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Abstract
We consider a Keller-Segel-Euler model and prove a regularity criterion of the local
strong solutions in a 3D bounded domain �.
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1 Introduction
Let � be a bounded domain in R

 with smooth boundary ∂� and ν be the unit outward
normal vector to ∂�. We consider the regularity problem for the following Keller-Segel-
Euler model:

∂tu + u · ∇u + ∇π + n∇φ = , (.)

div u = , (.)

∂tn + u · ∇n – �n = –∇ · (nr(p)∇p
)
, (.)

∂tp + u · ∇p – �p = –nf (p) in � × (,∞), (.)

u · ν = ,
∂n
∂ν

=
∂p
∂ν

=  on ∂� × (,∞), (.)

(u, n, p)(·, ) = (u, n, p) in � ⊂R
. (.)

Here u,π , n and p denote the fluid velocity field, scalar pressure, cell concentration, and
oxygen concentration, respectively. The functions f (p) and r(p) are two given smooth
functions of p denoting the oxygen consumption rate and chemotactic sensitivity, respec-
tively. The function φ denotes the potential function.

When φ = , system (.) and (.) reduces to the well-known Euler system, Ferrari []
showed the regularity criterion

rot u ∈ L(, T ; L∞(�)
)
. (.)

On the other hand, when u = , system (.) and (.) reduces to the classical Keller-
Segel chemotaxis model [–], which received many studies [–] on well-posedness
and pattern formation of solutions.
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For completeness, we also cite [–] which show some regularity criteria for the
Keller-Segel-Navier-Stokes model.

The aim of this paper is to prove a regularity criterion of local smooth solutions to prob-
lem (.)-(.). We will prove the following.

Theorem . Let u ∈ H, n, p ∈ H, div u = , n, p ≥  in � and n ·ν = , ∂n
∂ν

= ∂p
∂ν

=
 on ∂�. Suppose that φ is a smooth function. Let (u, n, p) be a local smooth solution to
problem (.)-(.). If (.) and

∇p ∈ L
q

q–
(
, T ; Lq),  < q ≤ ∞, (.)

hold true with  < T < ∞, then the solution can be extended beyond T > .

Remark . We observe that (.)-(.) is invariant under the scaling transform (u,π , n,
p,φ) → (uλ,πλ, nλ, pλ,φλ), where

uλ := λu
(
λt,λx

)
, πλ := λπ

(
λt,λx

)
,

nλ := λn
(
λt,λx

)
, pλ := p

(
λt,λx

)
, φλ := φ

(
λt,λx

)
.

This implies that the regularity criteria (.) and (.) are optimal in the sense of scaling.

2 Proof of Theorem 1.1
This section is devoted to the proof of Theorem .. Since local existence results can be
proved by using standard arguments, say, Galerkin method, we only deal with the a priori
estimates.

First of all, from the equations of n, p and the maximum principle, we easily see that

n ≥ ,  ≤ p ≤ C,
∫

n dx =
∫

n dx, (.)

where the constant depends only on the initial data.
For any m ≥ , testing (.) by nm–, using the boundary and incompressibility condi-

tions, and denoting w := n m
 , we calculate


m

d
dt

∫
w dx +

(m – )
m

∫
|∇w| dx = (m – )

∫
wr(p)(∇p · ∇w) dx.

Using the smoothness of r(p) and (.), we infer that


m

d
dt

∫
w dx +

(m – )
m

∫
|∇w| dx

≤ C
∫

|∇p|w|∇w|dx

≤ C‖∇p‖Lp‖w‖
L

q
q–

‖∇w‖L

≤ C‖∇p‖Lp
(‖w‖– 

q
L ‖∇w‖+ 

q
L + ‖w‖L‖∇w‖L

)

≤ m – 
m ‖∇w‖

L + C
(‖∇p‖

q
q–
Lp + 

)‖w‖
L ,
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which gives

‖n‖L(,T ;H) + ‖n‖L∞(,T ;Lm) ≤ C, ∀m ≥ . (.)

Here we have used Young’s inequality and the Gagliardo-Nirenberg inequality for func-
tions on a bounded domain:

‖f ‖
L

q
q–

≤ C
(‖f ‖– 

q
L ‖∇f ‖


q
L + ‖f ‖L

)
. (.)

Testing (.) by u, using (.) and (.), we find that




d
dt

∫
|u| dx = –

∫
n∇φ · u dx

≤ ‖n‖L‖∇φ‖L‖u‖L ≤ C‖∇φ‖L‖u‖L ,

which gives

‖u‖L∞(,T ;L) ≤ C. (.)

Taking curl to (.), using (.), we infer that

∂tω + u · ∇ω = ω · ∇u – ∇n × ∇φ, (.)

where ω := curl u. Testing (.) by ω, using (.) and (.), we deduce




d
dt

∫
|ω| dx =

∫
(ω · ∇u – ∇n × ∇φ) · ω dx

≤ ‖ω‖L∞‖∇u‖L‖ω‖L + ‖∇n‖L‖∇φ‖L∞‖ω‖L

≤ C‖ω‖L∞‖ω‖
L + ‖∇n‖L‖∇φ‖L∞‖ω‖L ,

which implies

‖ω‖L∞(,T ;L) ≤ C, (.)

‖u‖L∞(,T ;L) ≤ C. (.)

By using the regularity theory of parabolic equations [], it follows from (.), (.),
(.), (.), (.), and (.) that

‖∇n‖L(,T ;Lr̃ )

≤ C
(
 + ‖un‖L(,T ;Lr̃ ) +

∥
∥nr(p)∇p

∥
∥

L(,T ;Lr̃ )

)

≤ C
(
 + ‖u‖L∞(,T ;L)‖n‖

L∞(,T ;L
r̃

–r̃ )
+

∥
∥r(p)

∥
∥

L∞‖n‖
L∞(,T ;L

qr̃
q–r̃ )

‖∇p‖L(,T ;Lq̃)
)

≤ C (.)

for some  < r̃ <  and r̃ < q.
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Now we turn to the higher order regularity of the velocity field. Testing (.) by |ω|r̃–ω,
using (.) and (.), we obtain

d
dt

‖ω‖r̃
Lr̃ ≤ C‖ω‖L∞‖ω‖r̃

Lr̃ + C‖∇φ‖L∞‖∇n‖Lr̃ ‖ω‖r̃–
Lr̃ ,

which gives

‖ω‖L∞(,T ;Lr̃) ≤ C, (.)

‖u‖L∞(,T ;L∞) ≤ C. (.)

Testing (.) by ut , using (.), (.), (.), and (.), we get

‖ut‖L ≤ ‖u · ∇u + n∇φ‖L ≤ ‖u‖L∞‖∇u‖L + ‖n‖L‖∇φ‖L ≤ C,

whence

‖ut‖L∞(,T ;L) ≤ C. (.)

Testing (.) by –�p, using (.) and (.), we deduce




d
dt

∫
|∇p| dx +

∫
|�p| dx =

∫ (
u · ∇p – nf (p)

)
�p dx

≤ (‖u‖L∞‖∇p‖L +
∥∥f (p)

∥∥
L∞‖n‖L

)‖�p‖L

≤ C
(‖∇p‖L + 

)‖�p‖L

≤ 

‖�p‖

L + C‖∇p‖
L ,

which implies

‖p‖L∞(,T ;H) + ‖p‖L(,T ;H) ≤ C. (.)

To achieve higher order regularity of p, we decompose p as

p := p + p,

where p and p satisfy

⎧
⎪⎪⎨

⎪⎪⎩

∂tp – �p = – div(up) in � × (, T),
∂p
∂ν

=  on ∂� × (, T),

p(x, ) =  in �

and
⎧
⎪⎪⎨

⎪⎪⎩

∂tp – �p = –nf (p) in � × (, T),
∂p
∂ν

=  on ∂� × (, T),

p(x, ) = p(x) in �,

respectively.
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By using the regularity theory of general parabolic equations (cf. []), (.), (.), and
(.), we have

‖∇p‖Lm(,T ;Lm) ≤ C, ∀m > , (.)

‖p‖W ,
m (�×[,T]) ≤ C, ∀m > , (.)

whence

‖∇p‖Lm(,T ;Lm) ≤ C. (.)

Similarly, by the regularity theory of heat equations [], we have

‖∇n‖Lm(,T ;Lm) ≤ C, ∀m > . (.)

By the well-known L∞-estimate of the heat equation, we discover that

‖n‖L∞(�×[,T]) ≤ C. (.)

Applying ∂t to (.), testing by nt , using (.), (.), and (.), we get




d
dt

∫
n

t dx +
∫

|∇nt| dx

=
∫

utn∇nt dx +
∫ (

ntr(p)∇p + nr′(p)pt∇p + nr(p)∇pt
)∇nt dx

≤ ‖ut‖L‖n‖L∞‖∇nt‖L + C‖nt‖L‖∇p‖L‖∇nt‖L

+ C‖n‖L∞‖pt‖L‖∇p‖L‖∇nt‖L + C‖n‖L∞‖∇pt‖L‖∇nt‖L

≤ C‖∇nt‖L + C‖nt‖


L‖∇p‖L‖∇nt‖



L

+ C‖pt‖L‖∇p‖L‖∇nt‖L + C‖∇pt‖L‖∇nt‖L . (.)

Here we used the fact
∫

nt dx =  and the Gagliardo-Nirenberg inequality

‖nt‖
L ≤ C‖nt‖L‖∇nt‖L . (.)

Applying ∂t to (.), testing by pt , using (.), (.), (.), and (.), we have




d
dt

∫
p

t dx +
∫

|∇pt| dx

=
∫

utp∇pt dx –
∫ (

ntf (p) + nf ′(p)pt
)
pt dx

≤ ‖ut‖L‖p‖L∞‖∇pt‖L + C‖nt‖L‖pt‖L + C‖n‖L∞‖pt‖
L

≤ C‖∇pt‖L + C‖nt‖L‖pt‖L + C‖pt‖
L . (.)

Combining (.) and (.) and using the Gronwall inequality, we conclude that

‖nt‖L∞(,T ;L) + ‖nt‖L(,T ;H) ≤ C, (.)
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‖pt‖L∞(,T ;L) + ‖pt‖L(,T ;H) ≤ C. (.)

Now using the H-theory of Poisson’s equation, we have

‖p‖L∞(,T ;H) + ‖p‖L(,T ;H) ≤ C, (.)

‖n‖L∞(,T ;H) + ‖n‖L∞(,T ;H) ≤ C. (.)

To further improve the regularity of u, we recall some technical lemmas in [, , ].

Lemma . ([]) If f , g ∈ Hs(�) ∩ C(�), then

‖fg‖Hs ≤ C
(‖f ‖Hs‖g‖L∞ + ‖f ‖L∞‖g‖Hs

)
. (.)

If f ∈ Hs(�) ∩ C(�) and g ∈ Hs–(�) ∩ C(�), then for |α| ≤ s,

∥∥Dα(fg) – fDαg
∥∥

L ≤ C
(‖f ‖Hs‖g‖L∞ + ‖f ‖W ,∞‖g‖Hs–

)
. (.)

Lemma . ([, ]) For any u ∈ H(�) with div u =  in � and u ·ν =  on ∂�, there holds

‖∇u‖L∞ ≤ (
 + ‖ curl u‖L∞ log

(
e + ‖u‖H

))
. (.)

Lemma . ([]) For any u ∈ W s,p with div u =  in � and u · ν =  on ∂�, there holds

‖u‖W s,p ≤ C
(‖u‖Lp + ‖ curl u‖W s–,p

)
(.)

for any s >  and p ∈ (,∞).

Now, applying � to (.), testing by �ω, using (.), (.), (.), (.), (.), (.),
and (.), we conclude that




d
dt

∫
|�ω| dx = –

∑

i

∫ [
∂i�(uiω) – ui∂i�ω

] · �ω dx

+
∫

�(ω · ∇u) · �ω dx –
∫

�(∇n × ∇φ) · �ω dx

≤ C
(‖∇u‖L∞‖�ω‖L + ‖ω‖L∞‖∇�u‖L

)‖�ω‖L

+ C
(‖∇φ‖L∞‖∇�n‖L + ‖∇n‖L∞‖∇�φ‖L

)‖�ω‖L ,

which gives

‖�ω‖L∞(,T ;L) ≤ C,

‖u‖L∞(,T ;H) ≤ C.

This completes the proof of Theorem ..
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3 Conclusion
We consider the D Keller-Segel-Euler system in a bounded domain. It is a challenging
open problem whether the local solution exists globally. Here, a regularity criterion in
terms of the vorticity and oxygen concentration is established to guarantee smoothness
up to time T . It will help people to gain understanding of the model. We hope to find more
inside structures and establish refined regularity criteria.
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