 0 <r<dy.

xeR"

The estimation of the second term now can be made by the choice of sufficiently small
r > 0. Indeed, thanks to the condition (1.5) we have
"

< P "
]50 (x) r) = Co (pl(x, r) ”_f”VMP’rq‘;/l’

where ¢, is the constant from (1.2). Then, by (1.5) it suffices to choose r small enough so
that

U+
sup o) < .
xeR" P2 (x’ V) 2600 ”f” VMZ:;/I

which completes the proof of (5.1).
The proof of (5.2) is similar to the proof of (5.1).

6 Proof of Theorem 1.4
The norm inequality is provided by Theorem 1.2, therefore, we only have to prove the
implication

t o
lim sup( 1+ — x,t) P =0
P( p(x)) @1(x, £) 1L, By

r—0 ,crn

. t\* “1yn
= lim sup <1 ’ @) 2, ) [, 147 (D] 1 ey = O

To check that

t\“ n
xseuﬂgq (1 + m) oo, £) 1P H [b, M]L(f)] ||Lp(B(x,t)) <¢e forsmallr,
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we use the estimate (4.1):

[blo /N t\ Wl B, dt
t n/P b < 1 1 o) Y LpBXo.t)) )
P2, 1) i “/ ] “LP(B(x,t)) S oon ) +in - . "

We take r < 8o where §p will be chosen small enough and split the integration:

<1+ﬁ) o206 P (B 1f D] 1 gy = Clloo (1) + T (7)), (6.1)

where

( ) t X dt
Iy (%, 1) = ————— 1+In- M
° (% n
2(96, ) , r 0 ¢

and

A+ -5)* oo t dt
Jso (%, 1) := ROl / (1 +In —) 7|V||L”(f(x0't)) —.
80 r

o (x,7) tr t

We choose a fixed §y > 0 such that

t \* e
sup|(1+ — x,8) P <——— t<0&,
xeﬂ£4< p(x)) @1(x, £) 1L, B 2CC, <do

where C and C; are constants from (6.1) and (1 7), which yields the estimate of the first
term uniform in r € (0, 8¢): Sup,cpn Cls, (%, 1) < ,0<r<ép.
For the second term, writing 1 + In £ s <1+] ln t|+1Inl +» we obtain

Csq +C So 111

Jso(x,7) < r)

A E

where ¢, is the constant from (1.9) with § = 8, and ¢5, is a similar constant with omit-
ted logarithmic factor in the integrand. Then, by (1.8) we can choose small r such that

Sup,cpn Js, (%, 1) < %, which completes the proof.

7 Conclusions

In this paper, we study the boundedness of the Marcinkiewicz integral operators /LjL and
their commutators [b, pcf] with b € BMOy(p) on generalized Morrey spaces MZ,'(/‘J/ (R™) as-
sociated with Schrodinger operator and vanishing generalized Morrey spaces VMZ;‘/‘J/ (R™)
associated with Schrodinger operator. We find the sufficient conditions on the pair (¢, ¢2)
which ensure the boundedness of the operators ,ul from one vanishing generallzed Morrey

space VM to another VM (/‘,/ , 1< p <00 and from the space VM | to the weak space

VWMT’(;; \X/hen bbelongs to BMOy(p) and (¢1, ¢2) satisfies some cond1t10ns, we also show

o,V v o,V o,V
that [b, /L].] is bounded from My, to Mng and from VM, to VM, ,1<p<oo.

Our results about the boundedness of M,' and [b, I L1 from My ;g to My q‘,/z (Theorems 1.1

and 1.2) are based on the local estimates for the Marcinkiewicz integrals (Theorem 3.1)

and their commutators (Theorem 4.1).

Page 15 0f 16
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