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Abstract
In this paper, we consider the existence of multiple positive solutions for
Kirchhoff-Schrödinger-Poisson system with the nonlinear term containing both
general singularity and quasicritical nonlinearity. By combining the variational
method with the perturbation method, we obtain the existence of two positive
solutions with the parameter λ small enough. One of the solutions is the local
minimum of the corresponding functional, and the other is the limit of the mountain
pass type solution to the perturbation problem.
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1 Introduction and main results
In this paper, we are interested in discussing the existence and multiple positive solutions
to the following general singular Kirchhoff-Schrödinger-Poisson system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–(a + b
∫

�
|∇u|)�u + φu = λhf (u) + g(u), in �,

–�φ = u, in �,

u > , in �,

u = φ = , on ∂�,

(.)

where � ⊂ R
 is a smooth bounded domain with boundary ∂�, a > , b ≥ , λ >  is a

parameter, f , g , h satisfy the following assumptions:

(f ) f ∈ C((,∞),R+) is nonincreasing and
∫ 

 f (s) ds < ∞. Moreover, there exists γ ∈ (, )
such that

lim
s→+

f (s)sγ = ∞;

(g) g ∈ C(R+,R+), g(s) = o(s) as s →  and g has a ‘quasicritical growth’, namely

lim
s→+∞

g(s)
s = ;
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(g) lims→+∞ g(s)
s = ∞;

(g) g(s)s ≥ G(s), where G(s) =
∫ s

 g(t) dt, s ∈R+;
(h) h ∈ L(�) with h(x) >  a.e. x ∈ �.

Recently, the following singular Kirchhoff type problem has been studied extensively in
[–]

⎧
⎪⎪⎨

⎪⎪⎩

–(a + b
∫

�
|∇u|)�u = λhu–γ + μg(x, u), in �,

u > , in �,

u = , on ∂�,

(.)

where � ⊂ R
n, n ≥  is a smooth bounded domain with boundary ∂�,γ ∈ (, ),λ,μ ≥ 

are parameters. In [], by using the method of Nehari manifold, Liu and Sun discussed
the existence of two positive solutions to (.) with g(x, s) = g(x) sp

|x|t , t ∈ [, ), p ∈ [,  – t)
for the parameter λ >  small enough. Lei, Liao and Tang in [] combined the variational
method with the perturbation argument to discuss (.) with n =  and g being critical
term: g(s) = s and obtained two positive solutions to this problem. In [, ], the authors
discussed the existence and multiple positive solutions to (.) with n =  and g being
critical term: g(s) = s. By using the Nehari manifold method and analyzing the relations
between the parameters λ, μ and the first eigenvalue to the Kirchhoff type problem, the
authors in [] obtained multiple positive solutions to this problem. In [], the authors
obtained the existence of two positive solutions to (.) with h(x) = 

|x|β ,β ∈ (, ) by using
the variational method and the perturbation method. The existence of unique positive
solution to (.) with g(x, s) = –sp, p ∈ (, ∗ – ) was obtained in [] by using the variational
method. Meanwhile, the singular (p, q) Kirchhoff type system was also considered in [].

In [], the author of the present paper considered the following singular Schrödinger-
Poisson system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u + ηφu = μu–r , in �,

–�φ = u, in �,

u > , in �,

u = φ = , on ∂�,

where � ⊂R
 is a smooth bounded domain with boundary ∂�,η = ±, r ∈ (, ) is a con-

stant, μ >  is a parameter. The existence of unique positive solution was obtained for η = 
and any μ >  by using the variational method. The multiple positive solutions were also
obtained for η = – and μ >  small enough by combining the variational method with
the Nehari manifold method. Recently, the Schrödinger-Poisson system with singular po-
tential was also considered in []. The existence of system (.) with h = , g(s) = –sp was
considered in [].

The Kirchhoff-Schrödinger-Poisson system with general singularity f and –g (g ≥ ) in
(.) was firstly considered in our recent paper [], where f , g , h satisfy the more weaker
assumptions:
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(f) f ∈ C((,∞),R+) satisfies that there exists δ >  such that f is nonincreasing on (, δ],
∫ δ

 f (s) ds < ∞, and there exist α,γ ∈ (, ) such that

lim
s→+

f (s)sα = ∞, lim
s→∞ f (s)/sγ = ;

(g) g ∈ C(R+,R+) and there exists c >  such that

g(s) ≤ c
(
s + s), s ∈R+;

(h) h ∈ L/(–γ )(�) with h(x) >  a.e. x ∈ �.
Under the weaker assumptions (f), (g) and (h), the corresponding functional is well

defined and is coercive. By using the variational method, the negative global minimum is
obtained and is the unique positive solution to this problem. Based on our work [, ],
recently, Mu and Lu in [] considered the existence and multiplicity of positive solutions
for system (.) with f (s) = s–γ , γ ∈ (, ). A natural question is whether there exist multiple
positive solutions to system (.) with the nonlinear term containing both general singular
nonlinearity and the quasicritical nonlinearity.

Motivated by the above reference, especially by [, , ], and based on our work [], in
this paper, we would like to continue to study the existence of multiple solutions to the
general singular Kirchhoff-Schrödinger-Poisson system (.).

Throughout this paper, let H
(�) be the usual Sobolev space with the inner product and

the norm

(u, v) =
∫

�

∇u · ∇v, ‖u‖ = (u, u)/, u, v ∈ H
(�).

We denote the norm of Lp(�) by |u|p = (
∫

�
|u|p)/p. By the Sobolev embedding theo-

rem, H
(�) can be compactly embedded into Lp(�) for all p ∈ [, ) and the embedding

H
(�) ↪→ L(�) is continuous.
For any given u ∈ H

(�), by using the Lax-Milgram theorem, the Dirichlet boundary
problem –�φ = u in � has a unique solution φu ∈ H

(�). Substitute φu to the first equa-
tion of system (.), then system (.) can be transformed into the following variable equa-
tion:

⎧
⎪⎪⎨

⎪⎪⎩

–(a + b
∫

�
|∇u|)�u + φuu = λhf (u) + g(u), in �,

u > , in �,

u = , on ∂�.

(.)

Some necessary properties of φu are given in Lemma ..
Since we only consider the positive solution to system (.), we can assume that f (s) = 

and g(s) =  for all s ∈ (–∞, ). By (f ), for s ≥ /,

F(s) = F(/) +
∫ s

/
f (t) dt ≤ F(/) + f (/)(s – /).

Since F(s) ≤ F(/), s ∈ [, /], then there exist c, c >  such that

 ≤ F(s) ≤ cs + c, s ∈R. (.)
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It is obvious that F is continuous on R. By (g), we easily obtain that for any ε > , there
exist Cε > , p ∈ (, ) such that

g(s) ≤ ε
(
s + s) + Cεsp, s ∈R, (.)

and

G(s) ≤ ε
(
s + s) + Cεsp+, s ∈ R. (.)

Thus, by (.), (.) and (h), the energy functional corresponding to (.)

J(u) =
a

‖u‖ +

b


‖u‖ +



∫

�

φuu – λ

∫

�

hF(u) –
∫

�

G(u), u ∈ H
(�) (.)

is well defined and continuous on H
(�).

As we know, under the general singular assumption (f ) or (f), the functional J fails to
be Fréchet differentiable because of the singular term. We then cannot apply the critical
point theory to obtain the existence of solution directly. In general, a function u ∈ H

(�) is
called a solution of (.), that is, (u,φu) is a solution of (.) and u(x) >  a.e. in � satisfying

(
a + b‖u‖)(u, v) +

∫

�

φuuv – λ

∫

�

hf (u)v –
∫

�

g(u)v = , v ∈ H
(�). (.)

In fact, under the weaker singular assumption (f), from (.), (.), (.), we easily deduce
that the functional J has a negative local minimum around the neighborhood of origin with
the parameter λ >  small enough. With the two skilled lemmas (Lemmas ., . in [])
on the properties of the singular term f , we can show that the negative local minimum
point is a solution of problem (.). In order to obtain the second solution of system (.),
here we assume that (f ) holds, that is, f is singular at  and nonincreasing on (,∞). It is
obvious that assumption (f ) implies that (f) holds. Assumption (f ) was first introduced in
[] to consider the singular semilinear elliptic equation. To obtain the second solution of
problem (.), motivated by [, ], we also consider the perturbation problem

⎧
⎪⎪⎨

⎪⎪⎩

–(a + b‖u‖)�u + φuu = λhf (u + α) + g(u), in �,

u ≥ , in �,

u = , on ∂�,

(.)

where α > . The functional corresponding to problem (.) is as follows:

Jα(u) =
a

‖u‖ +

b


‖u‖ +



∫

�

φuu – λ

∫

�

h
(
F
(
u+ + α

)
– F(α)

)
–

∫

�

G(u),

u ∈ H
(�).

Under the assumptions of (f ), (g)-(g) and (h), we can show Jα ∈ C(H
(�),R) and prob-

lem (.) has a mountain pass type solution uα . Finally, we can prove that the limit v

of a family of solutions {uα} of problem (.) is the second solution of problem (.). In
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the proof, the monotonic property of f and a result from [] are crucial to showing the
uniform boundedness of {uα} and the convergence of uα → v as α → .

Our main result can be described as follows.

Theorem . If a > , b ≥ , and assumptions (f), (g)-(g) and (h) hold, then there exists
λ∗ >  such that system (.) has at least two solutions for each λ ∈ (,λ∗).

Remark . There are a number of functions which satisfy (f ), (g)-(g), (h) respectively.
For example,

(i) f(s) = [sα arctan( + s)]– for all s ∈ (,∞), where  < γ < α < ;
(ii) f(s) =

√
 + sβ/sα for all s ∈ (,∞), where  < max{γ ,β/} < α < .

It is easy to verify that the functions f, f satisfy condition (f ).
Let g(s) = s+β ln( + s), s >  with β ∈ (, ) and g(s) = sp, s >  with p ∈ (, ). Let ρ ∈

C(R+, [, ]) be a cut-off function verifying sρ ′(s) ≤ , |ρ ′(s)| ≤ ,

ρ(s) =

⎧
⎨

⎩

, s ∈ [, ],

, s ∈ [,∞).

Set G(s) = ρ(s)G(s) + ( – ρ(s))G(s), g(s) = G′(s), where Gi(s) =
∫ s

 gi(t) dt. Then it is easy
to verify that g satisfies conditions (g)-(g).

Take some x ∈ � and let h(x) = |x – x|–β for all x ∈ � \ {x}, where β ∈ [, /). It is
obvious that h satisfies condition (h).

This paper is organized as follows. In Section , we give the existence of a negative local
minimum of the functional J for λ >  small enough and show that it is a solution of prob-
lem (.). In Section , we firstly discuss the existence of the mountain pass type solution
to the perturbation problem (.). Furthermore, by approximation, the second solution of
problem (.) is obtained.

In this paper, c, ci, Ci denote various positive constants, which may vary from line to
line.

2 Existence of the first solution to system (1.1)
Let us first collect some properties of φu. We refer the readers to [, –], etc.

Lemma . For each u ∈ H
(�), there exists a unique solution φu ∈ H

(�) of

⎧
⎨

⎩

–�φ = u, in �,

φ = , on ∂�.

The following properties hold for the solution φu:
(i) ‖φu‖ =

∫

�
φuu;

(ii) φu ≥ . Moreover, φu >  in � when u = ;
(iii) for each t = , it holds that φtu = tφu;
(iv) if un ⇀ u in H

(�), then we have

φun → φu in H
(�),
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∫

�

φun unφ →
∫

�

φuuφ, φ ∈ H
(�),

∫

�

φun un(un – u) → ;

(v) φu ∈ W ,
loc (�) ∩ C(�̄);

(vi) φu = φu+ + φu– , where u± = ±max{±u, }.

Under the assumptions of (f ), (g) and (h), we can show that the functional J defined in
(.) has a negative local minimum for small λ > . In fact, we have the following lemma.

Lemma . Under the assumptions of (f), (g) and (h), there exist λ∗ >  and r,ρ >  such
that for any λ ∈ (,λ∗), we have

J|Sr ≥ ρ and m = inf
B̄r

J < ,

where Br = {u ∈ H
(�) : ‖u‖ < r}, Sr = ∂Br .

Proof For any u ∈ H
(�), by (.), (.) with  < ε < a

μ, and (.), where μ >  is the first
eigenvalue of the operator –� in H

(�), we have

J(u) ≥ a

‖u‖ – λ

∫

�

h(cu + c) –
∫

�

ε
(
u + u) – Cε|u|p+

p+

≥ a


‖u‖ – λc|h||u| – c‖u‖ – c‖u‖p+ – λc|h|

≥ ‖u‖
(

a


‖u‖ – c‖u‖ – c‖u‖p – λc|h|
)

– λc|h|.

Let m(t) = a
 t – ct – ctp, since p > , there exists r >  such that m(r) = maxt≥ m(t). We

choose λ,λ >  respectively such that λc|h| = 
 m(r),λc|h| = 

 rm(r). Thus, when
 < λ < λ∗ = min{λ,λ}, for any u ∈ Sr , we have

J(u) ≥ r
(
m(r) – λc|h|

)
– λc|h|

≥ 


rm(r)

=: ρ. (.)

Hence, for any λ ∈ (,λ∗), there exist r,ρ >  such that J|Sr ≥ ρ .
On the other hand, by assumption (f ), there exists δ >  such that

f (s) ≥ s–γ , F(s) ≥ s–γ

 – γ
, s ∈ (, δ]. (.)

Choose a nonnegative function ϕ ∈ C∞
 (�)\{} with max� ϕ ≤ δ. Then, for any t ∈ (, ],

by Lemma .(iii), (.), we have

J(tϕ) =
at


‖ϕ‖ +

bt


‖ϕ‖ +

t



∫

�

φϕϕ – λ

∫

�

hF(tϕ) –
∫

�

G(tϕ)
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≤ at


‖ϕ‖ +

bt


‖ϕ‖ +

t



∫

�

φϕϕ –
t–γ

 – γ
λ

∫

�

hϕ–γ .

Since  – γ ∈ (, ) and h(x) > , a.e. x ∈ �, we get that J(tϕ) <  for t >  small enough.
Hence, it follows from (.) that m = infB̄r J < . �

In order to prove that the local minimum m can be obtained by some u ∈ H
(�) and

to prove that u is a solution of problem (.), we need the following two skilled lemmas
which can be found in [].

Lemma . Assume that (f) holds, for a, b ≥ , one has that limt→+ 
t [F(a + tb) –

F(a)] = f (a)b, which equals ∞ if a =  and b > .

Lemma . Assume that (f) holds. Then, for any u ∈ H
(�) with u(x) > , a.e. x ∈ �, we

have

lim
t→+

∫

�


t

h
[
F(u + tu) – F(u)

]
=

∫

�

hf (u)u.

Theorem . Assume that (f), (g) and (h) hold. Then, for λ ∈ (,λ∗), problem (.) pos-
sesses a solution u with J(u) = m.

Proof According to the definition of m, there exists a sequence {un} ⊂ B̄r such that
limn→∞ J(un) = m. Then {un} is bounded in H

(�). Going if necessary to a subsequence,
still denoted by {un}, there exists u ∈ H

(�) such that

un ⇀ u in H
(�),

un → u in Ls(�), s ∈ [, ),

un(x) → u(x), a.e. x ∈ �,

as n → ∞. By (.) and the Sobolev embedding theorem, we see that {F(un)} is bounded in
L(�). Moreover, it follows from the continuity of F that F(un(x)) → F(u(x)), a.e. x ∈ �.
Thus, we obtain that F(un) ⇀ F(u) in L(�). By h ∈ L(�), it follows that

lim
n→∞

∫

�

hF(un) =
∫

�

hF(u). (.)

By (.), we easily deduce
∫

�
G(un) → ∫

�
G(u). Then, by the weak lower semi-continuity

of the norm and Lemma .(iv), (.), we have

m = lim
n→∞ J(un)

= lim inf
n→∞

[
a

‖un‖ +

b


‖un‖ +



∫

�

φun u
n – λ

∫

�

hF(un) –
∫

�

G(un)
]

≥ a

‖u‖ +

b


‖u‖ +



∫

�

φu u
 – λ

∫

�

hF(u) –
∫

�

G(u)

= J(u).
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On the other hand, un ⇀ u implies that ‖u‖ ≤ lim infn→∞ ‖un‖ ≤ r, then J(u) ≥ m.
Hence J(u) = m.

To show that u is a solution of problem (.), we need to show that u(x) > , a.e. x ∈ �

and u satisfies (.). The proof is similar to the proof of Theorem . in [], for complete-
ness, here we give the details.

By Lemma .(vi), we obtain that m ≤ J(u+
) ≤ J(u) = m, then J(u+

) = J(u) = m. Thus
we may assume u ≥ . While m < , then u = . Now we divide the proof into two steps.
For convenience, we denote l = a + b‖u‖.

Firstly, we prove that u(x) > , a.e. x ∈ �. In fact, for each v ∈ H
(�) with v ≥  and

t >  small enough, we have that

 ≤ J(u + tv) – J(u)
t

=
a
t

(‖u + tv‖ – ‖u‖) +
b
t

(‖u + tv‖ – ‖u‖)

+


t

∫

�

[
φu+tv(u + tv) – φu u


]

– λ

∫

�


t

h
[
F(u + tv) – F(u)

]

–
∫

�


t
[
G(u + tv) – G(u)

]
.

This implies that

lim inf
t→+

λ

∫

�


t

h
[
F(u + tv) – F(u)

] ≤ l(u, v) +
∫

�

φu uv –
∫

�

g(u)v.

Thus, by Fatou’s lemma and Lemma ., we have

λ

∫

�

hf (u)v ≤ l(u, v) +
∫

�

φu uv –
∫

�

g(u)v. (.)

Now let e ∈ H
(�) be the first eigenfunction of the operator –� in H

(�) and e(x) > 
for all x ∈ �. Taking v = e in (.), one gets that

λ

∫

�

hf (u)e ≤ l(u, e) +
∫

�

φu ue –
∫

�

g(u)e < ∞,

which implies that u(x) > , a.e. x ∈ � by assumption (h). If not, there exists E ⊂ � such
that m(E) >  and u(x) =  for all x ∈ E. Then, by Lemma .,

∫

�

hf (u)e ≥
∫

E
hf (u)e = ∞,

it is a contradiction.
Secondly, we shall prove that u is a solution of problem (.), namely, u satisfies the

following:

l(u, v) +
∫

�

φu uv – λ

∫

�

hf (u)v –
∫

�

g(u)v = , v ∈ H
(�). (.)
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For this purpose, we define a function � : R →R by �(t) = J(u + tu), that is,

�(t) =
a( + t)


‖u‖ +

b( + t)


‖u‖ +

( + t)



∫

�

φu u


– λ

∫

�

hF(u + tu) –
∫

�

G(u + tu).

Then � attains its local minimum at t = . It follows from Lemma . that � is differen-
tiable at t =  and �′() = , that is,

l‖u‖ +
∫

�

φu u
 – λ

∫

�

hf (u)u –
∫

�

g(u)u = . (.)

For each v ∈ H
(�) and ε > , let us define vε = u + εv and

�+ =
{

x ∈ � : u(x) + εv(x) ≥ 
}

, �– =
{

x ∈ � : u(x) + εv(x) < 
}

.

Then v–
ε |�+ =  and v–

ε |�– = u + εv. Inserting v+
ε into (.) and using (.), we obtain that

 ≤ l
(
u, v+

ε

)
+

∫

�

φu uv+
ε – λ

∫

�

hf (u)v+
ε –

∫

�

g(u)v+
ε

= l(u, vε) +
∫

�

φu uvε – λ

∫

�

hf (u)vε –
∫

�

g(u)vε

–
[

l
(
u, v–

ε

)
+

∫

�

φu uv–
ε – λ

∫

�

hf (u)v–
ε –

∫

�

g(u)v–
ε

]

= ε

[

l(u, v) +
∫

�

φu uv – λ

∫

�

hf (u)v –
∫

�

g(u)v
]

–
[

l

∫

�–

∇u · ∇(u + εv)

+
∫

�–

φu u(u + εv) – λ

∫

�–

hf (u)(u + εv) –
∫

�–

g(u)(u + εv)
]

≤ ε

[

l(u, v) +
∫

�

φu uv – λ

∫

�

hf (u)v –
∫

�

g(u)v
]

– ε

[

l

∫

�–

∇u · ∇v +
∫

�–

φu uv
]

,

which implies that

l

∫

�–

∇u · ∇v +
∫

�–

φu uv

≤ l(u, v) +
∫

�

φu uv – λ

∫

�

hf (u)v –
∫

�

g(u)v. (.)

Now let En = {x ∈ � : u(x) > , v(x) > –∞, u(x) + v(x)/n < } for all n. Then {En} is a
nonincreasing sequence of measurable sets and

lim
n→∞ En =

∞⋂

n=

En = ∅.
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Thus we have

lim
n→∞ m(En) = m

(
lim

n→∞ En

)
= .

Select ε = /n. Then �– ⊂ {x ∈ � : u(x) ≤ } ∪ {x ∈ � : v(x) = –∞} ∪ En and m(�–) =
m(En) →  as n → ∞. Letting ε = /n →  in (.), we have

 ≤ l(u, v) +
∫

�

φu uv – λ

∫

�

hf (u)v –
∫

�

g(u)v.

According to the arbitrariness of v ∈ H
(�), this inequality also holds for –v. Thus, (.)

holds. Therefore, u is a solution of system (.) with J(u) = m. �

3 Proof of Theorem 1.1
In order to overcome the difficulty caused by the singular term and to obtain the second
solution of problem (.) for λ >  small enough, in this section, we firstly consider the
following perturbation problem:

⎧
⎪⎪⎨

⎪⎪⎩

–(a + b‖u‖)�u + φuu = λhf (u + α) + g(u), in �,

u ≥ , in �,

u = , on ∂�,

(.)

where α > . We define the functional corresponding to problem (.)

Jα(u) =
a

‖u‖ +

b


‖u‖ +



∫

�

φuu – λ

∫

�

h
(
F
(
u+ + α

)
– F(α)

)
–

∫

�

G(u),

u ∈ H
(�).

It is obvious that Jα is a C functional defined on H
(�). The solution of problem (.)

corresponds to the critical point of the functional Jα . That is, if u ∈ H
(�) is a solution of

problem (.), it satisfies

(
a + b‖u‖)(u,φ) +

∫

�

φuuφ – λ

∫

�

hf
(
u+ + α

)
φ –

∫

�

g(u)φ = ,

φ ∈ H
(�). (.)

For any s > , since f is nonincreasing, we have

F(s + α) – F(α) =
∫ s+α

α

f (t) dt =
∫ s


f (τ + α) dτ ≤

∫ s


f (τ ) dτ = F(s), (.)

by F(s) =  if s ≤ , (.) holds for all s ∈ R. Then, for any u ∈ H
(�), we have

J(u) ≤ Jα(u) ≤ I(u), (.)

where I(u) = a
 ‖u‖ + b

‖u‖ + 

∫

�
φuu –

∫

�
G(u), u ∈ H

(�).
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In order to show that Jα satisfies the mountain pass geometry and to estimate the moun-
tain pass critical level, we firstly consider the functional I . In fact, under the assumptions
of (g) and (g), we have the following lemma.

Lemma . Under the assumptions of (g) and (g), there exist r,ρ >  such that the
functional I satisfies

(i) I|Sr
≥ ρ;

(ii) there exists u ∈ H
(�) with ‖u‖ > r such that I(u) < .

Proof (i) By (.) with ε >  small enough, for any u ∈ H
(�), we have

I(u) ≥
(

a


– cε
)

‖u‖ – c‖u‖ – c‖u‖p+,

it is obvious that the conclusion (i) holds.
(ii) It follows from (g) and (g), for any given M > , there exists R >  such that g(t) ≥

Mt, t > R and

lim
t→+

g(t) – Mt

t
= .

Then there exists C >  such that g(t) – Mt ≥ –Ct, t ∈ [, R] and g(t) ≥ Mt – Ct, t ≥ .
For G, we also have

G(t) ≥ M


t –
Ct


, t ∈R.

Thus, for any u ∈ H
(�) \ {},

∫

�
G(tu) ≥ M

 t|u| – C
 t|u|. It follows that

lim
t→∞

∫

�

G(tu)
t = ∞. (.)

Thus

I(tu) =
at


‖u‖ +

bt


‖u‖ +

t



∫

�

φuu –
∫

�

G(tu)

= t
(

a
t ‖u‖ +

b


‖u‖ +



∫

�

φuu –
∫

�

G(tu)
t

)

,

it follows from (.) that limt→∞ I(tu) = –∞, hence, there exists t >  large enough such
that ‖u‖ = ‖tu‖ > r and I(u) < . �

Now, we define

� =
{
γ ∈ C

(
[, ], H

(�)
)

: γ () = ,γ () = u
}

, c = inf
γ∈�

max
t∈[,]

I
(
γ (t)

)
.

It follows from Lemma . that c ≥ ρ > . For any given α > , Jα also has the mountain
pass geometry. In fact, we have the following lemma.
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Lemma . Assume λ ∈ (,λ∗), under the assumptions of (f), (g), (g) and (h), for r,ρ > 
(where λ∗, r, ρ are given in Lemma .), the functional Jα satisfies the following:

(i) Jα|Sr ≥ ρ ;
(ii) there exists v ∈ H

(�) such that Jα(v) < .

Proof (i) By (.) and Lemma ., the conclusion holds.
(ii) From (.) and (ii) of Lemma ., we choose v = u in Lemma . and the conclusion

holds. �

We also can define the mountain pass critical level

cα = inf
γ∈�

max
t∈[,]

Jα
(
γ (t)

)
.

From (.) and (i) of Lemma ., for λ ∈ (,λ∗),

 < ρ ≤ cα ≤ c. (.)

In the following, we give the existence of the mountain pass type solution to system (.).

Lemma . Suppose that (f), (g)-(g) and (h) hold, λ ∈ (,λ∗). Then there exists uα ∈
H

(�) such that

J ′
α(uα) = , Jα(uα) = cα .

Proof By Lemma . and the mountain pass lemma, there exists a sequence {un} ⊂ H
(�)

such that Jα(un) → cα , J ′
α(un) → . By (.), (.) and (g), for n large enough, we have

cα +  + ‖un‖ ≥ Jα(un) –



(
J ′
α(un), un

)

=
a


‖un‖ – λ

∫

�

h
(

F
(
u+

n + α
)

– F(α) –



f
(
u+

n + α
)
un

)

–
∫

�

(

G(un) –



g(un)un

)

≥ a


‖un‖ – λ

∫

�

hF
(
u+

n
)

+
λ


f (α)

∫

�

hu–
n

≥ a


‖un‖ – λ∗
(

c|h|‖un‖ + c|h| +



f (α)c|h|‖un‖
)

.

Then {un} is bounded. Up to a subsequence, there exists uα ∈ H
(�) such that un ⇀ uα in

H
(�) and

un → uα in Ls(�), s ∈ [, ),

un(x) → uα(x) a.e. x ∈ �,

there exists k ∈ L(�) such that for all n,
∣
∣un(x)

∣
∣,

∣
∣uα(x)

∣
∣ ≤ k(x) a.e. in �.
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It follows from J ′
α(un) →  that

 ← (
J ′
α(un), un – uα

)

=
(
a + b‖un‖)(un, un – uα) +

∫

�

φun un(un – uα)

– λ

∫

�

hf
(
u+

n + α
)
(un – uα) –

∫

�

g(un)(un – uα). (.)

Since hf (u+
n + α)(un – uα) →  a.e. in � and

∣
∣hf

(
u+

n + α
)
(un – uα)

∣
∣ ≤ f (α)hk ∈ L(�),

by the dominated convergence theorem, we have

∫

�

hf
(
u+

n + α
)
(un – uα) → , as n → ∞. (.)

By (.), we can deduce that

∫

�

g(un)(un – uα) ≤ ε
(|un||un – uα| + |un||un – u|

)

+ Cε|un|pp+|un – u|p+ → , (.)

and
∫

�

g(un)un →
∫

�

g(uα)uα ,
∫

�

g(un)φ →
∫

�

g(uα)φ, ∀φ ∈ H
(�). (.)

From (.), using (.), (.), Lemma .(iv) and the boundedness of {un}, we get ‖un‖ →
‖uα‖. This combined with un ⇀ uα implies that un → uα in H

(�). Consequently, we
have Jα(uα) = cα > ρ, J ′

α(uα) = , that is, uα is a nontrivial solution to problem (.). Then
uα satisfies (.), taking the test function φ = u–

α in (.), it follows that ‖u–
α‖ = . Thus, we

have uα ≥ , uα =  and Jα(uα) = cα ≥ ρ. Hence, by the strong maximum principle, uα is a
positive solution of the perturbation problem (.). �

In order to consider the convergence of {uα} as α →  and to obtain the second solution
of problem (.), we need the following result, which can be found in [].

Lemma . (Brezis and Nirenberg []) Let � be a bounded domain in R
n with smooth

boundary ∂�. Let u ∈ L
loc(�) and assume that, for some k ≥ , u satisfies, in the sense of

distributions,
⎧
⎨

⎩

–�u + ku ≥ , in �,

u ≥ , in �.

Then either u ≡ , or there exists C >  such that

u(x) ≥ C dist(x, ∂�), x ∈ �.
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Remark . By Lemma ., (.) and Lemma .(v), we have

–�uα + Kuα ≥ –�uα +
φuα uα

a + b‖uα‖ =
λhf (uα + α) + g(uα)

a + b‖uα‖ ≥ , x ∈ �,

where K > . Then, by Lemma ., there exists C >  such that uα(x) ≥ C dist(x, ∂�), x ∈ �.

Finally, let α → , we shall prove that the limit of a family of solutions {uα} of the per-
turbation problem (.) is the second solution of problem (.) with λ ∈ (,λ∗), where λ∗

is defined in Lemma ..

Theorem . Suppose that (f), (g)-(g) and (h) hold, λ ∈ (,λ∗). Then problem (.) has
a solution v satisfying J(v) > .

Proof Let α →  and uα ≥  is the solution of problem (.), that is, Jα(uα) = cα , J ′
α(uα) = .

Then, by (g), (.), (.) and (.), we have

c > cα = Jα(uα) –



(
J ′
α(uα), uα

)

=
a


‖uα‖ – λ

∫

�

h
(

F(uα + α) – F(α) –



f (uα + α)uα

)

–
∫

�

(

G(uα) –



g(uα)uα

)

≥ a


‖uα‖ – λ

∫

�

h
(
F(uα)

)

≥ a


‖uα‖ – λ∗(c|h|‖uα‖ + c|h|
)
,

then {uα} is bounded in H
(�). Up to a subsequence, there exists v ∈ H

(�) such that
uα ⇀ v in H

(�) and

uα → v in Ls(�), s ∈ [, ),

uα(x) → v(x) a.e. x ∈ �,

there exists k ∈ L(�) such that for all n,
∣
∣uα(x)

∣
∣,

∣
∣v(x)

∣
∣ ≤ k(x) a.e. in �.

Firstly, we show that v(x) >  a.e. in �. For that purpose, we denote wα = uα – v and
l = limα→ ‖wα‖. Taking φ ∈ H

(�) with φ ≥  in (.), we have

λ

∫

�

hf (uα + α)φ =
(
a + b‖uα‖)(uα ,φ) +

∫

�

φuα uαφ –
∫

�

g(uα)φ.

By using Fatou’s lemma, Lemma .(iv) and (.), we have

λ

∫

�

hf (v)φ ≤ (
a + bl + b‖v‖)(v,φ) +

∫

�

φv vφ –
∫

�

g(v)φ.

Similar to the proof of u(x) >  in x ∈ � in Theorem ., we can show that v(x) >  a.e.
in �.
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Next, we show that uα → v in H
(�) and v is the solution of problem (.), that is, we

need to show that l =  and v satisfies (.).
We take φ ∈ C∞

 (�) with suppφ = � � � in (.). By Remark ., for x ∈ �, we have

∣
∣hf (uα + α)φ

∣
∣ ≤ ∣

∣hf (uα)φ
∣
∣

≤ ∣
∣hf

(
dist(x, ∂�)

)
φ
∣
∣

≤ ∣
∣hf (k)φ

∣
∣ ∈ L(�),

where k = minx∈� dist(x, ∂�) > . Since hf (uα + α)φ → hf (v)φ a.e. in �, then by the
dominant convergence theorem, we have

∫

�

hf (uα + α)φ →
∫

�

hf (v)φ as α → .

By (J ′
α(uα),φ) = , using

∫

�
φuα uαφ → ∫

�
φv vφ and (.), we get that

(
a + bl + b‖v‖)(v,φ) +

∫

�

φv vφ = λ

∫

�

hf (v)φ +
∫

�

g(v)φ,

∀φ ∈ C∞
 (�). (.)

Since C∞
 (�) is dense in H

(�), then for φ ∈ H
(�), there exists a sequence {φn} ⊂

C∞
 (�) such that φn → φ as n → ∞. For n, m ∈N large enough, replacing φ with φn – φm

in (.), we obtain that

(
a + bl + b‖v‖)(v,φn – φm) +

∫

�

φv v(φn – φm)

= λ

∫

�

hf (v)(φn – φm) +
∫

�

g(v)(φn – φm). (.)

Since φn → φ, from (.), we can deduce that {hf (v)φn} is a Cauchy sequence in
L(�), hence there exists v ∈ L(�) satisfying hf (v)φn → v in L(�), which means that
hf (v)φn → v in measure. By Riesz’s theorem, {hf (v)φn} has a subsequence, still denoted
by {hf (v)φn}, such that hf (v)φn → v a.e. in �. On the other hand, hf (v)φn → hf (v)φ
a.e. in �. So v = hf (v)φ, that is,

∫

�
hf (v)φn → ∫

�
hf (v)φ as n → ∞. Then, taking the

test function φn in (.) and passing to the limit as n → ∞, we obtain that (.) holds for
any φ ∈ H

(�). We take φ = v in (.) and obtain that

(
a + bl + b‖v‖)‖v‖ +

∫

�

φv v
 = λ

∫

�

hf (v)v +
∫

�

g(v)v. (.)

On the other hand, by (J ′
α(uα), uα) = , we have

(
a + b‖uα‖)‖uα‖ +

∫

�

φuα u
α = λ

∫

�

hf (uα + α)uα +
∫

�

g(uα)uα . (.)

Since f is nonincreasing on (,∞), we have

sf (s) ≤
∫ s


f (t) dt = F(s), s ≥ .
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Then, by (.), we have

hf (uα + α)uα ≤ hf (uα)uα ≤ hF(uα) ≤ h
(
c|uα| + c

) ≤ h(ck + c) ∈ L(�).

Then, combining with hf (uα + α) → hf (v)v a.e. in � and using the dominant conver-
gence theorem, we have

∫

�

hf (uα + α)uα →
∫

�

hf (v)v.

Thus, from (.), by (.) and Lemma .(iv), we obtain that

(
a + bl + b‖v‖)(l + ‖v‖) +

∫

�

φv v
 = λ

∫

�

hf (v)v +
∫

�

g(v)v. (.)

Combining with (.) and (.), we get

(
a + bl + b‖v‖)l = ,

from a > , b ≥ , it implies that l = , that is, uα → v. Hence, from (.) with l = 
and φ ∈ H

(�), we get that v is the solution of problem (.) for λ ∈ (,λ∗) and J(v) =
limα→ Jα(uα) ≥ ρ > . �

Proof of Theorem . By Theorems . and ., for λ ∈ (,λ∗), there exist two solutions
u, v ∈ H

(�) to problem (.) with J(v) >  > J(u), that is, system (.) possesses at least
two solutions for each λ ∈ (,λ∗). �

4 Conclusion
In this paper, by using the variational method and the perturbation method, we consider
the existence and multiple solutions to the singular Kirchhoff-Schrödinger-Poisson sys-
tem (.). The nonlinear terms contain the quasicritical nonlinearity g , which satisfies as-
sumptions (g)-(g), and the general singularity f , which satisfies (f ). The general singular
assumption derives from our previous work [], in which we consider the uniqueness
of solution to Kirchhoff-Schrödinger-Poisson system. Therefore, the results in this paper
are the continuation of our research in []. Our results also improve the results in [],
in which the authors considered the existence of Kirchhoff-Schrödinger-Poisson system
with the singular term f (s) = s–r , r ∈ (, ).
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