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Abstract
In this paper, we investigate the stability for the nonlinear Hartree equation with
time-dependent coefficients

i∂tu +�u + α(t)
1
|x|u + β(t)(W ∗ |u|2)u = 0.

We first obtain the Lipschitz continuity of the solution u = u(α,β) with respect to
coefficients α and β , and then prove that this equation is stable under the
perturbation of coefficients. Our results improve some recent results.

MSC: 35Q55; 49J20

Keywords: nonlinear Hartree equation; stability; time-dependent coefficients;
Lipschitz continuity

1 Introduction
Motivated by the nonlinearity management and dispersion management [, ] in the ex-
perimental work in Bose-Einstein condensates and optics, nonlinear Schrödinger equa-
tions have attracted more and more attention in both the physics and the mathematics
fields; see [–] and the references therein.

In this paper, we consider the stability for the following nonlinear Schrödinger equation
of Hartree type under the perturbation of coefficients:

⎧
⎨

⎩

i∂tu + �u + α(t) 
|x| u + β(t)(W ∗ |u|)u = , (t, x) ∈ [,∞) ×R

,

u(, x) = u(x),
(.)

where u(t, x) is a complex-valued function in (t, x) ∈ [,∞) × R
, u ∈ H(R), α(t) and

β(t) are two real-valued functions in t ∈ [,∞).
Equation (.) arises as phenomenological models in many different contexts: Hartree-

Fock theory, quantum field theory, etc. In particular, when W = |x|–γ with  < γ < N , this
equation describes the mean-field limit of many-body quantum systems and has been ex-
tensively studied in [, –]. An essential feature of the Hartree equations is that the
convolution kernel |x|–γ still retains the fine structure of microscopic two-body interac-
tions of the quantum system. Therefore, it is interesting to extend mathematical meth-
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ods developed for nonlinear Schrödinger equations with power nonlinearities |u|pu to
the study of nonlinear Hartree equations.

When α(t) and β(t) are two constants, Ma and Zhao in [] investigated the stability
of (.) under the perturbation of parameters. More precisely, they proved the following
result.

Theorem A ([], Theorem ) Assume that αj, βj are positive numbers satisfying αj → ,
βj → . Let uj be the H solution of the following perturbed Hartree equation:

i∂tuj = �uj +
αj

|x|uj + βj

(

|x| ∗ |uj|

)

uj on R
, (.)

with initial data

uj|t= = u() ∈ H.

Then there exists a subsequence, still denoted by uj, such that

uj → u weakly in L∞(
H), (.)

where u a weakly continuous solution of (.) with α(t) ≡ , β(t) ≡  and the initial data
u(). Moreover, the energy and mass inequalities

E
(
u(t)

) ≤ E
(
u()

)
,

∥
∥u(t)

∥
∥

L ≤ ∥
∥u()

∥
∥

L , ∀t > , (.)

follow for this weak solution u, where

E
(
u(t)

)
=

∫

R

[


∣
∣∇u(t, x)

∣
∣ dx –




(
W ∗ |u|)(x)

∣
∣u(t, x)

∣
∣ dx –




|u(t, x)|
|x|

]

dx. (.)

In this paper, we will extend and improve this result in several aspects:
. Our results hold for more general Hartree nonlinearities (W ∗ |u|)u, where

W ∈ Lp(R) + L∞(R) for some p ≥ .
. We extend this result to the time-dependent coefficients α(t) and β(t).
. We prove the locally Lipschitz continuity of the solution u(α,β) with respect to the

coefficients α and β .
. We prove that uj strongly converge to u in Lγ ((, T), W ,ρ) as j → ∞, for every

admissible pair (γ ,ρ) and all  < T < T∗.
More precisely, we will prove the following results.

Theorem . Let W : R →R be an even, real-valued function and W ∈ Lp(R) + L∞(R)
for some p ≥ , αj → α and βj → β in H(, T∗). Assume that u is the solution of (.)
defined on the maximal interval [, T∗) with the initial value u ∈ H. Suppose that uj is
the solution to the equation

⎧
⎨

⎩

i∂tu + �u + αj(t) 
|x| u + βj(t)(W ∗ |u|)u = ,

u(, x) = u(x).
(.)
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Then:
(i) Given any  < T < T∗, the solution uj exists on [, T] if j is sufficiently large.

(ii) For every admissible pair (γ ,ρ) and  < T < T∗, uj → u in Lγ ((, T), W ,ρ) as
j → ∞. In particular, convergence holds in C([, T], H) for  < T < T∗. In addition,
for every admissible pair (γ ,ρ)

‖uj – u‖Lγ ((,T),W ,ρ ) ≤ C‖αj – α‖H(,T) + C‖βj – β‖H(,T), (.)

where C depends on u, T , γ , ρ .

Remark For physical reasons, in this paper, we only study the three-dimensional case. In
fact, we can investigate more general unbounded potentials in R

N . Our results also follow
if the potential V : RN →R is a real-valued function, satisfying:

(V) V ∈ Lq(RN ) + L∞(RN ) for some q ≥ , q > N/;
(V) V ,∇V ∈ Lq(RN ) + L∞(RN ) for some q ≥ , q > N/.

A typical example satisfying these assumptions on V is 
|x|α for some α > .

This paper is organized as follows: in Section , we will collect some preliminaries such
as local well-posedness, global existence and a Gronwall-type estimate. In Section , we
firstly obtain the Lipschitz continuity of the solution u = u(α,β) with respect to coefficients
α and β , and then prove Theorem ..

Notation In this paper, we use the following notation. C >  denotes various positive
constants. Because we only consider R

, we often use the abbreviations Lr = Lr(R),
H = H(R). Given any interval I ⊂ R, the norms of mixed spaces Lq(I, Lr(R)) and
Lq(I, Hs(R)) are denoted by ‖ · ‖Lq

t Lr
x(I) and ‖ · ‖Lq(I,Hs), respectively. We recall that a pair

(q, r) is admissible if 
q = ( 

 – 
r ) and  ≤ r ≤ . For simplicity, we always denote V = 

|x|χB

and V = 
|x| ( – χB ), where B is the unit ball in R

 centered at the original point, χB is
its characteristic function. It is obvious that V ∈ L 

+ε , ∇V ∈ L 
+ε with ε >  sufficiently

small, V ∈ L∞ and ∇V ∈ L∞.

2 Preliminaries
Firstly, we investigate the local well-posedness for (.). When α and β are two constants,
the local well-posedness of (.) has been studied in []. In our case, when the terms α u

|x|
and βW ∗ |u|u have to be estimated in some norms, due to α,β ∈ H(,∞) ↪→ L∞(,∞),
we only need to take L∞ norms of α and β . Therefore, by a similar method as that in [],
we can prove the local well-posedness of (.).

Lemma . Assume that W : R → R is an even, real-valued potential and W ∈ Lp +
L∞ for some p ≥ . Given A, B, M > , there exists δ = δ(A, B, M) such that, for all α,β ∈
H(,∞) satisfying ‖α‖L∞ ≤ A, ‖β‖L∞ ≤ B and all u ∈ H satisfying ‖u‖H ≤ M, there
exists a unique solution u ∈ C([, δ], H) of (.) and ‖u‖L∞((,δ),H) ≤ ‖u‖H . In addition,
the solution u of (.) satisfies

∥
∥u(t)

∥
∥

L = ‖u‖L (.)
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and

d
dt

E(t) = –
α′(t)



∫

R

|u(t, x)|
|x| dx –

β ′(t)


∫

R

(
W ∗ |u|)(x)

∣
∣u(t, x)

∣
∣ dx, (.)

for all t ∈ [, δ], where

E
(
u(t)

)
=

∫

R

[


∣
∣∇u(t, x)

∣
∣ –

α(t)


|u(t, x)|
|x| –

β(t)


(
W ∗ |u|)(x)

∣
∣u(t, x)

∣
∣

]

dx. (.)

Next, we consider the global existence for (.).

Lemma . Let W : R →R be an even, real-valued potential and W ∈ Lσ + L∞ for some
σ > /. If u ∈ H, then the solution u(t) of (.) exists globally.

Proof We first deduce from Hölder’s and Young’s inequalities that

∫

R

|u(x)|
|x| dx ≤ C‖V‖

L


+ε
‖u‖

L


–ε

+ C‖V‖L∞‖u‖
L (.)

and
∫

R

(
W ∗ |u|)|u| dx ≤ C‖W‖Lσ ‖u‖

L
σ

σ–
+ C‖W‖L∞‖u‖

L , (.)

where W = W + W with W ∈ Lσ and W ∈ L∞.
Thus, by (.), (.) and (.), we derive

∥
∥E′∥∥

L(,T) ≤ C
∥
∥α′∥∥

L(,T)

(‖V‖
L


+ε

‖u‖

L


–ε

+ ‖V‖L∞‖u‖
L

)

+ C
∥
∥β ′∥∥

L(,T)

(‖W‖Lσ ‖u‖

L
σ

σ–
+ ‖W‖L∞‖u‖

L
)
.

This and (.) yield

E(t) = E() +
∫ t


E′(s) ds ≤ E() +

(

t
∫ t



(
E′(s)

) ds
)/

≤ E() + Ct/∥∥α′∥∥
L(,T)

(‖V‖
L


+ε

‖u‖

L


–ε

+ ‖V‖L∞‖u‖
L

)

+ Ct/∥∥β ′∥∥
L(,T)

(‖W‖Lσ ‖u‖

L
σ

σ–
+ ‖W‖L∞‖u‖

L
)
. (.)

Combining (.), (.)-(.), we obtain

∫

R

∣
∣∇u(t, x)

∣
∣ dx ≤ E

(
u(t)

)
+ C

∫

R

|u(t, x)|
|x| dx + C

∫

R

(
W ∗ |u|)(x)

∣
∣u(t, x)

∣
∣ dx

≤ E() + C‖V‖
L


+ε

‖u‖

L


–ε

+ C‖V‖L∞‖u‖
L

+ C‖W‖Lσ ‖u‖

L
σ

σ–
+ C‖W‖L∞‖u‖

L . (.)

On the other hand, we have the following Gagliardo-Nirenberg’s inequalities:

‖u‖

L


–ε

≤ C‖u‖+ε
H ‖u‖–ε

L ,
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‖u‖

L
σ

σ–
≤ C‖u‖ 

σ

H‖u‖ σ–
σ

L . (.)

Taking ε such that  + ε < , and 
σ

< , we infer from (.) and Young’s inequality with ε

that

∥
∥u(t)

∥
∥

H ≤ C
(
T ,‖u‖H ,‖α‖H(,T),‖β‖H(,T)

)
for every t ∈ [, T], (.)

for every  < T < ∞. This implies that the solution u of (.) is global. �

Finally, we recall a Gronwall-type estimate which is vital to obtain the Lipschitz conti-
nuity of solution u(α,β) with respect to coefficients α and β .

Lemma . ([]) Let T > ,  ≤ p < q ≤ ∞,  ≤ p < q ≤ ∞, and a, b, b ≥ . If f ∈
Lq (, T), f ∈ Lq (, T) satisfying

‖f‖Lq (,t) + ‖f‖Lq (,t) ≤ a + b‖f‖Lp (,t) + b‖f‖Lp (,t),

for all  < t < T , then there exists  = (b, b, p, q, T) such that

‖f‖Lq (,T) + ‖f‖Lq (,T) ≤ a.

3 The proof of main results
In this section, we first prove that the solution of (.) depends local Lipschitz continuously
on the coefficients α and β , and then show our main results.

Lemma . Assume that W : R → R is an even, real-valued function and W ∈ Lp + L∞

for some p ≥ . Given u ∈ H. Let u ∈ L∞([, T∗), H) be the corresponding solution of
(.) with coefficients α,β ∈ H(, T). There exists ε >  such that if α̃ and β̃ satisfy ‖α̃ –
α‖H(,T) < ε, ‖β̃ – β‖H(,T) < ε and ũ is the corresponding solution of (.) with coefficients
α̃ and β̃ . Then:

(i) Given any  < T < T∗, the solution ũ exists on [, T].
(ii) For every admissible pair (γ ,ρ)

‖ũ – u‖Lγ ((,T),W ,ρ ) ≤ C‖α̃ – α‖H(,T) + C‖β̃ – β‖H(,T), (.)

where C depends on u, T , γ , ρ . In particular,

‖ũ – u‖L∞((,T),H) ≤ C‖α̃ – α‖H(,T) + C‖β̃ – β‖H(,T).

Proof Firstly, we assume that the solution ũ exists on [, T]. Note that the following
Duhamel’s formulation:

u(t) = U(t)u + i
∫ t


U(t – s)

(

α(s)

|x|u(s) +

(
β(s)W ∗ ∣

∣u(s)
∣
∣)u(s)

)

ds, (.)

where U(t) := eit� denotes the free Schrödinger propagator, which is isometric on Hs for
every s ≥ ; see []. This yields

ũ(t) – u(t) = i
∫ t


U(t – r)

(

|x| (α̃ũ – αu) +

(
β̃
(
W ∗ |ũ|)ũ – β

(
W ∗ |u|)u

)
)

(r) dr. (.)
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In the following, we set ρ = p
p– , taking γ such that (γ,ρ) is an admissible pair. Applying

Strichartz’s estimate to (.), we deduce from Hölder’s inequality that for  < t ≤ T

‖ũ – u‖Lγ
t Lρ

x (,t)

≤ C
∥
∥β̃

(
W ∗ |ũ|)ũ – β̃

(
W ∗ |u|)u

∥
∥

L
γ ′


t L

ρ′


x (,t)

+ C
∥
∥(β̃ – β)

(
W ∗ |u|)u

∥
∥

L
γ ′


t L

ρ′


x (,t)

+ C
∥
∥V(α̃ũ – αu)

∥
∥

L
t L



x (,t)

+ C
∥
∥V(α̃ũ – αu)

∥
∥

L
t L

x(,t)

≤ C‖β̃‖L∞(,t)
(‖ũ‖

L∞
t Lρ

x (,t) + ‖u‖
L∞

t Lρ
x (,t)

)‖ũ – u‖
L
γ ′


t Lρ

x (,t)

+ C‖β̃ – β‖L∞(,t)‖ũ‖
L∞

t Lρ
x (,t)

+ C‖V‖
L


+ε

‖α̃‖L∞(,t)‖ũ – u‖
L

t L


–ε
x (,t)

+ ‖V‖
L


+ε

‖α̃ – α‖L∞(,t)‖u‖
L

t L


–ε
x (,t)

+ C‖V‖L∞‖α̃‖L∞(,t)‖ũ – u‖L
t L

x (,t) + ‖V‖L∞‖α̃ – α‖L∞(,t)‖u‖L
t L

x (,t)

≤ C‖ũ – u‖
L
γ ′


t Lρ

x (,t)
+ C‖ũ – u‖

L
t L


–ε
x (,t)

+ C‖ũ – u‖L
t L

x(,t)

+ C‖α̃ – α‖H(,t) + C‖β̃ – β‖H(,t), (.)

which, together with Lemma ., implies that for every admissible pair (γ ,ρ)

‖ũ – u‖Lγ
t Lρ

x (,T) ≤ C‖α̃ – α‖H(,T) + C‖β̃ – β‖H(,T), (.)

where C depends on ‖ũ‖L∞((,T),H), ‖u‖L∞((,T),H), T , γ . In addition, by a similar argument
to that of (.), the embedding W , 

–ε ↪→ L


–ε , we obtain

‖∇ũ – ∇u‖Lγ
t Lρ

x (,t)

≤ C
∥
∥β̃

(
W ∗ |ũ|)∇ũ – β

(
W ∗ |u|)∇u

∥
∥

L
γ ′


t L

ρ′


x (,t)

+ C
∥
∥β̃

(
W ∗ ∇|ũ|)ũ – β

(
W ∗ ∇|u|)u

∥
∥

L
γ ′


t L

ρ′


x (,t)

+ C
∥
∥(α̃ – α)∇Vũ

∥
∥

L
t L



x (,t)

+ C
∥
∥α∇V(ũ – u)

∥
∥

L
t L



x (,t)

+ C
∥
∥(α̃ – α)∇Vũ

∥
∥

L
t L

x(,t) + C
∥
∥α∇V(ũ – u)

∥
∥

L
t L

x(,t)

+ C
∥
∥(α̃ – α)V∇ũ

∥
∥

L
t L



x (,t)

+ C
∥
∥αV∇(ũ – u)

∥
∥

L
t L



x (,t)

+ C
∥
∥(α̃ – α)V∇ũ

∥
∥

L
t L

x(,t) + C
∥
∥αV∇(ũ – u)

∥
∥

L
t L

x(,t)

≤ C‖ũ – u‖Lγ
t Lρ

x (,t) + C
∥
∥∇(ũ – u)

∥
∥

L
γ ′


t Lρ

x (,t)

+ C‖α̃ – α‖H(,t) + C‖β̃ – β‖H(,t) + C‖ũ – u‖L
t L

x (,t)

+ C
∥
∥∇(ũ – u)

∥
∥

L
t L


–ε
x (,t)

+ C
∥
∥∇(ũ – u)

∥
∥

L
t L

x (,t). (.)
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Hence, it follows from Lemma . and (.) that for every admissible pair (γ ,ρ)

‖ũ – u‖Lγ ((,T),W ,ρ ) ≤ C‖α̃ – α‖H(,T) + C‖β̃ – β‖H(,T), (.)

where C depends on ‖uj‖L∞((,T),H), ‖u‖L∞((,T),H), T , γ .
Therefore, in order to prove this lemma, we only need to show that there exist ε > 

and M >  such that if α̃ and β̃ satisfy ‖α̃ – α‖H(,T) < ε and ‖β̃ – β‖H(,T) < ε, then the
corresponding solution ũ exists on [, T] and ‖ũ‖L∞((,T),H) ≤ M.

To this aim, we set

M =  sup
≤t≤T

∥
∥u(t)

∥
∥

H + . (.)

With the notation of Lemma ., let δ = δ(A, B, M), where A = ‖α̃‖L∞ , B = ‖β̃‖L∞ and M is
given by (.). We infer from Lemma . that ũ exists on [, δ] and that

‖ũ‖L∞((,δ),H) ≤ ‖u‖H . (.)

On the other hand, by (.), we have

∥
∥ũ(δ) – u(δ)

∥
∥

H ≤ C‖α̃ – α‖H(,T) + C‖β̃ – β‖H(,T). (.)

Taking ε such that Cε < M/, it follows that ‖ũ(δ)‖H < M. Hence, we can repeat the argu-
ment to continue the solution also in the time interval [δ, δ], and so on. Since the solu-
tion u(t) exists on [, T∗), and for any  < T < T∗, we consider [, T] ⊂ [, δ] ∪ · · · ∪ [(N –
)δ, Nδ], N = [ T

δ
] + , where [·] denotes the integer part of the number. Thus, the solution

ũ exists on [, T] and ‖ũ‖L∞((,T),H) ≤ M. This completes the proof. �

Proof of Theorem . Given T ∈ (, T∗). Let A = ‖α‖L∞(,T), B = ‖β‖L∞(,T) and M =
sup≤t≤T‖u(t)‖H + . With the notation of Lemma ., setting δ = δ(A, B, M). We infer
from Lemma . that uj exists on [, δ] and satisfies

lim sup
j→∞

‖uj‖L∞((,δ),H) < ‖u‖H . (.)

Applying Lemma ., we see that the conclusion holds on the interval [, δ].
Let  < l ≤ T be such that uj exists on [, l] for j sufficiently large and

lim sup
j→∞

‖uj‖L∞((,l),H) < ∞. (.)

Then we infer from Lemma . that

uj → u in Lγ
(
(, l), W ,ρ) as j → ∞ (.)

for every admissible pair (γ ,ρ). In particular, uj(l) → u(l) in H as j → ∞, which, together
with the definition of M yields that ‖uj(l)‖H < M. Applying Lemma . with the initial
value uj(l), it follows that uj exists on [, l + δ] and

lim sup
j→∞

‖uj‖L∞((,l+δ),H) ≤ C. (.)
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It follows from Lemma . that the estimate (.) holds with l replaced by l + δ provided
l + δ ≤ T . Iterating this argument, we see that

lim sup
j→∞

‖uj‖L∞((,T),H) ≤ C. (.)

This estimate with Lemma . yields the desired results. �

4 Conclusions
In this paper, we consider the stability for the nonlinear Schrödinger equation (.) of
Hartree type under the perturbation of coefficients. We first obtain the Lipschitz con-
tinuity of the solution u = u(α,β) with respect to coefficients α and β by using Strichartz’s
estimates, and then prove that this equation is stable under the perturbation of coefficients
by a bootstrap argument. Our results improve some recent results. In particular, the proof
of the locally Lipschitz continuity contains a very general method that may be useful for
other related problems.
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