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Abstract

In this paper, we apply critical point theory and variational methods to study the
multiple solutions of boundary value problems for an impulsive fractional differential
equation with p-Laplacian. Some new criteria guaranteeing the existence of multiple
solutions are established for the considered problem.
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1 Introduction and main results
Considering the following impulsive fractional differential equations:

(DD, (DY u(t)) + |u(®)P~2u(t) = f(t,ult)), 0<t<T,tt,
A(DEI®, DI W) () = Lu(t), j=1,2,...,m, (1.1)
u(0) =u(T) =0,

where 0 < o0 <1, ®,(s) = |s|P~2s (s # 0), ®,(0) =0, p >1 and ;DY denotes the right
Riemann-Liouville fractional derivative of order o; 0 =ty <#; <+ -+ < )51 = T and

A, G07)) ) = 5, D167 - D, 607) ),
where
D50, (5D u) (4) = Jim DF @, (5D u) (1),
j

(D10, (5D) (1) = Tim D, (5 05) )
]

oD is the left Caputo fractional derivative of order o, f € C([0, T] x R, R) and I; € C(R, R).

Fractional calculus is a generalization of classical derivatives and integrals to an arbitrary
(non-integer) order. It represents a powerful tool in applied mathematics to deal with a
myriad of problems from different fields such as physics, mechanics, electricity, control
theory, rheology, signal and image processing, aerodynamics, electricity, etc. (see [1-3]
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and the references therein). Recently the theory and application of fractional differential
equations have been rapidly developed. The existence and multiplicity of solutions to such
problems have been extensively studied by many mathematicians; see the monographs of
Podlubny [1], Kilbas [4], Diethelm [5], and also [6—12] and the references therein. The
main classical techniques to study fractional differential equations are degree theory, the
method of upper and lower solutions, and fixed point theorems. For some related work
on the theory and application of fractional differential equations, we refer the interested
reader to [11-17] and the references therein.

In recent years, variational methods and critical point theory have already been applied
successfully to investigate the existence of solutions for nonlinear fractional boundary
value problems [18—27]. By establishing a corresponding variational structure and using
the Mountain Pass theorem, the authors [18] first dealt with the existence of solutions
for a class of fractional boundary value problems. Since then the variational methods are
applied to discuss the existence of solutions for fractional differential equations. The liter-
ature on this approach has been extended by many authors as [20-26]. Moreover, the p-
Laplacian introduced by Leibenson (see [28]) often occurs in non-Newtonian fluid theory,
nonlinear elastic mechanics and so on. Note that, when p = 2, the nonlinear and nonlocal
differential operator ,D.®,(5D¥) reduces to the linear differential operator ,D7{ D¢, and
further reduces to the local second-order differential operator —d?/dt? when « = 1.

Further, some authors have started to discuss the existence of solutions for impulsive
fractional boundary value problems by using variational methods [29-37]. Taking a frac-
tional Dirichlet problem with impulses as a model, Bonanno et al. [29] and Rodriguez-
Lépez and Tersian [30] investigated the following fractional differential equations with

impulsive effects:

(DEEDYu(t)) + a(t)u(t) = Af(bu), O0<t<T,t+t,
AGDF GDIU(G) = nh(u), j=12,...,m, (1.2)
u(0) = u(T) = 0,

where A, u € (0, +00) are two parameters. By applying the critical point theorem and vari-
ational methods, they obtained the existence results of at least one and three solutions
for problem (1.2). In [32], the authors considered a class of nonlinear impulsive fractional
differential systems including Lipschitz continuous nonlinear terms. Under suitable hy-
potheses and by applying variational methods, they obtained some new criteria guaran-
teeing that the studied systems have at least two nontrivial and nonnegative solutions.
Furthermore, under appropriate hypotheses and by applying Morse theory coupled with
local linking arguments, Zhao et al. [36] obtained the existence of at least one nontrivial
solution for problem (1.2), in the case A = u = 1.

Motivated by the described work, our goal is to apply variational methods to problem
(1.1) and prove the existence of weak solutions under some suitable assumptions. With the
impulsive effects and p-Laplacian operator taken into consideration, the corresponding
variational functional ¢ will be more complicated. To the best of our knowledge, with
exception of [38], little work is done on the existence and multiplicity of solutions for
impulsive fractional differential problems with p-Laplacian by using variational methods.

The main results of this paper are different from the aforementioned results, and extend
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the recent results studied in [22, 25, 29-35] in the sense that we deal with the case p # 2.
The effectiveness of our results is illustrated by some examples.
In this paper, we need the following assumptions on the nonlinearity f and the impulsive
terms I;:
(H1) There exists a constant > p such that [j(u)u < u foulj(s) ds < 0 for any
ueE*”\{0},j=1,2,...,m, where E*? will be introduced in Definition 2.3.
(H2) There exists a constant ¢ € (p, u] such that 9 F(¢, u) < f(¢t, u)u for all u € E*?,
t € [0, T], where F(t,u) = fouf(t, s)ds.
(H3) There exist constants 8,y > 0 such that F® < § and F,, > y, where
F(t,u) . F(tu)

F% = lim sup —— .
o P lul? lul—co |ul?

(H4) There exist constants §; > 0 such that foulj(s) ds > —6;|ul", for all u € E*? \ {0},
wherej=1,...,m.
Here are our main results.

Theorem 1.1 Suppose that (H1)-(H4) hold. Then problem (1.1) admits at least two weak
solutions.

Theorem 1.2 Suppose that (H1)-(H4) hold. Moreover, f(t,u) and I(u) are odd about u,
where j =1,...,m. Then problem (1.1) admits infinitely many weak solutions.

The rest of this paper is organized as follows. In Section 2, we present some basic def-
initions, lemmas and a variational setting. In Section 3, we give the proofs of our main

results.

2 Variational setting and preliminaries
To apply critical point theory to discuss the existence of solutions for problem (1.1), we
present some basic notations and lemmas and construct a variational framework, which
will be used in the proof of our main results.

Suppose that X is a real Banach space and the functional ¢ : X — R is differentiable. The
functional ¢ satisfies the Palais-Smale condition if each sequence {u,} in the space X such
that {¢(u,)} is bounded and lim,,—, », ¢’ () = 0 admits a convergent subsequence.

Lemma 2.1 (Mountain pass theorem; see [39]) Let¢ € C'(X,R), and ¢ satisfies the Palais-
Smale condition. Assume that there exist uy, u; € X and a bounded neighborhood Q2 of ug
such that u, is not in Q2 and

inf ¢(v) > max{g(uo), $(n)}.
Then there exists a critical point u of ¢, i.e., ¢'(u) = 0, with

¢ (u) > max{¢(uo), p(u1) }.

Obviously, if either uy or uy is a critical point of ¢ then one obtains the existence of at least

two critical points for ¢.
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Lemma 2.2 (Theorem 38.A in [40]) For the functional ¢ : B C X — R with B not empty,
min,ep ¢(u) = ¢ admits a solution in the case that the following hold:
(i) X is a real reflexive Banach space;
(i) B is bounded and weak sequentially closed;
(iii) ¢ is weakly sequentially lower semi-continuous in B, i.e., by definition, for every

sequence {u,} in B such that u, — u as n — 00, one has ¢(u) <lim, . ¢(u,).

Lemma 2.3 (Theorem 9.12 in [41]) Let X be an infinite dimensional Banach space and
let ¢ € CY(X,R) be even, satisfying the Palais-Smale condition, and $(0) = 0.If X =Y & Z,
where Y is finite dimensional, and ¢ satisfies
(i) there exist constants p,n > 0 such that ®los,nz =1, and
(ii) for each finite dimensional subspace W C E, there is an r = r(W) such that ¢ <0 on
WA\ Br(W)’
then ¢ has an unbounded sequence of critical values.

Now we present some definitions and notations of the fractional calculus as follows (for
details, see [1, 4, 5, 13, 18]):

Denote by AC([a, b]) the space of absolutely continuous functions on [, b].

Definition 2.1 For « > 0, the left and right Riemann-Liouville fractional derivatives of
order « of a function f € AC([a, b]) are defined by

crine & petppy.. LA
DEf(0) = ZaDi (1) = e dt( / (t—s) f(s)ds), t>a,

o _ d o—1 . 1 d b -
thf(t):_%tDb f(t)——m%(v/t (S—t) f(S)dS), t<b.

Definition 2.2 For o > 0, the left and right Caputo fractional derivatives of order « of a
function f € AC([4, b]) are defined by

¢ o __ o o—1g7 04\ _ 1 ! o)y

DEFO = DI (0= oDE O = s ( / (t—s) f(s)ds),
1 b

DL = D 0=~ D5 1 0=~ ([ G- 0.

When o =1, we obtain from Definitions 2.1 and 2.2 ¢Dif(¢) = f'(¢), ?D}j(t) =—f'(t).

Let C5°([0, T],R) be the set of all functions x € C*°([0, T'], R) with x(0) = x(T) = 0 and
the norm ||%| o = maxio,z] [%(£)|. Denote the norm of the space L?([0, T],R) for 1 <p < oo
by llxlle = (fy x(s)I” ds)"”.

Definition 2.3 Let 0 < < 1 and 1 < p < co. The fractional derivative space E;* (0, T
(denoted by E*? for short) is defined by the closure of C§°([0, T'], R), with respect to the

following norm:

T T
)Py = / | Diue)| dt + / lu(®)|” dt, VueE“?(0,T). (2.1)
0 0
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According to [18], Proposition 3.1, it is well known that the space E*? is a reflexive and
separable Banach space. For u € E“?, we have u, {D{u € L”([0, T1,R), u(0) = u(T) = 0.

Proposition 2.1 ([13]) Let 0 <« <1land1< p < oo. For any u € E*?, we have

el < Ap D7 1] (22)
where A, := % is a positive constant, and if o > }9, then
ltlloo < Aco D2 ] (2.3)

1
TP

g =p(p — 1)1 > 1 are two positive constants.
L(a)(aq-q+1)4

where Ao =

Proposition 2.2 ([13]) Let}% <a<landl<p<oo.Foranyuec E*?, the imbedding of E**
in C([0, T, R) is compact.

Proposition 2.3 ([18], Proposition 3.3) Assume that 1% <a<landl<p< oo, and the
sequence {uy} converges weakly to u in E*?, i.e., ux — u. Then ur — u in C([0, T],R), i.e.,

||ux — t||oo = O, as k — oo.

Definition 2.4 Let AC([0, T']) be the space of absolutely continuous functions on [0, T7.
A function

Ly

uecjueAC([0,T]): " SDCu@)f + |u@)|? dt<o0,j=0,1,...,m

i ot
/

is called a classical solution of (1.1), if u satisfies the first equation of (1.1) a.e. on [0, T] \
{t1,..., ty}, the limits D% D, (§D2 w)(t) and tD‘%‘IQp(gD‘;‘u)(t;) exist and satisfy the im-
pulsive conditions of (1.1), and boundary condition #(0) = u(T) = 0 holds.

Definition 2.5 We say that a function u € E*? is a weak solution of problem (1.1), if the

following identity:

T T
f |6 D u(e) P26 D2 u(e) D (e dt + / |u(@) [P u(e)v(e) dt
0 0
m T
+le(u(t,-))v(t,)= fo St u®)v(e) dt (2.4)
j=1

holds for any v € E**.

In order to study problem (1.1), we define the functional ¢ : E*” — R by putting

T m u(t;) T
(p(u)::/o %’(|6D‘;‘u(t)|p+ |u(t)|p)dt+i21:/(; Ij(s)ds—/o F(t,u(t))dt
T
0

1 » m u(tj)
- - op I.(s) ds — F(t, dt. 2.5
pIIuIIE, +]§=1/0 () ds / (tu(®)dt (2.5)
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It is clear that ¢ is continuous and differentiable at any u € E*” and

T T
fp’(u)(V)=fo |8D‘;‘u(t)|P*26D‘;‘u(t)gD‘;‘v(t)dt+fo |”(t)’p72u(t)v(t)dt
" T
) L(ue)v) - fo F(t,u(®))v(e) dt
j=1

for any v € E*”. Moreover, the critical point of ¢ is a weak solution of (1.1).

Proposition 2.4 (see [4, 13])
(i) Leta>0,pzl,pzl,andi+é <l+a«a (p#l,q#l,inthecasewhen}%+% =1l+a).
Ifuel?(a,b)andv e L(a,b), then

b b
/ (D7 u(t))v(t) dt = / u(t)(:D;v(t)) dt. (2.6)

(i) LetO<a <1, ue AC([a,b)) and v e LP(a,b) (1 <p < 00). Then

b b
/ w(t) (D)) dt = D u(e)v(®)]) + / D2 u()v(d) dt. 2.7)

Proposition 2.5 For any u,v € E*?, the following identity holds:
T -2
/0 |60 u(?) |p oD u(t)g DS v(e) dt

= / TtDD;(|gD‘;u(t);p’nggu(t))v(t)dt
0

=3 AEDE (5D ute) "D u(®)) )v(). (2.8)

j=1
Proof Since §D%g(t) = ¢D?"'¢g'(¢) and ;D% g(¢) = —(tD"Flg(t))’, it follows from (2.6) and (2.7)

that

T m tj+1
fo oDz u(®)|" s DE w0 Div(e) de = f DM (|6 DE (o) [P 25 D ue))V (8) de
j=0 V4

m
= > D5 (D5 s D u@)v(e) I
j=0

m 1
£y / " D (|5 DEu(e) [P DR u(e))(e) dt
j=0 v

T
, fo D (|5 D ()" D () () it
= > AWDE (5Dl 5D () ).
j=1

This completes the proof. O
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Proposition 2.6 If the function u € E*? is a weak solution of (1.1), then u is a classical
solution of (1.1).

Proof By standard arguments, if u is a classical solution of (1.1), then u is a weak solution.
Conversely, if u € E*? is a weak solution of (1.1), then by the definition of a weak solution,
(2.4) holds for any v € E*?. For j € {1,...,m} we choose a function v € E*” with v(t) = 0
for every t € [0,¢] U [tj,1, T]. Then

i1 T Gl
/ |6 D% u(e) |6 D u(e)g D v(e) dit + / (@) [P u(e)v(e) dt = / f(&u®)v(e) dt
0

5 5

and

" D) 2 D v de = [ (|5 Do) D8 d
ot o o = 1|0 tu(t)| 0 t”(t))"(t) ¢

< 00, (2.9)
which implies
(D®, (5D ult)) + [ul®)[”u(®) = £ (¢, u(z)) (2.10)

for almost every t € (¢,¢.1). Since u € E*” C C([0,T]), one has ft’“(| Diu(t)|P +
|u(£)|P)dt < 00, j = 0,1,...,m and u satisfies the first equation of (1.1) for almost every
t €(0,T). By (2.9), since v € LP(t, tj.1), (D5 P, (DY u(2)) = (tD"H(Dp(gDau(t)))/ € LP(tj, tj.1)
and then D%~ 1‘IIJP(CD"‘M(L‘)) € AC([tj, tj,1]). Hence the following limits:

(DA (58 (i) = lim (D, () 0),

J

DF @, (D1)u(t) = Jim (DF ' @,(6071)(0)

exist.

Now multiplying (2.10) by v € E*?, v(T) = 0 and integrating between 0 and 7', we have

m m
> ALDE([sDrule) | Drue) i) = > 4 (ult))v()-
j=1 j=1

Hence, A[D%([§D%u(t) P25 DY u(t)))] = L(u(t;)) for every j = 1,...,m. So u satisfies the
impulsive conditions of problem (1.1). Similarly, u satisfies the boundary conditions.
Therefore, u is a classical solution of (1.1). O

3 Proof of main results
In this section, we will study the existence and multiplicities of problem (1.1). First, we give
a Lemma.

Lemma 3.1 Assume that (H1) and (H2) hold. Then the function ¢ : E*? — R defined by
(2.5) is continuous differentiable and weakly sequentially lower semi-continuous. Moreover,
it satisfies the Palais-Smale condition.
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Proof From the continuity of f and I;, we know that ¢ and ¢’ are continuous and dif-
ferentiable. Let ux — u in E*?. Then |u|lger < limy_, . inf|lug] ger, and {u} converges
uniformly to u in C([0, T1). So

ug (&)

1 “ T
Jlim info(uy) = lim :;uukn‘;p + 121 /0 I(s)ds - /0 F(t,u(0)) dt}
T
0

1 » m u(t]-)
- o,p I d - F ) d = ) 3.1
=~ lulf, +/ZI/0 () ds / (6, ue)) dlt = () (3.1)

which implies that ¢ is weakly sequentially lower semi-continuous.

We will verify that ¢ satisfies the Palais-Smale condition. Assume that {}xen C E*? is
a sequence such that {¢(u)}ken is bounded and limg_, oo ¢'(21x) = 0. We firstly prove that
{ur}ken is bounded in E?. Obviously, there exists a constant ¢ > 0 such that

|¢J(uk)| <c o' (u) — 0 ask— oco. (3.2)

Then we have
T m
/ S (& ur(@) uic(0) dt = g |'pap + ZI;(Mk(t;)) — @' (wi)u (2). (3.3)
0 =
From condition (H1), we have

ui (&) ui (&)
o [ i ds - Hm)u) = 0 -0 [ 50ds=0 (> 0)
0 0

which together with (3.2), (3.3) and the condition (H2) makes

m )
D o(ui) — ¢ (wi)ux(t) = <% - 1) N2tk |17y + Z(ﬁfo ' Ii(s) dS—I/(Mk(t/))Mk(tj))

j=1
T
+ / (f (& (@) uxc(£) — O F (£, uie(2))) dt
0
v » .
>\ — -1 |llukllpep (since ¥ > p),

p

which implies {u;} is bounded in E*?.

Since E*” is a reflexive Banach space, going if necessary to a subsequence, we can assume
that uy — uin E*?, ux — u in LP([0, T']) and ux — u uniformly in C([0, T']). Hence

S m0) = f (& u®)) s (8) — () dt — 0,

(3.4)
S 0k 6)) = (6, t)) s (5) — u(5) — O,
as k — 0o. Moreover, by ¢'(ux) — 0 as k — 0o, we have
(@ () = @' (), wic — 1) < || 0" (i) ||(Ea,p)* Nosge = wll per — (9" (1), g — 1) — O (3.5)

as k — oo.
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Let
T o 2
oy, k) = fo (|6 D0 [P~ DL wa (0) - | DL u(®) [P~ DY (@) (5 D% i () § DY u(t) )
and
T -2 -2
P (p, k) := /0 (| " ur(®) = (@) 0(0)) (s () — ua(t) ) it

Notice that

(¢ () — ¢’ (W), i — 1) = B, 0, K) + G, ) + Y (1 (a(8) - (& u(5)) (i (&) — w(ty))
j=1

T
= [ o) - (6u0) 0 - o)
which together with (3.4) and (3.5) yields
o o, k) +p(p, k) > 0 ask — oo. (3.6)

From the well-known inequality (see [9], Lemma 4.2)

(272 = 1yl 29)(x - 9), itp>2,

|x_y|p E 2 2 4 2-p .
((IxlPx = [yP=2y) e =) 2 (6P + [yIP) 27, ifl<p<2,

for all x,y € R. Then there exist constants ¢; > 0 (i = 1,2, 3,4) such that

T .
a |0D“Mk(t) cDYu(t)|P dt, ifp>2,
¢(P,a, k) 2 0 D‘Xuk(t ODoc t)| . (3'7)
Zfo (D (O[T, D —dt, ifl<p<2,
and
T .
c3 [ |ur(t) —u(t )Ip dt, ifp>2,
oK) = b Jeag (O)-u . (3.8)
C4f0 Wdt ifl<p<?2.

When 1 < p < 2, by the Holder inequality, we have

T T c o c N 2 5
|0Dtuk(t)—0Dtu(t)| :
¢ DYui(t) - SDu(t)|”) dt < (/ - . at
fo (joPzue(®) - 6D u(0)F) o (§DFu(®)] + 5D u(t)])2>
2-p

T v
- ( [ (sotmo]+ sz ar)

2p
2

M([5D7 w7 + 607 l7,)

T c Do ¢ Na 2 p
I6.D% u(£) — §DY u(t)| ) ;
' at) , 3.9
</0 (T D uc0)] + 15 DE ) )er (3.9)
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where M = 2?-D2-P)/2 5 3 positive constant. Similarly, we have

T p
/0 () = u®)) de < M(Juely + ully) *

T () — u()? 5
</o (|l (B)] + |u(2)])>> dt) : (3.10)

From (3.7) and (3.9), we have

p-2

_2 p—z T r
6, k) = M (el + 1l?,) 7 ( / 13D?uk(t)—gb§*u<t>\”dt)
0

p-2

_2 p=2
= M7 ([l + ullsy) - 5D aie = )], (3.11)
It follows from (3.8) and (3.10) that
-2 p P\ 52 2
o, k) = ca P (Ll + lully) 7 - Nluax — ull 7. (3.12)

When 1 < p <2, by (3.11) and (3.12), we get
¢, k) + ¢ (0, k) = My (|5D% (s — ) |3, + loak = ull2) = M|t = | 2 (3.13)

where

p2 =
My =M 7 min{ca (luellf, + ullp) 7 5 callluxlly + Nulfy) 7}

When p > 2, in view of (3.7) and (3.8), we have
o, k) + d(p, k) = Mo (4D (i — w)[[%, + Noak — ull?)) = Mol — il (3.14)

where M, = min{cj,c3}. Therefore, it follows from (3.6), (3.13) and (3.14) that
llug — ul|per — 0 as k — +00. That is, 1y — u in E*?. Hence, ¢ satisfies the Palais-Smale

condition. O
Now we prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1 Step I: Obviously, ¢(0) = 0, and Lemma 3.1 has shown that ¢ satisfies
the Palais-Smale condition. For any r > 0, take @, = {u € E*? : |lu| ger < r}. It is easy to
show that ©, is bounded and weakly sequentially closed. Indeed, if we let {u,} C 2, and
u, — uasn — 0o, by the Mazur Theorem [10], there is a sequence of convex combinations
Vi = iy Bt with Y7, B, =1, By, > 0, i € N such that v, — u in E*?. Since Q, is a
closed convex set, we have {v,,} € Q, and u € ,.

From Lemma 3.1 we know that ¢ is weakly sequentially lower semi-continuous on .
Besides, E*? is a reflexive Banach space, so by Lemma 2.2 we see that ¢ has a local mini-

mum %, € Q,. Without loss of generality, we assume that ¢ (i) = min{o(u) : u € Q,}. Now
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we will prove that ¢(uo) < inf{g(x) : u € Q,} for some r = ry. Indeed, from (H3) we may

choose 1y, € > 0 satisfying

ry m
F(t,u) <8lul”, forllullpr <ro,  O<e<=2—r) Y §AL —rgsAD. (3.15)
j=1

For every u € 0Q2,, with |lu| ger = 1o, from (2.2), (2.3), (2.5), (H4) and (3.15) we have

1 " T 5
() = = |ullfey =Y aj\u(t,)y“—a/ |lu(t)|” dt
p ) 0
rp m
> Do) Y HAL —rAD >,
p :
j=1

which implies that ¢(u) > ¢ for every u € 9R2,,. Moreover, ¢(ug) < ¢(0) = 0. Then ¢(uy) <
9(0) < & < @(u) for every u € 99Q,,. Hence ¢(ug) < inf{p(u) : u € 32,,}. So ¢ has a local
minimum %y € 9£2,,.

Step II: We will verify that there exists u; with |lu]|ger > ro such that ¢(u1) < inf{p(u) :
u € 982, }, where ry is given above.

In view of (H3), we choose a sufficiently large r; such that for all ||u||ger > 11 > 19

F(t,u) > ylul”. (3.16)

From (H1), we have the following:

I,
il <= /) , forus>0, (3.17)
u " [ L(s)ds

I,
2 > #, for u <0. (3.18)
u "~ [ L(s)ds

Integrating (3.17) and (3.18) from T to u# and u to — T, respectively, we get

u ut T
/ Ii(s)ds < —/ Ii(s)ds, foru>T,
0 " Jo

‘ ([T
/ Ii(s)ds < / Ii(s)ds, foru<-T.
0 T Jo

i

Note that fOTIj(s) ds < 0 and fo_TIj(S) ds < 0. We take

T -T
/ Ii(s)ds / Ii(s)ds } >0,
0 0

’

y= T* 'min{

and we get

/ Ii(s)ds < —yjlul”, Vue(—o00,-T]UI[T,+00). (3.19)
0
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Clearly, foulj(s) ds is continuous in [-T, T], so there is a constant K > 0 such that
u
/ Ii(s)ds<K, Yuel-T,T]. (3.20)
0
Combining (3.19) and (3.20), we get
f Ii(s)ds < —yjlul" + K, VueR. (3.21)
0

For any u € E*? with u #0, T > 0, it follows from (3.16) and (3.21) that

¥ “
o(ew) < —lullpey =" Y ylu@)| =y lully + Ko — -0 (u> 0 >p),
j=1

as T — 00, where K, is a positive constant. So there exists a sufficiently large 7y such
that ¢(7ou) < 0. That is to say, we can choose u; with ||u; | ger > 1 sufficiently large such
that ¢(u1) < 0. Therefore, from Step I and Step II we get max{p(uo), p(u1)} < inf{p(u) :
u € 02, }. Then Lemma 2.1 admits the critical point u,. So, uo and u, are two different
critical points of ¢, and they are weak solutions of (1.1). O

Example 3.1 Let« =0.6, T >0, p = %, t € (0,T), ag > 0, a(t) € C([0, T]) with a(¢) > 0.
Consider the following fractional boundary value problem:

tD(%'6‘Dg(8D?'6M(t)) lu@®)2u) = 2+ sinda(ut(t), 0<t<T,t#t,
A(D7"* @5 (GDP°w) () = ~aou’ (1), (3.22)
u(0)=u(T) = 0.

Obviously, f(t,u) = (2 +sin )a(t)u*(t), [,(u) = —aou’ (&), p% =04<a=06.Letpu=6,9=5,
8 = ‘%0, and § = %max{(Z +sint)a(t):t €[0,T]}, y = émin{(2 +sint)a(t) : ¢t € [0,T]}. By
simple computation, the conditions (H1)-(H4) are satisfied. From Theorem 1.1, problem

(3.22) has at least two weak solutions.

Proof of Theorem 1.2 We will apply Lemma 2.3 to finish the proof. Obviously, ¢ €
CY(E*?,R) is even and ¢(0) = 0. Moreover, Lemma 3.1 shows that ¢ satisfies the Palais-
Smale condition.

As E*? is a reflexive and separable Banach space, then there are ¢; € E*? such that E*? =

span{e;:i=1,2,...}. For k=1,2,..., denote

k 00
X; := span{e;}, Yi:= @X,«, Zi = @X,«.
i=1 i=k

Then E*? = Y} @ Zy.
For any u € Z; with ||u||ger < ry, combining (2.5) and the conditions (H1)-(H4), we have

1 m
' " ¥ )
o(u) > l—ﬂIIuIIEa,p - E §jAL Ul pap = 8A, Ullpap,  llutllpwr <o,
j-1
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which implies that there exists p > 0 small enough such that ¢(u) > n > 0 with
llatl| g = p.
For any u € Y;, let

r 3
lleel].c o= (fo |u<t)|1’dt) , (3.23)

and it is easy to show that || - ||« defined by (3.23) is a norm of Y. Since all the norms of a
finite dimensional normed space are equivalent, there is a positive constant A; such that

Aillullper < llulls, foru € Y. (3.24)

From (H1), we have

")
Z/ Ii(s)ds < 0.
j=1 70

The above inequality, (3.17) and (3.24) imply that, for any finite dimensional space W C
E*P,

o) =l +Zf ds—/T F(t,ulo)) de

1
§l;||u||‘;a,p / F(t,u(t)) dt - ,/92 F(t,u(t)) dt
1
<l v / u(e)|” de - / F(t,u(t) dt
1 B 9 v
—pllullEW y/o |u(t)] dt+y/gl|u(t)| dt /QzF(t,u(t))dt

1 g 4 *
I—gIIuIIEap Al y ullgap + M, NYueW,

where Q; :={£ € [0, T] : |u(t)| > Asor1} (r1 is given in (3.17)), 2, := [0, T] \ ; and M* is a
positive constant. Since ¥ > p, the above inequality implies that ¢(u) — —oc0 as ||u||ger —
+00. That is, there exists » > 0 such that ¢(«) < 0 for u € W \ Byw). By Lemma 2.3, the
functional ¢(u) possesses infinitely many critical points, i.e., the fractional impulsive prob-
lem (1.1) admits infinitely many weak solutions. The proof is complete. g

Example 3.2 Let« =0.75, T >0, p = %, t1 €(0,T), ag >0, a(t) € C([0, T]) with a(¢) > 0.
Consider the following fractional boundary value problem:

DY D5 (D)7 u(e)) + |u(®)| 2 u(t) = (1 + D)a®ui(®), 0<t<T,t#n,
AGDP* @3 (6D 7°u))(t1) = —ao’ (1), (3.25)
u(0)=u(T)=0

Obviously,ll7 =% <a=075andf(t,u) = A+2)a(t)ul @), Il(u) = —aou’(t;) are odd about #.
Let £ =10, 9 = 3,8 = 2max{(L+ £)a(t) : t € [0, T}, ¥ = 2 min{(1 + £*)a(t) : t € [0, T]}, and
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&

= 75. Then by simple computation, the conditions in Theorem 1.2 are satisfied. Hence,

problem (3.25) has infinitely many weak solutions.

4 Conclusion

In this paper, we have proved the existence and multiplicity of the solutions for an im-

pulsive fractional differential equation with p-Laplacian operator. Our approach is based

on the well-known mountain pass theorem and minimax methods in critical point. With

the impulsive effects and p-Laplacian operator taken into consideration, the correspond-

ing variational functional is more complicated. Therefore, the existence of solutions for

impulsive fractional differential problems with p-Laplacian is interesting. As applications,

two examples are presented to illustrate the main results. In the future, we will consider the

existence of solutions for the impulsive fractional differential equation with p-Laplacian

via Morse theory.
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