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1 Introduction
Motivated by the nonlinearity management and dispersion management [1, 2] in the ex-
perimental work in Bose-Einstein condensates and optics, nonlinear Schrédinger equa-
tions have attracted more and more attention in both the physics and the mathematics
fields; see [1-11] and the references therein.

In this paper, we consider the stability for the following nonlinear Schrodinger equation

of Hartree type under the perturbation of coefficients:

idu+ Au+ a(t)gl‘u + BEW * |luP)u=0, (&x)e[0,00)x R3, L

(0, %) = uo (%),

where u(t,x) is a complex-valued function in (¢,x) € [0,00) x R?, uy € H'(R?), a(t) and
B(t) are two real-valued functions in ¢ € [0, 00).

Equation (1.1) arises as phenomenological models in many different contexts: Hartree-
Fock theory, quantum field theory, etc. In particular, when W = |x|7" with 0 < y < N, this
equation describes the mean-field limit of many-body quantum systems and has been ex-
tensively studied in [4, 12-22]. An essential feature of the Hartree equations is that the
convolution kernel |x|™" still retains the fine structure of microscopic two-body interac-
tions of the quantum system. Therefore, it is interesting to extend mathematical meth-

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13661-017-0854-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-017-0854-1&domain=pdf
mailto:940508086@qq.com

Feng et al. Boundary Value Problems (2017) 2017:129 Page 2 of 9

ods developed for nonlinear Schrodinger equations with power nonlinearities |u#|’u to
the study of nonlinear Hartree equations.

When «(t) and S(¢) are two constants, Ma and Zhao in [23] investigated the stability
of (1.1) under the perturbation of parameters. More precisely, they proved the following
result.

Theorem A ([23], Theorem 1) Assume that «;, B; are positive numbers satisfying o; — 1,
B; — 1. Let u; be the H' solution of the following perturbed Hartree equation:

o 1
i0gu; = Auj + |—’u,» + ﬂ,«(ﬁ * |uj|2) w onR3, 1.2)
X X

with initial data
wjle—o = u(0) € H'.
Then there exists a subsequence, still denoted by u;, such that
w— u  weakly in L°(H"), 1.3)

where u a weakly continuous solution of (1.1) with a(t) =1, B(t) =1 and the initial data
u(0). Moreover, the energy and mass inequalities

E(u(t)) < E(u(0)), |u@)],> < |w0)],,, V>0, (1.4)

follow for this weak solution u, where

. ! 1t )P
E(u(t)):[;@ [E‘Vu(t,x)yzdx_E(W*|u|2)(x)|u(t’x)|2dx_E u |x3|c

] dx. (1.5)

In this paper, we will extend and improve this result in several aspects:
1. Our results hold for more general Hartree nonlinearities (W x |u|?)u, where
W e LP(R3) + L>®(R3) for some p > 1.
2. We extend this result to the time-dependent coefficients «(£) and B(£).
3. We prove the locally Lipschitz continuity of the solution u#(«, 8) with respect to the
coefficients @ and .
4. We prove that u; strongly converge to u in L”((0, T), W'*) as j — oo, for every
admissible pair (y,p) and all 0 < T < T*.
More precisely, we will prove the following results.

Theorem 1.1 Let W : R3 — R be an even, real-valued function and W € LP(R3) + L (R?)
Jor some p > 1, oj — a and B; — B in H'(0, T*). Assume that u is the solution of (1.1)
defined on the maximal interval [0, T*) with the initial value uy € H'. Suppose that u; is

the solution to the equation

0+ Au + ot/(t)ﬁu + Bi(O) (W |u*)u = 0,

(1.6)
u(0,%) = ug(x).
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Then:
(i) Givenany 0 < T < T*, the solution u; exists on [0, T if j is sufficiently large.
(ii) For every admissible pair (y,p) and 0 < T < T*, u; — u in LY ((0, T), wWbr) gs
j — oo. In particular, convergence holds in C([0, T], H') for 0 < T < T*. In addition,
for every admissible pair (y, p)

e — ull 1y 0,17, wrey < Cllay = @l o,y + CllB; = Bll o, 1) (L7)
where C depends on ug, T, y, p.

Remark For physical reasons, in this paper, we only study the three-dimensional case. In
fact, we can investigate more general unbounded potentials in RY. Our results also follow
if the potential V : RN — R is a real-valued function, satisfying:

(V1) Ve L4RN) + L®(RN) for some g > 1, g > N/2;

(V2) V,VV e LI(RN) + L>®(RN) for some g > 2, g > N/2.
A typical example satisfying these assumptions on V is # for some « > 0.

This paper is organized as follows: in Section 2, we will collect some preliminaries such
as local well-posedness, global existence and a Gronwall-type estimate. In Section 3, we
firstly obtain the Lipschitz continuity of the solution u = u(c, 8) with respect to coefficients

a and B, and then prove Theorem 1.1.

Notation In this paper, we use the following notation. C > 0 denotes various positive
constants. Because we only consider R3, we often use the abbreviations L" = L"(R3),
H' = H(R®). Given any interval I C R, the norms of mixed spaces LI(I,L"(R3)) and
L(I, H*(R®)) are denoted by || - ||L?Lw) and || - [|za@,ms), respectively. We recall that a pair
(g, r) is admissible if % = 3(% - %) and 2 < r < 6. For simplicity, we always denote V; = ﬁ XBo
and V;, = Ialc_l(l — XB, ), where By is the unit ball in R? centered at the original point, XB, i8
its characteristic function. It is obvious that V; € LT ,VVi e L7 with ¢ > 0 sufficiently
small, V5 € L* and VV, € L™,

2 Preliminaries

Firstly, we investigate the local well-posedness for (1.1). When « and § are two constants,
the local well-posedness of (1.1) has been studied in [4]. In our case, when the terms a‘?"‘
and BW x |u|?>u have to be estimated in some norms, due to o, 8 € H*(0, 00) < L*°(0, 00),
we only need to take L* norms of & and S. Therefore, by a similar method as that in [4],

we can prove the local well-posedness of (1.1).

Lemma 2.1 Assume that W : R® — R is an even, real-valued potential and W € L? +
L™ for some p > 1. Given A,B,M > 0, there exists § = 8(A, B, M) such that, for all o, €
HY(0, 00) satisfying ||at||r < A, ||Bllz < B and all uy € H" satisfying |uo |l < M, there
exists a unique solution u € C([0,8], H') of (1.1) and el oo ((0,8),11) < 2l ol 1. In addition,
the solution u of (1.1) satisfies

|u@)] 2 = luoll> 2.1)
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and
d_ . d@) [ |lultx)] B'(®) 2 2
EE(t)—— R dx — ) AS(W*M )(x)\u(t,x)\ dx, (2.2)
forallt e [0,5], where
1 @) lut,x)*  B()
E(u(t)) = /RS |:§|Vu(t,x)|2 - “T% - (W |u|2)(x)|u(t,x)|2] dx. (23)

Next, we consider the global existence for (1.1).

Lemma 2.2 Let W : R3 — R be an even, real-valued potential and W € L° + L™ for some
o >3/2. Ifug € H', then the solution u(t) of (1.1) exists globally.

Proof We first deduce from Holder’s and Young’s inequalities that

|’/‘(9C)|2 2 2
dx < C|Vill s llull® s +ClIVallzeellull}a (2.4)
Rr3 x| LT+3¢ L2-3¢
and
2\1,,12 4 4
/(W*IMI Noul® dox < CIWillgo lull* 4o + ClIWallzoo llull 2, (2.5)
R3 L2 -1

where W = Wj + W, with W; € L? and W, € L.
Thus, by (2.2), (2.4) and (2.5), we derive

1E |20 < Cle |z (VL s llull® g + I Vallze lluoli22)
0,7) 0,7) L1+3e L2-3¢

+ CIB ] oo,y (IWilar Nl s+ W2z latoll2)-
This and (2.3) yield

1/2

t t
E(¢) = E(0) +/ E'(s)ds < E(0) + <t/ (E’(s))2 ds)
0 0
1/2 2 2
< EO) + C2 | ooy IVl o 1042 6+ IVallie ol 2)
+ CE2| B a0,y (1WAl 1l 1o+ IWalluoe ol 2). (2.6)

Combining (2.2), (2.4)-(2.6), we obtain

|u(t, x)|?
x|

/ |Vu(t, %) dx < E(u(®)) + c/ dx + c/ (W s |uaf?) () (2, )| e
R3 R3 R3

<EQ0)+CIWill s _lul®> ¢ +ClVallzelluol?s
L1+3¢ L

2-3¢

+ ClIWillzo ull* 45+ ClIWallz< lluoll2- 2.7)
L2001
On the other hand, we have the following Gagliardo-Nirenberg’s inequalities:

2 1+3 1-3
lell® 6 =< Cllull™ el 2™
L2-3¢
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3
\ 5 aes
ol so < Cllu f sls” (2.8)
io

Taking ¢ such that 1 + 3¢ <2, and % <2, we infer from (2.7) and Young’s inequality with ¢
that

|u@)] ;0 < C(T Moz, 0,19, 1 Bllin o) for every ¢ € [0, T1, (2.9)
for every 0 < T < co. This implies that the solution u of (1.1) is global. O

Finally, we recall a Gronwall-type estimate which is vital to obtain the Lipschitz conti-
nuity of solution u(w, 8) with respect to coefficients « and B.

Lemma 2.3 ([24]) Let T >0,1<py<qy <00,1<p1<q1 <00, and a,b1,b, >0.Iff; €
L1(0,T), fo € L22(0, T) satisfying

Willza o, + W2llza2 0,0 < @ + Brllfillzer 0,0 + B2 2l Lr2 0,00

forall 0 <t < T, then there exists I" = I'(by, by, p,q, T) such that

Willzao,m) + If2llz20,1) < al.

3 The proof of main results
In this section, we first prove that the solution of (1.1) depends local Lipschitz continuously
on the coefficients « and 3, and then show our main results.

Lemma 3.1 Assume that W : R® — R is an even, real-valued function and W € IP + L®
for some p > 1. Given uy € H'. Let u € L>°([0, T*),H") be the corresponding solution of
(1.1) with coefficients o, B € H'(0, T). There exists & > 0 such that if & and B satisfy ||o —
allpr,r) <& 1B-8 20,1y < € and i is the corresponding solution of (1.1) with coefficients
& and B. Then:

(i) Givenany0<T < T*, the solution u exists on [0, T].

(i) For every admissible pair (y, p)

i = el o, 1y w0y < Cll@ = allpgio,zy + CIlB = Bllano 1y (3.1)
where C depends on ug, T, y, p. In particular,
i = ]l oo o,y < Cll@ = etllgo,ry + ClIB = Bllrnngo, -

Proof Firstly, we assume that the solution # exists on [0, T]. Note that the following
Duhamel’s formulation:
]

u(t) = U(t)ug + i/t U(t-s) (oz(s) |1| u(s) + (B(s)W |u(s)|2)u(s)> ds, (3.2)
0

where U(¢) := €™ denotes the free Schrédinger propagator, which is isometric on H* for
every s > 0; see [4]. This yields

a(t) —u(t) = i/b(t-r)(%(&i;-au) +(B(W i) it — B(W x |u|2)u))(r)dr. (3.3)
0
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In the following, we set p; = 35, taking y1 such that (31, p1) is an admissible pair. Applying
Strichartz’s estimate to (3.3), we deduce from Holder’s inequality that for 0 <t < T

[z - u”LZL;?(O,t)

= CLB(W 1) BV s Py i
t =X 4

+ C” (ﬁ - ﬂ)(W* |I'tlz)l/l”Ly{Lpi(o £)
t x Y

+ C” Vi@ — au) HL?L,? o + CH Voo — au) HL}L%(OJ)

< CBI0) (11 1 g * 11 01, 1 =

” J’1 L”l 0,0)
+ ClB = Bloo 1 g + CIVAIL 3 1@ 001 - ul
tL £ (0,t)
+Vall B lla—alieppllull - 2
L2172 (0,0)

+ ClIVallzee l@lizooon 2 = ull 1120, + Vallzoo o = ellzooon 1l 12220 0)

<Cla=ul yy ,,  +Clii=ul , 3+ Clii=ullyizeq

ttx

+Cll& = ellzo + CIB = Bllrio, (3.4)

which, together with Lemma 2.3, implies that for every admissible pair (y, p)

i~ 1l 20,7y < Cllé ~ allsio ) + ClIB ~ Bllrnomy (3.5)

where C depends on || || oo (0, 79,11y 1]l Lo (0, 7,111 T'» ¥ - In addition, by a similar argument
6
to that of (3.4), the embedding Whis s [Te , we obtain

Vit =Vl 7 120

Q ~12 ~ 2 y
<C|B(W x |it]*)Vir - B(W * |ul )Vu||LtylL§1(0’t)
+C|B(W = V)it - B(W * V]ul?)

u || ror
Y., P
L 0,8)

+ C||(&—a)VV1L~t||L2Lg(O )+ C||aVV1(u u)|| %(0 )
t =X ’t .X il

+ C” (o - “)VV2L~‘HL}L§(0¢> + CH“VVZ(ﬁ —u) ”L}L,%(o,t)

+C|| a - oc)V1Vu|| +C||aV1V(u u)“
L%Lx (0,2) L2L (0,2)

+ C” (@ - a)VZV’:‘HL}L;i(o,t) + CHO‘VZV(’:‘ - u) ”L}L,%(o,:)

= Clla=ullypppy + C[V@E-w] » ,, o
t X ’

+Clla —allmy + CllB = Bllimoy + Clli = ull 21210,

(3.6)

=22 (0,¢)

VG-l 3, CIVE- D0y
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Hence, it follows from Lemma 2.3 and (3.5) that for every admissible pair (y, p)

I — ull 1y 0.1y, wiry < Cll& = tll oy + CIB = Bllrio 1y (3.7)

where C depends on ||| zoo(0,7),11) 14l Lo (0,7, 11)» T V-

Therefore, in order to prove this lemma, we only need to show that there exist ¢ > 0
and M > 0 such that if @ and 8 satisfy [|& — ol 1(0,1) < € and 18 - Bllmo,1) < & then the
corresponding solution # exists on [0, T'] and |||l oo (0,7 11y < M.

To this aim, we set

M =2 sup ||u(t)||H1 +1. (3.8)
0<t<T

With the notation of Lemma 2.1, let § = §(A, B, M), where A = ||&|| 1, B = || Bl and M is
given by (3.8). We infer from Lemma 2.1 that % exists on [0, §] and that

122l oo (0,), 1) < 2l140 [l 1 3.9)

On the other hand, by (3.7), we have

|(8) = u(®) | ,p < Cllé = allo,r) + CIB = Blingo,r)- (3.10)

Taking e such that Ce < M/4, it follows that [|%(8)|| ;1 < M. Hence, we can repeat the argu-
ment to continue the solution also in the time interval [§,248], and so on. Since the solu-
tion u(t) exists on [0, T*), and for any 0 < T' < T*, we consider [0, 7] C [0,8]U--- U [(N —
1)§,N§], N = [%] + 1, where [-] denotes the integer part of the number. Thus, the solution
i exists on [0, T] and ||z]| oo (o, 1),11) < M. This completes the proof. g

Proof of Theorem 1.1 Given T € (0,T%). Let A = |lt|lzo0, 1), B = l1Bllzoo,r) and M =
2supy ;<7 |lu(@)ll g + 1. With the notation of Lemma 2.1, setting § = 6(A, B, M). We infer
from Lemma 2.1 that u; exists on [0, 8] and satisfies

limsup |4l 200 (0,5),11) < 2l1#0 ]l - (3.11)

j—00

Applying Lemma 3.1, we see that the conclusion holds on the interval [0, §].
Let 0 </ < T be such that u; exists on [0, ] for j sufficiently large and

lim sup |24 oo 0,011y < OC- (3.12)
Jj—o00

Then we infer from Lemma 3.1 that
w—u inL"((0,1), W) asj— oo (3.13)

for every admissible pair (y, p). In particular, #;(!) — u(l) in H' as j — 0o, which, together
with the definition of M vyields that ||u;(})||;n < M. Applying Lemma 2.1 with the initial
value u;(/), it follows that u; exists on [0,/ + é] and

lim sup ||M/||L°°((0,l+8),H1) < C. (314)

j—o00
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It follows from Lemma 3.1 that the estimate (3.13) holds with [ replaced by [ + § provided
[+ 68 < T. Iterating this argument, we see that

lim sup ||uj||L°°((0,T),H1) < C. (3.15)
j—o0
This estimate with Lemma 3.1 yields the desired results. O

4 Conclusions

In this paper, we consider the stability for the nonlinear Schrodinger equation (1.1) of
Hartree type under the perturbation of coefficients. We first obtain the Lipschitz con-
tinuity of the solution u = u(e, ) with respect to coefficients & and 8 by using Strichartz’s
estimates, and then prove that this equation is stable under the perturbation of coefficients
by a bootstrap argument. Our results improve some recent results. In particular, the proof
of the locally Lipschitz continuity contains a very general method that may be useful for

other related problems.
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