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Abstract
We consider a Keller-Segel-Euler model and prove a regularity criterion of the local
strong solutions in a 3D bounded domain �.
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1 Introduction
Let � be a bounded domain in R

 with smooth boundary ∂� and ν be the unit outward
normal vector to ∂�. We consider the regularity problem for the following Keller-Segel-
Euler model:

∂tu + u · ∇u + ∇π + n∇φ = , (.)

div u = , (.)

∂tn + u · ∇n – �n = –∇ · (nr(p)∇p
)
, (.)

∂tp + u · ∇p – �p = –nf (p) in � × (,∞), (.)

u · ν = ,
∂n
∂ν

=
∂p
∂ν

=  on ∂� × (,∞), (.)

(u, n, p)(·, ) = (u, n, p) in � ⊂R
. (.)

Here u,π , n and p denote the fluid velocity field, scalar pressure, cell concentration, and
oxygen concentration, respectively. The functions f (p) and r(p) are two given smooth
functions of p denoting the oxygen consumption rate and chemotactic sensitivity, respec-
tively. The function φ denotes the potential function.

When φ = , system (.) and (.) reduces to the well-known Euler system, Ferrari []
showed the regularity criterion

rot u ∈ L(, T ; L∞(�)
)
. (.)

On the other hand, when u = , system (.) and (.) reduces to the classical Keller-
Segel chemotaxis model [–], which received many studies [–] on well-posedness
and pattern formation of solutions.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-017-0860-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-017-0860-3&domain=pdf
mailto:zhouyong3@mail.sysu.edu.cn


Fan et al. Boundary Value Problems  (2017) 2017:124 Page 2 of 7

For completeness, we also cite [–] which show some regularity criteria for the
Keller-Segel-Navier-Stokes model.

The aim of this paper is to prove a regularity criterion of local smooth solutions to prob-
lem (.)-(.). We will prove the following.

Theorem . Let u ∈ H, n, p ∈ H, div u = , n, p ≥  in � and n ·ν = , ∂n
∂ν

= ∂p
∂ν

=
 on ∂�. Suppose that φ is a smooth function. Let (u, n, p) be a local smooth solution to
problem (.)-(.). If (.) and

∇p ∈ L
q

q–
(
, T ; Lq),  < q ≤ ∞, (.)

hold true with  < T < ∞, then the solution can be extended beyond T > .

Remark . We observe that (.)-(.) is invariant under the scaling transform (u,π , n,
p,φ) → (uλ,πλ, nλ, pλ,φλ), where

uλ := λu
(
λt,λx

)
, πλ := λπ

(
λt,λx

)
,

nλ := λn
(
λt,λx

)
, pλ := p

(
λt,λx

)
, φλ := φ

(
λt,λx

)
.

This implies that the regularity criteria (.) and (.) are optimal in the sense of scaling.

2 Proof of Theorem 1.1
This section is devoted to the proof of Theorem .. Since local existence results can be
proved by using standard arguments, say, Galerkin method, we only deal with the a priori
estimates.

First of all, from the equations of n, p and the maximum principle, we easily see that

n ≥ ,  ≤ p ≤ C,
∫

n dx =
∫

n dx, (.)

where the constant depends only on the initial data.
For any m ≥ , testing (.) by nm–, using the boundary and incompressibility condi-

tions, and denoting w := n m
 , we calculate


m

d
dt

∫
w dx +

(m – )
m

∫
|∇w| dx = (m – )

∫
wr(p)(∇p · ∇w) dx.

Using the smoothness of r(p) and (.), we infer that


m

d
dt

∫
w dx +

(m – )
m

∫
|∇w| dx

≤ C
∫

|∇p|w|∇w|dx

≤ C‖∇p‖Lp‖w‖
L

q
q–

‖∇w‖L

≤ C‖∇p‖Lp
(‖w‖– 

q
L ‖∇w‖+ 

q
L + ‖w‖L‖∇w‖L

)

≤ m – 
m ‖∇w‖

L + C
(‖∇p‖

q
q–
Lp + 

)‖w‖
L ,
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which gives

‖n‖L(,T ;H) + ‖n‖L∞(,T ;Lm) ≤ C, ∀m ≥ . (.)

Here we have used Young’s inequality and the Gagliardo-Nirenberg inequality for func-
tions on a bounded domain:

‖f ‖
L

q
q–

≤ C
(‖f ‖– 

q
L ‖∇f ‖


q
L + ‖f ‖L

)
. (.)

Testing (.) by u, using (.) and (.), we find that




d
dt

∫
|u| dx = –

∫
n∇φ · u dx

≤ ‖n‖L‖∇φ‖L‖u‖L ≤ C‖∇φ‖L‖u‖L ,

which gives

‖u‖L∞(,T ;L) ≤ C. (.)

Taking curl to (.), using (.), we infer that

∂tω + u · ∇ω = ω · ∇u – ∇n × ∇φ, (.)

where ω := curl u. Testing (.) by ω, using (.) and (.), we deduce




d
dt

∫
|ω| dx =

∫
(ω · ∇u – ∇n × ∇φ) · ω dx

≤ ‖ω‖L∞‖∇u‖L‖ω‖L + ‖∇n‖L‖∇φ‖L∞‖ω‖L

≤ C‖ω‖L∞‖ω‖
L + ‖∇n‖L‖∇φ‖L∞‖ω‖L ,

which implies

‖ω‖L∞(,T ;L) ≤ C, (.)

‖u‖L∞(,T ;L) ≤ C. (.)

By using the regularity theory of parabolic equations [], it follows from (.), (.),
(.), (.), (.), and (.) that

‖∇n‖L(,T ;Lr̃ )

≤ C
(
 + ‖un‖L(,T ;Lr̃ ) +

∥
∥nr(p)∇p

∥
∥

L(,T ;Lr̃ )

)

≤ C
(
 + ‖u‖L∞(,T ;L)‖n‖

L∞(,T ;L
r̃

–r̃ )
+

∥
∥r(p)

∥
∥

L∞‖n‖
L∞(,T ;L

qr̃
q–r̃ )

‖∇p‖L(,T ;Lq̃)
)

≤ C (.)

for some  < r̃ <  and r̃ < q.
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Now we turn to the higher order regularity of the velocity field. Testing (.) by |ω|r̃–ω,
using (.) and (.), we obtain

d
dt

‖ω‖r̃
Lr̃ ≤ C‖ω‖L∞‖ω‖r̃

Lr̃ + C‖∇φ‖L∞‖∇n‖Lr̃ ‖ω‖r̃–
Lr̃ ,

which gives

‖ω‖L∞(,T ;Lr̃) ≤ C, (.)

‖u‖L∞(,T ;L∞) ≤ C. (.)

Testing (.) by ut , using (.), (.), (.), and (.), we get

‖ut‖L ≤ ‖u · ∇u + n∇φ‖L ≤ ‖u‖L∞‖∇u‖L + ‖n‖L‖∇φ‖L ≤ C,

whence

‖ut‖L∞(,T ;L) ≤ C. (.)

Testing (.) by –�p, using (.) and (.), we deduce




d
dt

∫
|∇p| dx +

∫
|�p| dx =

∫ (
u · ∇p – nf (p)

)
�p dx

≤ (‖u‖L∞‖∇p‖L +
∥∥f (p)

∥∥
L∞‖n‖L

)‖�p‖L

≤ C
(‖∇p‖L + 

)‖�p‖L

≤ 

‖�p‖

L + C‖∇p‖
L ,

which implies

‖p‖L∞(,T ;H) + ‖p‖L(,T ;H) ≤ C. (.)

To achieve higher order regularity of p, we decompose p as

p := p + p,

where p and p satisfy

⎧
⎪⎪⎨

⎪⎪⎩

∂tp – �p = – div(up) in � × (, T),
∂p
∂ν

=  on ∂� × (, T),

p(x, ) =  in �

and
⎧
⎪⎪⎨

⎪⎪⎩

∂tp – �p = –nf (p) in � × (, T),
∂p
∂ν

=  on ∂� × (, T),

p(x, ) = p(x) in �,

respectively.
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By using the regularity theory of general parabolic equations (cf. []), (.), (.), and
(.), we have

‖∇p‖Lm(,T ;Lm) ≤ C, ∀m > , (.)

‖p‖W ,
m (�×[,T]) ≤ C, ∀m > , (.)

whence

‖∇p‖Lm(,T ;Lm) ≤ C. (.)

Similarly, by the regularity theory of heat equations [], we have

‖∇n‖Lm(,T ;Lm) ≤ C, ∀m > . (.)

By the well-known L∞-estimate of the heat equation, we discover that

‖n‖L∞(�×[,T]) ≤ C. (.)

Applying ∂t to (.), testing by nt , using (.), (.), and (.), we get




d
dt

∫
n

t dx +
∫

|∇nt| dx

=
∫

utn∇nt dx +
∫ (

ntr(p)∇p + nr′(p)pt∇p + nr(p)∇pt
)∇nt dx

≤ ‖ut‖L‖n‖L∞‖∇nt‖L + C‖nt‖L‖∇p‖L‖∇nt‖L

+ C‖n‖L∞‖pt‖L‖∇p‖L‖∇nt‖L + C‖n‖L∞‖∇pt‖L‖∇nt‖L

≤ C‖∇nt‖L + C‖nt‖


L‖∇p‖L‖∇nt‖



L

+ C‖pt‖L‖∇p‖L‖∇nt‖L + C‖∇pt‖L‖∇nt‖L . (.)

Here we used the fact
∫

nt dx =  and the Gagliardo-Nirenberg inequality

‖nt‖
L ≤ C‖nt‖L‖∇nt‖L . (.)

Applying ∂t to (.), testing by pt , using (.), (.), (.), and (.), we have




d
dt

∫
p

t dx +
∫

|∇pt| dx

=
∫

utp∇pt dx –
∫ (

ntf (p) + nf ′(p)pt
)
pt dx

≤ ‖ut‖L‖p‖L∞‖∇pt‖L + C‖nt‖L‖pt‖L + C‖n‖L∞‖pt‖
L

≤ C‖∇pt‖L + C‖nt‖L‖pt‖L + C‖pt‖
L . (.)

Combining (.) and (.) and using the Gronwall inequality, we conclude that

‖nt‖L∞(,T ;L) + ‖nt‖L(,T ;H) ≤ C, (.)
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‖pt‖L∞(,T ;L) + ‖pt‖L(,T ;H) ≤ C. (.)

Now using the H-theory of Poisson’s equation, we have

‖p‖L∞(,T ;H) + ‖p‖L(,T ;H) ≤ C, (.)

‖n‖L∞(,T ;H) + ‖n‖L∞(,T ;H) ≤ C. (.)

To further improve the regularity of u, we recall some technical lemmas in [, , ].

Lemma . ([]) If f , g ∈ Hs(�) ∩ C(�), then

‖fg‖Hs ≤ C
(‖f ‖Hs‖g‖L∞ + ‖f ‖L∞‖g‖Hs

)
. (.)

If f ∈ Hs(�) ∩ C(�) and g ∈ Hs–(�) ∩ C(�), then for |α| ≤ s,

∥∥Dα(fg) – fDαg
∥∥

L ≤ C
(‖f ‖Hs‖g‖L∞ + ‖f ‖W ,∞‖g‖Hs–

)
. (.)

Lemma . ([, ]) For any u ∈ H(�) with div u =  in � and u ·ν =  on ∂�, there holds

‖∇u‖L∞ ≤ (
 + ‖ curl u‖L∞ log

(
e + ‖u‖H

))
. (.)

Lemma . ([]) For any u ∈ W s,p with div u =  in � and u · ν =  on ∂�, there holds

‖u‖W s,p ≤ C
(‖u‖Lp + ‖ curl u‖W s–,p

)
(.)

for any s >  and p ∈ (,∞).

Now, applying � to (.), testing by �ω, using (.), (.), (.), (.), (.), (.),
and (.), we conclude that




d
dt

∫
|�ω| dx = –

∑

i

∫ [
∂i�(uiω) – ui∂i�ω

] · �ω dx

+
∫

�(ω · ∇u) · �ω dx –
∫

�(∇n × ∇φ) · �ω dx

≤ C
(‖∇u‖L∞‖�ω‖L + ‖ω‖L∞‖∇�u‖L

)‖�ω‖L

+ C
(‖∇φ‖L∞‖∇�n‖L + ‖∇n‖L∞‖∇�φ‖L

)‖�ω‖L ,

which gives

‖�ω‖L∞(,T ;L) ≤ C,

‖u‖L∞(,T ;H) ≤ C.

This completes the proof of Theorem ..
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3 Conclusion
We consider the D Keller-Segel-Euler system in a bounded domain. It is a challenging
open problem whether the local solution exists globally. Here, a regularity criterion in
terms of the vorticity and oxygen concentration is established to guarantee smoothness
up to time T . It will help people to gain understanding of the model. We hope to find more
inside structures and establish refined regularity criteria.
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