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Abstract
Let L = –� + V be a Schrödinger operator, where � is the Laplacian on R

n and the
non-negative potential V belongs to the reverse Hölder class RHq for q ≥ n/2. In this
paper, we study the boundedness of the Marcinkiewicz integral operators μL

j and
their commutators [b,μL

j ] with b ∈ BMOθ (ρ) on generalized Morrey spacesMα,V
p,ϕ (R

n)
associated with Schrödinger operator and vanishing generalized Morrey spaces
VMα,V

p,ϕ (R
n) associated with Schrödinger operator. We find the sufficient conditions on

the pair (ϕ1,ϕ2) which ensure the boundedness of the operators μL
j from one

vanishing generalized Morrey space VMα,V
p,ϕ1

to another VMα,V
p,ϕ2

, 1 < p <∞ and from the

space VMα,V
1,ϕ1

to the weak space VWMα,V
1,ϕ2

. When b belongs to BMOθ (ρ) and (ϕ1,ϕ2)
satisfies some conditions, we also show that [b,μL

j ] is bounded fromMα,V
p,ϕ1

toMα,V
p,ϕ2

and from VMα,V
p,ϕ1

to VMα,V
p,ϕ2

, 1 < p <∞.
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1 Introduction and results
In this paper, we consider the Schrödinger differential operator

L = –� + V (x) on R
n, n ≥ ,

where V (x) is a non-negative potential belonging to the reverse Hölder class RHq for q ≥
n/.

A non-negative locally Lq integrable function V (x) on R
n is said to belong to RHq,  <

q ≤ ∞, if there exists C >  such that the reverse Hölder inequality

(


|B(x, r)|
∫

B(x,r)
V q(y) dy

)/q

≤
(

C
|B(x, r)|

∫
B(x,r)

V (y) dy
)

(.)

holds for every x ∈ R
n and  < r < ∞, where B(x, r) denotes the ball centered at x with

radius r. In particular, if V is a non-negative polynomial, then V ∈ RH∞. Obviously,
RHq ⊂ RHq , if q < q. It is worth pointing out that the RHq class is such that, if V ∈ RHq
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for some q > , then there exists an ε > , which depends only n and the constant C in (.),
such that V ∈ RHq+ε . Throughout this paper, we always assume that  �= V ∈ RHn/.

For x ∈ R
n, the function ρ(x) is defined by

ρ(x) :=


mV (x)
= sup

r>

{
r :


rn–

∫
B(x,r)

V (y) dy ≤ 
}

.

Obviously,  < mV (x) < ∞ if V �= . In particular, mV (x) =  when V =  and mV (x) ∼  + |x|
when V (x) = |x|.

According to [], the new BMO space BMOθ (ρ) with θ ≥  is defined as a set of all locally
integrable functions b such that


|B(x, r)|

∫
B(x,r)

∣∣b(y) – bB
∣∣dy ≤ C

(
 +

r
ρ(x)

)θ

for all x ∈ R
n and r > , where bB = 

|B|
∫

B b(y) dy. A norm for b ∈ BMOθ (ρ), denoted by [b]θ ,
is given by the infimum of the constants in the inequality above. Clearly, BMO ⊂ BMOθ (ρ).

The classical Morrey spaces were originally introduced by Morrey in [] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the reader to [–]. The
classical version of Morrey spaces is equipped with the norm

‖f ‖Mp,λ := sup
x∈Rn

sup
r>

r– λ
p ‖f ‖Lp(B(x,r)),

where  ≤ λ < n and  ≤ p < ∞. The generalized Morrey spaces are defined with rλ re-
placed by a general non-negative function ϕ(x, r) satisfying some assumptions (see, for
example, [–]).

The vanishing Morrey space VMp,λ in its classical version was introduced in [], where
applications to PDE were considered. We also refer to [] and [] for some properties of
such spaces. This is a subspace of functions in Mp,λ(Rn), which satisfy the condition

lim
r→

sup
x∈Rn ,<t<r

t– λ
p ‖f ‖Lp(B(x,t)) = .

We now present the definition of generalized Morrey spaces (including weak version)
associated with Schrödinger operator, which introduced by second author in [].

Definition . Let ϕ(x, r) be a positive measurable function on R
n × (,∞),  ≤ p < ∞,

α ≥ , and V ∈ RHq, q ≥ . We denote by Mα,V
p,ϕ = Mα,V

p,ϕ (Rn) the generalized Morrey space
associated with Schrödinger operator, the space of all functions f ∈ Lp

loc(Rn) with finite
norm

‖f ‖Mα,V
p,ϕ

= sup
x∈Rn ,r>

(
 +

r
ρ(x)

)α

ϕ(x, r)–r–n/p‖f ‖Lp(B(x,r)).

Also WMα,V
p,ϕ = WMα,V

p,ϕ (Rn) we denote the weak generalized Morrey space associated with
Schrödinger operator, the space of all functions f ∈ WLp

loc(Rn) with

‖f ‖WMα,V
p,ϕ

= sup
x∈Rn ,r>

(
 +

r
ρ(x)

)α

ϕ(x, r)–r–n/p‖f ‖WLp(B(x,r)) < ∞.
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Remark .
(i) When α = , and ϕ(x, r) = r(λ–n)/p, Mα,V

p,ϕ (Rn) is the classical Morrey space Lp,λ(Rn)
introduced by Morrey in [].

(ii) When ϕ(x, r) = r(λ–n)/p, Mα,V
p,ϕ (Rn) is the Morrey space associated with Schrödinger

operator Lα,V
p,λ (Rn) studied by Tang and Dong in [].

(iii) When α = , Mα,V
p,ϕ (Rn) is the generalized Morrey space Mp,ϕ(Rn) introduced by

Mizuhara and Nakai in [, ].
(iv) The generalized Morrey space associated with Schrödinger operator Mα,V

p,ϕ (Rn) was
introduced by the second author in [].

For brevity, in the sequel we use the notations

A
α,V
p,ϕ (f ; x, r) :=

(
 +

r
ρ(x)

)α

r–n/pϕ(x, r)–‖f ‖Lp(B(x,r))

and

A
W ,α,V
	,ϕ (f ; x, r) :=

(
 +

r
ρ(x)

)α

r–n/pϕ(x, r)–‖f ‖WLp(B(x,r)).

Definition . The vanishing generalized Morrey space VMα,V
p,ϕ (Rn) associated with

Schrödinger operator is defined as the spaces of functions f ∈ Mα,V
p,ϕ (Rn) such that

lim
r→

sup
x∈Rn

A
α,V
p,ϕ (f ; x, r) = . (.)

The vanishing weak generalized Morrey space VWMα,V
p,ϕ (Rn) associated with

Schrödinger operator is defined as the spaces of functions f ∈ WMα,V
p,ϕ (Rn) such that

lim
r→

sup
x∈Rn

A
W ,α,V
p,ϕ (f ; x, r) = .

The vanishing spaces VMα,V
p,ϕ (Rn) and VWMα,V

p,ϕ (Rn) are Banach spaces with respect to
the norm

‖f ‖VMα,V
p,ϕ

≡ ‖f ‖Mα,V
p,ϕ

= sup
x∈Rn ,r>

A
α,V
p,ϕ (f ; x, r),

‖f ‖VWMα,V
p,ϕ

≡ ‖f ‖WMα,V
p,ϕ

= sup
x∈Rn ,r>

A
α,V
W ,p,ϕ(f ; x, r),

respectively.
We define the Marcinkiewicz integral associated with the Schrödinger operator L by

μL
j f (x) =

(∫ ∞



∣∣∣∣
∫

|x–y|≤t
KL

j (x, y)f (y) dy
∣∣∣∣
 dt

t

)/

,

where KL
j (x, y) = K̃L

j (x, y)|x – y| and K̃L
j (x, y) is the kernel of RL

j = ∂
∂xj

L–/, j = , . . . , n.
Let b be a locally integrable function, the commutator generalized by μL

j and b be defined
by

[
b,μL

j
]
f (x) =

(∫ ∞



∣∣∣∣
∫

|x–y|≤t
KL

j (x, y)
(
b(x) – b(y)

)
f (y) dy

∣∣∣∣
 dt

t

)/

.
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Let K̃�
j (x, y) denote the kernel of the classical Riesz transform Rj = ∂

∂xj
�–/. When

V = , then K�
j (x, y) = K̃�

j (x, y)|x – y| = (xj–yj)/|x–y|
|x–y|n– . Obviously, μ

�
j f (x) is the classical

Marcinkiewicz integral. Therefore, it will be an interesting thing to study the property
of μL

j .
The area of Marcinkiewicz integral associated with the Schrödinger operator has been

under intensive research recently. Gao and Tang in [] showed that μL
j is bounded on

Lp(Rn) for  < p < ∞, and bounded from L(Rn) to weak WL(Rn). Chen and Zou in []
proved that the commutator [b,μL

j ] is bounded on Lp(Rn) for  < p < ∞, where b belongs
to BMOθ (ρ). In [–], Akbulut et al. obtained the boundedness of μL

j and [b,μL
j ] on the

generalized Morrey space Mp,ϕ , Chen and Jin in [] showed the boundedness of μL
j and

[b,μL
j ] on the Morrey spaces Lα,V

p,λ associated with Schrödinger operator.
In this paper, we study the boundedness of the Marcinkiewicz integral operators μL

j on
generalized Morrey space Mα,V

p,ϕ (Rn) associated with Schrödinger operator and vanishing
generalized Morrey space VMα,V

p,ϕ (Rn) associated with Schrödinger operator. When b be-
longs to the new BMO function spaces BMOθ (ρ), we also show that [b,μL

j ] is bounded on
Mα,V

p,ϕ (Rn).

Definition . We denote by �α,V
p the set of all positive measurable functions ϕ on R

n ×
(,∞) such that, for all t > ,

sup
x∈Rn

∥∥∥∥
(

+
r

ρ(x)

)α r– n
p

ϕ(x, r)

∥∥∥∥
L∞(t,∞)

< ∞, and sup
x∈Rn

∥∥∥∥
(

+
r

ρ(x)

)α

ϕ(x, r)–
∥∥∥∥

L∞(,t)
< ∞,

respectively.

For the non-triviality of the space Mα,V
p,ϕ (Rn) we always assume that ϕ ∈ �α,V

p . Our main
results are as follows.

Theorem . Let V ∈ RHn/, α ≥ ,  ≤ p < ∞ and ϕ,ϕ ∈ �α,V
p satisfy the condition

∫ ∞

r

ess supt<s<∞ ϕ(x, s)s
n
p

t
n
p

dt
t

≤ cϕ(x, r), (.)

where c does not depend on x and r. Then the operator μL
j is bounded from Mα,V

p,ϕ to Mα,V
p,ϕ

for p >  and from Mα,V
,ϕ to WMα,V

,ϕ . Moreover, for p > 

∥∥μL
j f

∥∥
Mα,V

p,ϕ
≤ C‖f ‖Mα,V

p,ϕ

and for p = 

∥∥μL
j f

∥∥
WMα,V

,ϕ
≤ C‖f ‖Mα,V

,ϕ
.

Theorem . Let V ∈ RHn/, b ∈ BMOθ (ρ),  < p < ∞, and ϕ,ϕ ∈ �α,V
p satisfy the con-

dition

∫ ∞

r

(
 + ln

t
r

)
ess inft<s<∞ ϕ(x, s)s

n
p

t
n
p

dt
t

≤ cϕ(x, r), (.)
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where c does not depend on x and r. Then the operator [b,μL
j ] is bounded from Mα,V

p,ϕ to
Mα,V

p,ϕ and

∥∥[
b,μL

j
]
f
∥∥

Mα,V
p,ϕ

≤ C[b]θ‖f ‖Mα,V
p,ϕ

.

Definition . We denote by �
α,V
p, the set of all positive measurable functions ϕ on R

n ×
(,∞) such that

inf
x∈Rn

inf
r>δ

(
 +

r
ρ(x)

)–α

ϕ(x, r) > , for some δ > , (.)

and

lim
r→

(
 +

r
ρ(x)

)α rn/p

ϕ(x, r)
= .

For the non-triviality of the space VMα,V
p,ϕ (Rn) we always assume that ϕ ∈ �

α,V
p, .

Theorem . Let V ∈ RHn/, α ≥ ,  ≤ p < ∞ and ϕ,ϕ ∈ �
α,V
p, satisfy the condition

cδ :=
∫ ∞

δ

sup
x∈Rn

ϕ(x, t)
dt
t

< ∞

for every δ > , and

∫ ∞

r
ϕ(x, t)

dt
t

≤ Cϕ(x, r), (.)

where C does not depend on x ∈ R
n and r > . Then the operator μL

j is bounded from
VMα,V

p,ϕ to VMα,V
p,ϕ for p >  and from VMα,V

,ϕ to VWMα,V
,ϕ .

Theorem . Let V ∈ RHn/, b ∈ BMOθ (ρ),  < p < ∞, and ϕ,ϕ ∈ �
α,V
p, satisfy the con-

dition

∫ ∞

r

(
 + ln

t
r

)
ϕ(x, t)

dt
t

≤ cϕ(x, r), (.)

where c does not depend on x and r,

lim
r→

ln 
r

infx∈Rn ϕ(x, r)
=  (.)

and

cδ :=
∫ ∞

δ

(
 + | ln t|) sup

x∈Rn
ϕ(x, t)

dt
t

< ∞ (.)

for every δ > .
Then the operator [b,μL

j ] is bounded from VMα,V
p,ϕ to VMα,V

p,ϕ .
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In this paper, we shall use the symbol A � B to indicate that there exists a universal
positive constant C, independent of all important parameters, such that A ≤ CB. A ≈ B
means that A � B and B � A.

2 Some preliminaries
We would like to recall the important properties concerning the function ρ(x).

Lemma . ([]) Let V ∈ RHn/. For the associated function ρ there exist C and k ≥ 
such that

C–ρ(x)
(

 +
|x – y|
ρ(x)

)–k

≤ ρ(y) ≤ Cρ(x)
(

 +
|x – y|
ρ(x)

) k
+k

(.)

for all x, y ∈R
n.

Lemma . Let x ∈ B(x, r). Then for k ∈N we have


( + k r

ρ(x) )N
� 

( + k r
ρ(x) )N/(k+)

.

Proof By (.) we get


( + k r

ρ(x) )N
� 

( + k r

ρ(x)(+ |x–x|
ρ(x) )

k
k+

)N

�
( + |x–x|

ρ(x) )
kN
k+

( + k r
ρ(x) )N

� 
( + k r

ρ(x) )N/(k+)
.

�

We give some inequalities about the new BMO space BMOθ (ρ).

Lemma . ([]) Let  ≤ s < ∞. If b ∈ BMOθ (ρ), then

(


|B|
∫

B

∣∣b(y) – bB
∣∣s dy

)/s

≤ [b]θ
(

 +
r

ρ(x)

)θ ′

for all B = B(x, r), with x ∈R
n and r > , where θ ′ = (k +)θ and k is the constant appearing

in (.).

Lemma . ([]) Let  ≤ s < ∞, b ∈ BMOθ (ρ), and B = B(x, r). Then

(


|kB|
∫

k B

∣∣b(y) – bB
∣∣s dy

)/s

≤ [b]θ k
(

 +
kr
ρ(x)

)θ ′

for all k ∈N, with θ ′ as in Lemma ..

The following results give the estimates of the kernel of μL
j the boundedness of μL

j and
their commutators on Lp.
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Lemma . ([]) If V ∈ RHn/, then, for every N , there exists a constant C such that

∣∣KL
j (x, y)

∣∣ ≤ C
( + |x–y|

ρ(x) )N


|x – y|n– . (.)

Lemma . ([]) Let V ∈ RHn/. Then

∥∥μL
j (f )

∥∥
Lp(Rn) ≤ C‖f ‖Lp(Rn)

holds for  < p < ∞, and

∥∥μL
j (f )

∥∥
WL(Rn) ≤ C‖f ‖L(Rn).

Lemma . ([]) Let V ∈ RHn/,  < p < ∞ and b ∈ BMOθ (ρ). Then

∥∥[
b,μL

j
]
(f )

∥∥
Lp(Rn) ≤ C[b]θ‖f ‖Lp(Rn).

Finally, we recall a relationship between essential supremum and essential infimum.

Lemma . ([]) Let f be a real-valued non-negative function and measurable on E. Then

(
ess inf

x∈E
f (x)

)–
= ess sup

x∈E


f (x)

.

Lemma . Let ϕ(x, r) be a positive measurable function on R
n × (,∞),  ≤ p < ∞, α ≥ ,

and V ∈ RHq, q ≥ .
(i) If

sup
t<r<∞

(
 +

r
ρ(x)

)α r– n
p

ϕ(x, r)
= ∞ for some t >  and for all x ∈ R

n, (.)

then Mα,V
p,ϕ (Rn) = , where  is the set of all functions equivalent to  on R

n.
(ii) If

sup
<r<τ

(
 +

r
ρ(x)

)α

ϕ(x, r)– = ∞ for some τ >  and for all x ∈R
n, (.)

then Mα,V
p,ϕ (Rn) = .

Proof (i) Let (.) be satisfied and f be not equivalent to zero. Then supx∈Rn ‖f ‖Lp(B(x,t)) > ,
hence

‖f ‖Mα,V
p,ϕ

≥ sup
x∈Rn

sup
t<r<∞

(
 +

r
ρ(x)

)α

ϕ(x, r)–r– n
p ‖f ‖Lp(B(x,r))

≥ sup
x∈Rn

‖f ‖Lp(B(x,t)) sup
t<r<∞

(
 +

r
ρ(x)

)α

ϕ(x, r)–r– n
p .

Therefore ‖f ‖Mα,V
p,ϕ

= ∞.
(ii) Let f ∈ Mα,V

p,ϕ (Rn) and (.) be satisfied. Then there are two possibilities:
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Case : sup<r<t( + r
ρ(x) )αϕ(x, r)– = ∞ for all t > .

Case : sup<r<t( + r
ρ(x) )αϕ(x, r)– < ∞ for some t ∈ (, τ ).

For Case , by the Lebesgue differentiation theorem, for almost all x ∈ R
n,

lim
r→+

‖f χB(x,r)‖Lp

‖χB(x,r)‖Lp
=

∣∣f (x)
∣∣. (.)

We claim that f (x) =  for all those x. Indeed, fix x and assume |f (x)| > . Then by (.)
there exists t >  such that

r– n
p ‖f ‖Lp(B(x,r)) ≥ –v


p
n
∣∣f (x)

∣∣

for all  < r ≤ t, where vn is the volume of the unit ball in R
n. Consequently,

‖f ‖Mα,V
p,ϕ

≥ sup
<r<t

(
 +

r
ρ(x)

)α

ϕ(x, r)–r– n
p ‖f ‖Lp(B(x,r))

≥ –v

p
n
∣∣f (x)

∣∣ sup
<r<t

(
 +

r
ρ(x)

)α

ϕ(x, r)–.

Hence ‖f ‖Mα,V
p,ϕ

= ∞, so f /∈ Mp,ϕ(Rn) and we arrive at a contradiction.
Note that Case  implies that supt<r<τ ( + r

ρ(x) )αϕ(x, r)– = ∞, hence

sup
s<r<∞

(
 +

r
ρ(x)

)α

ϕ(x, r)–r– n
p ≥ sup

t<r<τ

(
 +

r
ρ(x)

)α

ϕ(x, r)–r– n
p

≥ τ
– n

p sup
t<r<τ

(
 +

r
ρ(x)

)α

ϕ(x, r)– = ∞,

which is the case in (i). �

3 Proof of Theorem 1.1
We first prove the following conclusions.

Theorem . Let V ∈ RHn/. If  < p < ∞, then the inequality

∥∥μL
j (f )

∥∥
Lp(B(x,r)) � r

n
p

∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

holds for any f ∈ Lp
loc(Rn). Moreover, for p =  the inequality

∥∥μL
j (f )

∥∥
WL(B(x,r)) � rn

∫ ∞

r

‖f ‖L(B(x,t))

tn
dt
t

holds for any f ∈ L
loc(Rn).

Proof For arbitrary x ∈R
n, set B = B(x, r) and λB = B(x,λr) for any λ > . We write f as

f = f + f, where f(y) = f (y)χB(x,r)(y) and χB(x,r) denotes the characteristic function of
B(x, r). Then

∥∥μL
j (f )

∥∥
Lp(B(x,r)) ≤ ∥∥μL

j (f)
∥∥

Lp(B(x,r)) +
∥∥μL

j (f)
∥∥

Lp(B(x,r)).



Akbulut et al. Boundary Value Problems  (2017) 2017:121 Page 9 of 16

Since f ∈ Lp(Rn) and from the boundedness of μL
j on Lp(Rn), p > , it follows that

∥∥μL
j (f)

∥∥
Lp(B(x,r)) � ‖f ‖Lp(B(x,r))

� r
n
p ‖f ‖Lp(B(x,r))

∫ ∞

r

dt

t
n
p +

� r
n
p

∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

. (.)

To estimate ‖μL
j (f)‖Lp(B(x,r)) obverse that x ∈ B, y ∈ (B)c implies 

 |x – y| ≤ |x – y| ≤

 |x – y|. Then by (.) and Minkowski’s inequality

sup
x∈B(x,r)

μL
j (f)(x) �

∫
(B)c

|f (y)|
|x – y|n–

(∫ ∞

|x–y|
dt
t

)/

dy

�
∞∑

k=

(
k+r

)–n
∫

k+B

∣∣f (y)
∣∣dy.

By Hölder’s inequality we get

sup
x∈B(x,r)

μL
j (f)(x) �

∞∑
k=

‖f ‖Lp(k+B)
(
k+r

)–– n
p

∫ k+r

k r
dt

�
∞∑

k=

∫ k+r

k r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

�
∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

. (.)

Then

∥∥μL
j (f)

∥∥
Lp(B(x,r)) � r

n
p

∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

(.)

holds for  ≤ p < ∞. Therefore, by (.) and (.) we get

∥∥μL
j (f )

∥∥
Lp(B(x,r)) � r

n
p

∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

(.)

holds for  < p < ∞.
When p = , from the boundedness of μL

j from L(Rn) to WL(Rn), we get

∥∥μL
j (f)

∥∥
WL(B(x,r)) � ‖f ‖L(B(x,r)) � rn

∫ ∞

r

‖f ‖L(B(x,t))

tn
dt
t

.

From (.) we have

∥∥μL
j (f)

∥∥
WL(B(x,r)) ≤ ∥∥μL

j (f)
∥∥

L(B(x,r)) � rn
∫ ∞

r

‖f ‖L(B(x,t))

tn
dt
t

.
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Then

∥∥μL
j (f )

∥∥
WL(B(x,r)) � rn

∫ ∞

r

‖f ‖L(B(x,t))

tn
dt
t

. �

Remark . Note that another proof of Theorem . is given in [].

Proof of Theorem . From Lemma ., we have



ess inft<s<∞ ϕ(x, s)s
n
p

= ess sup
t<s<∞



ϕ(x, s)s
n
p

.

Note the fact that ‖f ‖Lp(B(x,t)) is a nondecreasing function of t, and f ∈ Mα,V
p,ϕ , then

( + t
ρ(x) )α‖f ‖Lp(B(x,t))

ess inft<s<∞ ϕ(x, s)s
n
p

� ess sup
t<s<∞

( + t
ρ(x) )α‖f ‖Lp(B(x,t))

ϕ(x, s)s
n
p

≤ sup
<s<∞

( + s
ρ(x) )α‖f ‖Lp(B(x,s))

ϕ(x, s)s
n
p

≤ ‖f ‖Mα,V
p,ϕ

.

Since α ≥ , and (ϕ,ϕ) satisfies the condition (.), then

∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

=
∫ ∞

r

( + t
ρ(x) )α‖f ‖Lp(B(x,t))

ess inft<s<∞ ϕ(x, s)s
n
p

ess inft<s<∞ ϕ(x, s)s
n
p

( + t
ρ(x) )αt

n
p

dt
t

� ‖f ‖Mα,V
p,ϕ

∫ ∞

r

ess inft<s<∞ ϕ(x, s)s
n
p

( + t
ρ(x) )αt

n
p

dt
t

� ‖f ‖Mα,V
p,ϕ

(
 +

r
ρ(x)

)–α ∫ ∞

r

ess inft<s<∞ ϕ(x, s)s
n
p

t
n
p

dt
t

� ‖f ‖Mα,V
p,ϕ

(
 +

r
ρ(x)

)–α

ϕ(x, r). (.)

Then by Theorem . we have

∥∥μL
j (f )

∥∥
Mα,V

p,ϕ

� sup
x∈Rn ,r>

(
 +

r
ρ(x)

)α

ϕ(x, r)–r–n/p∥∥μL
j (f )

∥∥
Lp(B(x,r))

� sup
x∈Rn ,r>

(
 +

r
ρ(x)

)α

ϕ(x, r)–
∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

� ‖f ‖Mα,V
p,ϕ

.

Let p = . Similar to (.) we get

∫ ∞

r

‖f ‖L(B(x,t))

tn
dt
t
� ‖f ‖Mα,V

,ϕ

(
 +

r
ρ(x)

)–α

ϕ(x, r).
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From Theorem . we have

∥∥μL
j (f )

∥∥
WMα,V

,ϕ
� sup

x∈Rn ,r>

(
 +

r
ρ(x)

)α

ϕ(x, r)–r–n/p∥∥μL
j (f )

∥∥
WL(B(x,r))

� sup
x∈Rn ,r>

(
 +

r
ρ(x)

)α

ϕ(x, r)–
∫ ∞

r

‖f ‖L(B(x,t))

t
n
p

dt
t

� ‖f ‖Mα,V
,ϕ

. �

4 Proof of Theorem 1.2
Similar to the proof of Theorem ., it suffices to prove the following result.

Theorem . Let V ∈ RHn/, b ∈ BMOθ (ρ). If  < p < ∞, then the inequality

∥∥[
b,μL

j (f )
]∥∥

Lp(B(x,r)) � [b]θ r
n
p

∫ ∞

r

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

(.)

holds for any f ∈ Lp
loc(Rn).

Proof We write f as f = f + f, where f(y) = f (y)χB(x,r)(y). Then

∥∥[
b,μL

j
]
(f )

∥∥
Lp(B(x,r)) ≤ ∥∥[

b,μL
j
]
(f)

∥∥
Lp(B(x,r)) +

∥∥[
b,μL

j
]
(f)

∥∥
Lp(B(x,r)).

From the boundedness of [b,μL
j ] on Lp(Rn) and (.) we get

∥∥[
b,μL

j
]
(f)

∥∥
Lp(B(x,r)) � [b]θ‖f ‖Lp(B(x,r))

� [b]θ r
n
p

∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

� [b]θ r
n
p

∫ ∞

r

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

. (.)

We now turn to deal with the term ‖[b,μL
j ](f)‖Lp(B(x,r)). For any given x ∈ B(x, r) we

have

[
b,μL

j
]
(f)(x) =

(∫ ∞



∣∣∣∣
∫

|x–y|≤t
KL

j (x, y)
(
b(x) – b(y)

)
f (y) dy

∣∣∣∣
 dt

t

)/

≤ ∣∣b(x) – bB
∣∣μL

j (f)(x) + μL
j
(
(b – bB)f

)
(x).

By (.), Lemma . and (.) we have

sup
x∈B(x,r)

μL
j (f)(x) �

∫
(B)c


( + |x–y|

ρ(x) )N

|f (y)|
|x – y|n–

(∫ ∞

|x–y|
dt
t

)/

dy

� 
( + r

ρ(x) )N

∞∑
k=

(
k+r

)–n
∫

k+B

∣∣f (y)
∣∣dy

� 
( + r

ρ(x) )N/(k+)

∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

.
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Then by Lemma ., and taking N ≥ (k + )θ we get

∥∥(
b(x) – bB

)
μL

j (f)
∥∥

Lp(B(x,r)) � [b]θ r
n
p

(
 +

r
ρ(x)

)θ–N/(k+) ∫ ∞

r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

� [b]θ r
n
p

∫ ∞

r

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

. (.)

Finally, let us estimate ‖μL
j ((b – bB)f)‖Lp(B(x,r)). By (.), Lemma . and (.) we have

μL
j
(
(b – bB)f

)
(x) �

∫
(B)c


( + |x–y|

ρ(x) )N

|b(y) – bB||f (y)|
|x – y|n–

(∫ ∞

|x–y|
dt
t

)/

dy

�
∞∑

k=


(kr)n( + k r

ρ(x) )N

∫
k+B

∣∣b(y) – bB
∣∣∣∣f (y)

∣∣dy

�
∞∑

k=


(kr)n( + k r

ρ(x) )N/(k+)

∫
k+B

∣∣b(y) – bB
∣∣∣∣f (y)

∣∣dy.

Note that

∫
k+B

∣∣b(y) – bB
∣∣∣∣f (y)

∣∣dy �
(∫

k+B

∣∣b(y) – bB
∣∣p′

)/p′

‖f ‖Lp(B(x,k+r))

� [b]θ k
(

 +
kr

ρ(x)

)θ ′(
kr

) n
p′ ‖f ‖Lp(B(x,k+r)).

Then

sup
x∈B(x,r)

μL
j
(
(b – bB)f

)
(x) � [b]θ

∞∑
k=

k
( + k r

ρ(x) )N/(k+)–θ ′
(
kr

)– n
p ‖f ‖Lp(B(x,k+r))

� [b]θ
∞∑

k=

k
(
kr

)– n
p ‖f ‖Lp(B(x,k+r))

� [b]θ
∞∑

k=

k
∫ k+r

k r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

.

Since kr ≤ t ≤ k+r, k ≈ ln t
r . Thus

sup
x∈B(x,r)

μL
j
(
(b – bB)f

)
(x) � [b]θ

∞∑
k=

k
∫ k+r

k r

‖f ‖Lp(B(x,t))

t
n
p

dt
t

� [b]θ
∞∑

k=

∫ k+r

k r
ln

t
r
‖f ‖Lp(B(x,t))

t
n
p

dt
t

� [b]θ
∫ ∞

r

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

.

Then

∥∥μL
j
(
(b – bB)f

)∥∥
Lp(B(x,r)) � [b]θ r

n
p

∫ ∞

r

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

. (.)
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Combining (.), (.) and (.), the proof of Theorem . is completed. �

Remark . Note that, in the case b ∈ BMO, Theorem . was proved in [].

Proof of Theorem . Since f ∈ Mα,V
p,ϕ and (ϕ,ϕ) satisfies the condition (.), by (.) we

have

∫ ∞

r

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

=
∫ ∞

r

( + t
ρ(x) )α‖f ‖Lp(B(x,t))

ess inft<s<∞ ϕ(x, s)s
n
p

(
 + ln

t
r

)
ess inft<s<∞ ϕ(x, s)s

n
p

( + t
ρ(x) )αt

n
p

dt
t

� ‖f ‖Mα,V
p,ϕ

∫ ∞

r

(
 + ln

t
r

)
ess inft<s<∞ ϕ(x, s)s

n
p

( + t
ρ(x) )αt

n
p

dt
t

� ‖f ‖Mα,V
p,ϕ

(
 +

r
ρ(x)

)–α ∫ ∞

r

(
 + ln

t
r

)
ess inft<s<∞ ϕ(x, s)s

n
p

t
n
p

dt
t

� ‖f ‖Mα,V
p,ϕ

(
 +

r
ρ(x)

)–α

ϕ(x, r).

Then from Theorem . we get

∥∥[
b,μL

j
]
(f )

∥∥
Mα,V

p,ϕ

� sup
x∈Rn ,r>

(
 +

r
ρ(x)

)α

ϕ(x, r)–r–n/p∥∥[
b,μL

j
]
(f )

∥∥
Lp(B(x,r))

� [b]θ sup
x∈Rn ,r>

(
 +

r
ρ(x)

)α

ϕ(x, r)–
∫ ∞

r

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

� [b]θ‖f ‖Mα,V
p,ϕ

. �

5 Proof of Theorem 1.3
The statement is derived from the estimate (.). The estimation of the norm of the oper-
ator, that is, the boundedness in the non-vanishing space, immediately follows from The-
orem .. So we only have to prove that

lim
r→

sup
x∈Rn

A
α,V
p,ϕ (f ; x, r) =  ⇒ lim

r→
sup
x∈Rn

A
α,V
p,ϕ

(
μL

j (f ); x, r
)

=  (.)

and

lim
r→

sup
x∈Rn

A
α,V
,ϕ (f ; x, r) =  ⇒ lim

r→
sup
x∈Rn

A
W ,α,V
,ϕ

(
μL

j (f ); x, r
)

= . (.)

To show that supx∈Rn ( + r
ρ(x) )αϕ(x, r)–r–n/p‖μL

j (f )‖Lp(B(x,r)) < ε for small r, we split the
right-hand side of (.):

(
 +

r
ρ(x)

)α

ϕ(x, r)–r–n/p∥∥μL
j (f )

∥∥
Lp(B(x,r)) ≤ C

[
Iδ (x, r) + Jδ (x, r)

]
, (.)
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where δ >  (we may take δ > ), and

Iδ (x, r) :=
( + r

ρ(x) )α

ϕ(x, r)

∫ δ

r
t– n

p –‖f ‖Lp(B(x,t)) dt

and

Jδ (x, r) :=
( + r

ρ(x) )α

ϕ(x, r)

∫ ∞

δ

t– n
p –‖f ‖Lp(B(x,t)) dt

and it is supposed that r < δ. We use the fact that f ∈ VMα,V
p,ϕ (Rn) and choose any fixed

δ >  such that

sup
x∈Rn

(
 +

t
ρ(x)

)α

ϕ(x, t)–t–n/p‖f ‖Lp(B(x,t)) <
ε

CC
,

where C and C are constants from (.) and (.). This allows us to estimate the first term
uniformly in r ∈ (, δ):

sup
x∈Rn

CIδ (x, r) <
ε


,  < r < δ.

The estimation of the second term now can be made by the choice of sufficiently small
r > . Indeed, thanks to the condition (.) we have

Jδ (x, r) ≤ cσ

( + r
ρ(x) )α

ϕ(x, r)
‖f ‖VMα,V

p,ϕ
,

where cσ is the constant from (.). Then, by (.) it suffices to choose r small enough so
that

sup
x∈Rn

( + r
ρ(x) )α

ϕ(x, r)
≤ ε

cσ‖f ‖VMα,V
p,ϕ

,

which completes the proof of (.).
The proof of (.) is similar to the proof of (.).

6 Proof of Theorem 1.4
The norm inequality is provided by Theorem ., therefore, we only have to prove the
implication

lim
r→

sup
x∈Rn

(
 +

t
ρ(x)

)α

ϕ(x, t)–t–n/p‖f ‖Lp(B(x,t)) = 

�⇒ lim
r→

sup
x∈Rn

(
 +

t
ρ(x)

)α

ϕ(x, t)–t–n/p∥∥[
b,μL

j (f )
]∥∥

Lp(B(x,t)) = .

To check that

sup
x∈Rn

(
 +

t
ρ(x)

)α

ϕ(x, t)–t–n/p∥∥[
b,μL

j (f )
]∥∥

Lp(B(x,t)) < ε for small r,
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we use the estimate (.):

ϕ(x, t)–t–n/p∥∥[
b,μL

j (f )
]∥∥

Lp(B(x,t)) �
[b]θ

ϕ(x, r)

∫ ∞

r

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

.

We take r < δ where δ will be chosen small enough and split the integration:

(
 +

t
ρ(x)

)α

ϕ(x, t)–t–n/p∥∥[
b,μL

j (f )
]∥∥

Lp(B(x,t)) ≤ C
[
Iδ (x, r) + Jδ (x, r)

]
, (.)

where

Iδ (x, r) :=
( + t

ρ(x) )α

ϕ(x, r)

∫ δ

r

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

and

Jδ (x, r) :=
( + t

ρ(x) )α

ϕ(x, r)

∫ ∞

δ

(
 + ln

t
r

)‖f ‖Lp(B(x,t))

t
n
p

dt
t

.

We choose a fixed δ >  such that

sup
x∈Rn

(
 +

t
ρ(x)

)α

ϕ(x, t)–t–n/p‖f ‖Lp(B(x,t)) <
ε

CC
, t ≤ δ,

where C and C are constants from (.) and (.), which yields the estimate of the first
term uniform in r ∈ (, δ): supx∈Rn CIδ (x, r) < ε

 ,  < r < δ.
For the second term, writing  + ln t

r ≤  + | ln t| + ln 
r , we obtain

Jδ (x, r) ≤ cδ + c̃δ ln 
r

ϕ(x, r)
‖f ‖Mα,V

p,ϕ
,

where cδ is the constant from (.) with δ = δ and c̃δ is a similar constant with omit-
ted logarithmic factor in the integrand. Then, by (.) we can choose small r such that
supx∈Rn Jδ (x, r) < ε

 , which completes the proof.

7 Conclusions
In this paper, we study the boundedness of the Marcinkiewicz integral operators μL

j and
their commutators [b,μL

j ] with b ∈ BMOθ (ρ) on generalized Morrey spaces Mα,V
p,ϕ (Rn) as-

sociated with Schrödinger operator and vanishing generalized Morrey spaces VMα,V
p,ϕ (Rn)

associated with Schrödinger operator. We find the sufficient conditions on the pair (ϕ,ϕ)
which ensure the boundedness of the operators μL

j from one vanishing generalized Morrey
space VMα,V

p,ϕ to another VMα,V
p,ϕ ,  < p < ∞ and from the space VMα,V

,ϕ to the weak space
VWMα,V

,ϕ . When b belongs to BMOθ (ρ) and (ϕ,ϕ) satisfies some conditions, we also show
that [b,μL

j ] is bounded from Mα,V
p,ϕ to Mα,V

p,ϕ and from VMα,V
p,ϕ to VMα,V

p,ϕ ,  < p < ∞.
Our results about the boundedness of μL

j and [b,μL
j ] from Mα,V

p,ϕ to Mα,V
p,ϕ (Theorems .

and .) are based on the local estimates for the Marcinkiewicz integrals (Theorem .)
and their commutators (Theorem .).
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