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Abstract
This learning pacts with the MHDmixed convection flow of Casson fluid over a
stretching surface. Examination is achieved in presence of Hall and thermal radiation
effects. Heat and mass transfer analysis is deliberated subject to convective boundary
conditions. The boundary layer partial differential equations are concentrated into
ordinary differential equations via similarity transformations. Series solutions of the
causing problems are obtained. The effects of physical parameters on the velocity,
temperature and concentration profiles are analyzed and deliberated. Numerical
values of skin friction coefficients and local Nusselt and Sherwood numbers for
different values of Casson fluid parameter, mixed convection parameter, Hall
parameter, Hartman number, radiation parameter and Biot numbers are computed
and inspected.

Keywords: Casson fluid; mixed convection flow; thermal radiation; Hall effect;
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1 Introduction
Recently the flow of an electrically conducting fluid in the presence of magnetic field
has had importance in various areas of technology and engineering such as MHD power
generation, drawing, annealing, in the purification of molten metals from non-metallic
inclusions, electromagnetic pumps, MHD pumps etc. In particular, many metallurgical
processes involve the cooling of continuous strips or filaments by drawing through a qui-
escent fluid. Some-times these strips or filaments are stretched. Actually, the properties
of the final product depend upon the rate of cooling in these metallurgical processes. The
rate of cooling can be controlled by drawing such strips or filaments in an MHD fluid,
which permits to obtain the final product with desired characteristics. The magnetic field
can enhance a Lorentz force even in a weak electric current and a magnetization force.
It is well known that the influence of Hall current is very important in the presence of
a strong magnetic field. In fact, in an ionized gas of low density and/or strong magnetic
field, the conductivity normal to the magnetic field decreases by free growth of electrons
and ions about the magnetic lines of force before suffering collisions. A current induced
in a direction normal to the electric and magnetic fields is called Hall current. Gupta []
analyzed the hydromagnetic flow past a porous flat plate with Hall effects. Hayat et al. []
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studied the effects of Hall current and heat transfer on the rotating flow of second grade
fluid through a porous medium. Saleem and Aziz [] explored hydromagnetic flow over
a stretching surface with internal heat generation and Hall current. Aziz and Nabil []
discussed the hydromagnetic mixed convection flow by an exponentially stretching sur-
face with Hall current. Recently Pal [] analyzed the influence of Hall current and thermal
radiation on the unsteady flow of viscous fluid over a permeable stretching surface.

The study of stretching surfaces through various combinations is important in many
practical applications. For instance, the production of sheeting material arises in a num-
ber of industrial manufacturing processes which include both metal and polymer sheets.
After the initial contribution of Crane [], various researchers extended the flow over a
stretching surface in the directions of Newtonian and non-Newtonian fluid models under
different geometries. The Casson fluid model is one of the non-Newtonian fluid models
which reveal the characteristics of yield stress. Also Casson fluid acts like a solid when the
shear stress less than the yield stress is applied, and it moves if the applied shear stress
is greater than the yield stress. Jelly, soup, honey, tomato sauce, concentrated fruit juices
and many others are the examples of Casson fluid. Some relevant studies about this fluid
model can be seen in the refs [–].

Thermal and concentration convections in the boundary layer flow over a stretching
surface subject to constant but different temperatures and concentrations at the bound-
aries have been considered extensively by the researchers. Such flows occur in a number of
engineering, geophysical and energy storage applications. In nature most of the problems
dealing with flow over a moving surface are developed by the movement of the boundary
and buoyancy effects through thermal and concentration convections. Practical exam-
ples of such flows are solar central receivers exposed to wind currents, electronic devices
cooled by fans, nuclear reactors cooled during emergency shutdown etc. The problem of
steady laminar hydromagnetic heat transfer in the mixed convection flow by a vertical
plate embedded in a uniform porous medium was studied by Makinde and Sibanda [].
Turkyilmazoglu [] constructed the analytical solution of mixed convection flow of MHD
viscoelastic fluid over a permeable stretching surface. Recently Alsaadi et al. [] studied
the mixed convection flow of second grade fluid bounded by a permeable stretching sur-
face with Soret and Dufour effects. Note that the aforementioned research disregarded the
radiation effects. However, the technological processes at high temperatures involve the
thermal radiation heat transfer. For example, in hypersonic flights, missile reentry rocket
combustion chambers, gas cooled nuclear reactors and power plants for inter-planetary
flight, the attention of researchers was focused on thermal radiation as a mode of energy
transfer, and they emphasized the need for discussion on inclusion of radiative transfer in
these processes [, ]. Mukhopadhyay [] investigated the effects of thermal radiation
in the unsteady boundary layer mixed convection flow by a vertical permeable stretching
surface embedded in a porous medium. The fluid is assumed viscous and incompressible.
Turkyilmazoglu [] considered the impact of thermal radiation on the unsteady lami-
nar convective MHD temperature-dependent viscosity flow over a rotating porous disk.
Shehzad et al. [] presented the magnetohydrodynamic (MHD) radiative flow of an in-
compressible Jeffrey fluid over a linearly stretched surface with Joule heating and ther-
mophoretic effects. Recently Aziz [] used the model of convective boundary condition
for the investigation of Blasius flow. Some studies relevant to convective conditions can
be read in the attempts [–].
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The aim of present investigation is to study the Hall effects on the flow of Casson fluid in
presence of thermal radiation and mixed convection. Convective heat and mass transfer
at the boundaries is also considered. To our knowledge, there is no such study available in
the literature. The resulting boundary layer partial differential equations are transformed
into ordinary differential equations. Convergence criteria of series solutions are given by
using the homotopy analysis method [–]. Impacts of embedding parameters on the
flow, temperature and concentration fields are examined graphically. Numerical values of
skin friction coefficient, transversal skin friction coefficient, local Nusselt and Sherwood
numbers for secondary variables are obtained and discussed.

2 Mathematical modeling
Consider the mixed convection boundary layer flow of Casson fluid over a stretching sur-
face in presence of thermal radiation. A uniform magnetic field B is imposed along the
normal direction to a stretching surface. The effect of Hall current is taken into account.
Heat and mass transfer in presence of convective boundary conditions is considered.

Generalized Ohms’ law may be put in the form

J =
σ

 + m

(
E + V × B –


ene

J × B
)

, ()

where V is the velocity vector, E is the intensity vector of the electric field, B is the magnetic
induction vector, J is the electric current density vector, m = ( σB

ene
) is the Hall parameter,

σ is the electrical conductivity, e is the charge of electron and ne is the number density of
electron. Hall current produces a force in z-direction which generates a cross flow velocity
in this direction, and thus the flow becomes three dimensional.

The velocity field is taken as follows:

V =
[
u(x, y), v(x, y), 

]
, ()

where u and v denote the velocity components in the x- and y-directions.
The governing equations for the flow can be expressed as

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= , ()

u
∂u
∂x

+ v
∂u
∂y

= ν

(
 +


β

)
∂u
∂y + gβT (T – T∞) + gβC(C – C∞)

–
σ ∗B


ρ( + m)

(u + mw), ()

u
∂w
∂x

+ v
∂w
∂y

= ν

(
 +


β

)
∂w
∂y +

σ ∗B


ρ( + m)
(mu – w), ()

u
∂T
∂x

+ v
∂T
∂y

= α
∂T
∂y –


ρcp

∂qr

∂y
, ()

u
∂C
∂x

+ v
∂C
∂y

= DB
∂C
∂y , ()

where u, v and w are the velocity components in the x-, y- and z-directions, respectively,
β is the Casson fluid parameter, βT is the thermal expansion coefficient, βC is the concen-
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tration expansion coefficient, σ ∗ is the electrical conductivity, ρ is the density of fluid, g
is the gravitational acceleration, ν = (μB/ρ) is the kinematic viscosity, α is the thermal dif-
fusivity of fluid, T is the fluid temperature, C is the concentration field and D is the mass
diffusivity.

The radiative heat flux qr through Rosseland approximations is given by [–]

qr = –
σs

ke

∂T

∂y
, ()

where σs is the Stefan-Boltzmann constant and ke is the mean absorption coefficient. If the
temperature differences are sufficiently small, then Eq. () can be linearized by expanding
T into the Taylor series about T∞ which, after neglecting higher order terms, takes the
form

T = T
∞T – T

∞. ()

By using Eqs. () and (), Eq. () reduces to

u
∂T
∂x

+ v
∂T
∂y

= α
∂T
∂z –

σsT∞
keρcp

∂T
∂y . ()

The boundary conditions are

u = Uw(x) = cx, v = , –k
∂T
∂y

= h(Tf – T),

–D
∂C
∂y

= h(Cf – C) at y = ,
()

u → , v → , T → T∞, C → C∞ as y → ∞, ()

where subscript w corresponds to the wall condition, h is the heat transfer coefficient, h

is the mass transfer coefficient, Tf is the fluid temperature and Cf is the fluid concentra-
tion.

Considering

η = y
√

c
ν

, u = cxf ′(η), v = –
√

cνf (η), w = cxh(η),

θ (η) =
T – T∞
Tf – T∞

, ϕ(η) =
C – C∞

Cw – C∞
,

()

Eq. () is identically satisfied and Eqs. ()-() can be converted to the following forms:

(
 +


β

)
f ′′′ + ff ′′ –

(
f ′) + λ(θ + Nϕ) –

M
 + m

(
f ′ + mh

)
= , ()

(
 +


β

)
h′′ + fh′ –

(
f ′ +

M
 + m

)
h +

M
 + m mf ′ = , ()

(
 +




R
)

θ ′′ + Pr f θ ′ = , ()
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ϕ′′ + Scf ϕ′ = , ()

f = h = , f ′ = , θ ′ = –γ
(
 – θ ()

)
, ϕ′ = –γ

(
 – ϕ()

)
, at η = , ()

f ′ → , h → , θ → , ϕ →  as η → ∞, ()

where λ is the mixed convection parameter, Grx is the local Grashof number, N is the con-
centration buoyancy parameter, M is the Hartman number, R is the radiation parameter,
Pr is the Prandtl number, Sc is the Shmidt number, γ is the heat transfer Biot number and
γ is the mass transfer Biot number. These can be defined as follows:

λ =
Grx

Re
x

, Grx =
gβT (Tf – T∞)x

υ , N =
βC(Cf – C∞)
βT (Tf – T∞)

,

R =
(

σ ∗T∞
kek

)
, M =

σ ∗B


ρ
,

Pr =
ν

σ
, Sc =

ν

D
, γ =

h

k

√
ν

a
, γ =

h

D

√
ν

a
.

()

Non-dimensional local skin friction coefficients and local Nusselt and Sherwood numbers
are




Cf Re/
x = –( + /β)f ′′(), ()




Cf Re/
x = –( + /β)h′(), ()

Nu/Re/
x = –θ ′(), ()

Sh/Re/
x = –ϕ′(), ()

in which Rex = cx
ν

is the local Reynold number.

3 Series solutions
Initial guesses and auxiliary linear operators for series solutions are chosen in the forms

f(η) =
(
 – e–η

)
, h(η) = ,

θ(η) =
γ exp(–η)

 + γ
, ϕ(η) =

γ exp(–η)
 + γ

,
()

Lf = f ′′′ – f ′, Lh = h′′ – h, Lθ = θ ′′ – θ , Lϕ = ϕ′′ – ϕ, ()

with the following properties:

Lf
(
C + Ceη + Ce–η

)
= , Lh

(
Ceη + Ce–η

)
= ,

Lθ

(
Ceη + Ce–η

)
= , Lϕ

(
Ceη + Ce–η

)
= ,

()

where Ci (i = -) are the arbitrary constants.
The zeroth order deformation problems are given by

( – p)Lf
[
f̂ (η; p) – f(η)

]
= p�f Nf

[
f̂ (η; p), ĥ(η; p), θ̂ (η; p), ϕ̂(η; p)

]
, ()
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( – p)Lf
[
ĥ(η; p) – h(η)

]
= p�hNh

[
ĥ(η; p), f̂ (η; p), θ̂ (η; p), ϕ̂(η; p)

]
, ()

( – p)Lθ

[
θ̂ (η; p) – θ(η)

]
= p�θ Nθ

[
f̂ (η; p), θ̂ (η; p)

]
, ()

( – p)Lϕ

[
ϕ̂(η; p) – ϕ(η)

]
= p�ϕNϕ

[
f̂ (η; p), θ̂ (η; p)

]
, ()

f̂ (; p) = , f̂ ′(; p) = , f̂ ′(∞; p) = , ĥ(; p) = , ĥ(∞; p) = ,

θ̂ ′(, p) = –γ
[
 – θ (, p)

]
, θ̂ (∞, p) = , ϕ̂′(, p) = –γ

[
 – ϕ̂(, p)

]
,

ϕ̂(∞, p) = ,

()

Nf
[
f̂ (η; p), ĥ(η; p), θ̂ (η; p), ϕ̂(η; p)

]

=
(

 +

β

)
∂ f̂ (η, p)

∂η + f̂ (η, p)
∂ f̂ (η, p)

∂η –
(

∂ f̂ (η, p)
∂η

)

+ λ

(
θ̂ (η, p)

+ N ϕ̂(η; p)

)
–

M
 + m

(
∂ f̂ (η,p)

∂η

+ mĥ(η, p)

)
, ()

Nh
[
ĥ(η; p), f̂ (η; p)

]
=

(
 +


β

)
∂ĥ(η; p)

∂η + f̂ (η, p)
∂ĥ(η; p)

∂η
–

(
∂ f̂ (η,p)

∂η

+ M
+m

)
ĥ(η; p)

+
Mm

 + m
∂ f̂ (η, p)

∂η
, ()

Nθ

[
f̂ (η; p), θ̂ (η; p)

]
=

(
 +




R
)

∂θ̂ (η, p)
∂η + Pr(f̂ (η, p)

∂θ̂ (η, p)
∂η

, ()

Nϕ

[
f̂ (η; p), θ̂ (η; p)

]
=

∂ϕ̂(η; p)
∂η + Scf̂ (η, p)

∂ϕ̂(η; p)
∂η

. ()

In the above expressions, p is an embedding parameter, �f , �h, �θ and �ϕ are the non-zero
auxiliary parameters and Nf , Nh, Nθ and Nϕ are the nonlinear operators. Taking p =  and
p = , we have

f̂ (η; ) = f(η), ĥ(η; ) = h(η), θ̂ (η, ) = θ(η), ϕ̂(η; ) = ϕ(η),

f̂ (η; ) = f (η), ĥ(η; ) = h(η), θ̂ (η, ) = θ (η), ϕ̂(η; ) = ϕ(η).
()

When p varies from  to , then f (η, p), h(η, p), θ (η, p) and ϕ(η, p) differ from f(η), h(η),
θ(η) and ϕ(η) to f (η), h(η), θ (η) and ϕ(η). Using Taylor series expansion, we obtain

f (η, p) = f(η) +
∞∑

m=

fm(η)pm, fm(η) =


m!
∂mf (η; p)

∂pm

∣∣∣∣
p=

, ()

h(η, p) = h(η) +
∞∑

m=

hm(η)pm, hm(η) =


m!
∂mh(η; p)

∂pm

∣∣∣∣
p=

, ()

θ (η, p) = θ(η) +
∞∑

m=

θm(η)pm, θm(η) =


m!
∂mθ (η; p)

∂pm

∣∣∣∣
p=

, ()

ϕ(η, p) = ϕ(η) +
∞∑

m=

ϕm(η)pm, ϕm(η) =


m!
∂mϕ(η; p)

∂pm x
∣∣∣∣
p=

. ()
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The convergence of the above series strongly depends upon �f , �h, �θ and �ϕ . Considering
that �f , �h, �θ and �ϕ are selected properly so that Eqs. ()-() converge at p = , we have

f (η) = f(η) +
∞∑

m=

fm(η), ()

h(η) = h(η) +
∞∑

m=

hm(η), ()

θ (η) = θ(η) +
∞∑

m=

θm(η), ()

ϕ(η) = ϕ(η) +
∞∑

m=

ϕm(η). ()

The problems corresponding to the mth order are

Lf
[
fm(η) – χmfm–(η)

]
= �f Rm

f (η), ()

Lh
[
hm(η) – χmhm–(η)

]
= �hRm

h (η), ()

Lθ

[
θm(η) – χmθm–(η)

]
= �θ Rm

θ (η), ()

Lϕ

[
ϕm(η) – χmϕm–(η)

]
= �ϕRm

ϕ (η), ()

fm() = f ′
m() = f ′

m(∞) = hm() = hm(∞) = ,

θ ′
m() – γ θm() = θm(∞) = , ϕ′

m() – γϕm() = ϕm(∞) = ,
()

Rm
f (η) = f ′′′

m–(η) –
m–∑
k=

f ′
m––kf ′

k +
m–∑
k=

fm––kf ′′
k –

M
 + m

(
f ′
m–(η)

+ mhm–(η)

)

+ λ(θ + Nϕ), ()

Rm
h (η) = h′′

m–(η) +
m–∑
k=

fm––kh′
k –

m–∑
k=

f ′
m––khk –

M
 + m (hm–(η) – mf ′

m–(η), ()

Rm
θ (η) =

(
 +




R
)

θ ′′
m– + Pr

m–∑
k=

(
θ ′

m––kfk
)
, ()

Rm
ϕ (η) = ϕ′′

m– + Sc
m–∑
k=

(
ϕ′

m––kfk
)
. ()

Solving the mth order deformation problems, we have

fm(η) = f ∗
m(η) + C + Ceη + Ce–η, ()

hm(η) = h∗
m(η) + Ceη + Ce–η, ()

θm(η) = θ∗
m(η) + Ceη + Ce–η, ()

ϕm(η) = ϕ∗
m(η) + Ceη + Ce–η, ()

where the special solutions are f ∗
m, h∗

m, θ∗
m and ϕ∗

m.
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4 Convergence analysis and discussion
It is obvious that the series solutions ()-() depend on the auxiliary parameters �f ,
�h, �θ and �ϕ . The proper values of these auxiliary parameters are essential in order to
adjust and control the convergence of the series solutions. We have sketched the �-curves
at th order of approximations to determine the convergence region. It is noticed that an
appropriate range of auxiliary parameters �f , �h, �θ and �ϕ is –. ≤ �f ≤ –., –. ≤
�h ≤ –., –. ≤ �θ ≤ –. and –. ≤ �θ ≤ –. (see Figure ). Table  ensures that
the series solutions converge in the whole region of η when �f = �h = �θ = �ϕ = –..

The effects of Casson parameter β , Hartman number M, mixed convection parameter
λ and concentration buoyancy parameter N on the velocity profile f ′(η) are examined in
Figures -. Figure  shows that the velocity profile f ′(η) and momentum boundary layer
thickness decrease with an increase in Casson parameter β . Variation of Hartman number
M on the velocity profile f ′(η) is depicted in Figure . It is found that an increase in M
leads to a decrease in the velocity profile f ′(η) and momentum boundary layer thickness.
This is due to the fact that an increase in M gives rise to the Lorentz force which resists
the flow. The effects of mixed convection parameter λ on the velocity profile f ′(η) in both
assisting and opposing flows are analyzed in Figure . It is observed that the velocity profile
f ′(η) and momentum boundary layer thickness are enhanced when λ >  (assisting flow),
while opposite behavior is noted for λ <  (opposing flow). For the case of assisting flow
the buoyancy forces are more dominant than viscous forces, while an opposite situation
occurred in the case of opposing flow. Figure  displays that an enhancement in N leads
to an increase in momentum boundary layer thickness and velocity profile f ′(η).

Figure 1 �-curves for the functions f , h, θ
and ϕ.

Table 1 Merging of series results for altered order of calculations when β = m = 0.5,
λ = N = R = 0.3, M = γ1 = γ2 = 0.2, Pr = 1.0, Sc = 0.7 and �f = �w = �θ = �ϕ = –0.3

Order of approximations –f ′′(0) h′(0) –θ ′(0) –ϕ′(0)

1 0.70525 0.015000 0.16222 0.16347
5 0.58605 0.027872 0.15239 0.15513
10 0.57654 0.030466 0.14810 0.15009
15 0.57496 0.031056 0.14688 0.14782
20 0.57468 0.031221 0.14661 0.14682
25 0.57466 0.031273 0.14659 0.14639
30 0.57467 0.031292 0.14662 0.14622
35 0.57467 0.031299 0.14663 0.14616
40 0.57467 0.031299 0.14663 0.14616
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Figure 2 Variation of β on f ′(η).

Figure 3 Variation of M on f ′(η).

The impacts of Hartman number M, Hall parameter m, mixed convection parameter λ

and concentration buoyancy parameter N on the transverse velocity profile h(η) are de-
picted in Figures -. Figure  shows that the transverse velocity h(η) increases with an
increase in Hartman number M. It is also noticed that the momentum boundary layer
thickness reduces for larger M. The effect of Hall parameter m on the transverse veloc-
ity h(η) is displayed in Figure . As Hall parameter m increases, the transverse velocity
h(η) decreases and the associated boundary layer thickness increases. The effect of mixed
convection parameter λ on the transverse velocity profile h(η) is analyzed in Figure .
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Figure 4 Variation of λ on f ′(η).

Figure 5 Variation of N on f ′(η).

In the case of assisting flow (λ > ) transverse velocity profile h(η) enhances. It is due to
the fact that viscous forces reduce in the case of assisting flow. Also momentum bound-
ary layer thickness reduces near the stretching surface, while it enhances far away from
the sheet. Reverse behavior is noted in the case of opposing flow (λ < ). The influence of
concentration buoyancy parameter N on the transverse velocity profile h(η) is seen in Fig-
ure . Transverse velocity h(η) increases near the surface, and it decreases far away from
the surface. The boundary layer thickness reduces near the surface, while it increases far
away from the surface.
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Figure 6 Variation of M on h(η).

Figure 7 Variation of m on h(η).

Figures - are displayed to see the variations of Biot number γ, radiation param-
eter R and Prandtl number Pr on the temperature θ (η). Figure  exhibits that thermal
boundary layer thickness and temperature θ (η) are enhanced by increasing γ. In fact an
increase in Biot number γ corresponds to the larger heat transfer coefficient which in-
creases the thermal boundary layer thickness. Variation of radiation parameter R on the
temperature θ (η) and thermal boundary layer thickness is depicted in Figure . Here an
increase in R leads to rise in the temperature and thermal boundary layer thickness. This
is because of the fact that an increase in thermal radiation parameter reduces the mean
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Figure 8 Variation of λ on h(η).

Figure 9 Variation of N on h(η).

absorption coefficient ke, due to which the divergence of the radiative heat flux enhances.
Hence the rate of radiative heat transferred to the fluid will be enhanced, and consequently
the fluid temperature will increase. Figure  displays the effect of Prandtl number Pr on
the temperature θ (η). An enhancement in Pr reduces the thermal diffusivity, which shows
a decrease in the temperature θ (η) and thermal boundary layer thickness.

The effects of Biot number γ, Schmidt number Sc and Hall parameter m on the concen-
tration profile ϕ(η) are drawn in Figures -. Mass transfer coefficient enhances when we
increase γ. Such an enhancement in mass transfer coefficient yields an increase in ϕ(η)
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Figure 10 Variation of γ1 on θ (η).

Figure 11 Variation of R on θ (η).

and its associated boundary layer thickness (see Figure ). Figure  depicts the effect
of Sc on the concentration profile ϕ(η). With an enhancement in Sc, the mass diffusivity
reduces and thus concentration profile ϕ(η) decreases. Figure  shows that concentra-
tion profile ϕ(η) reduces for larger Hall parameter m. Also the associated boundary layer
thickness decreases when m increases.

Table  is prepared to see the numerical values of skin friction coefficients, local Nusselt
and Sherwood numbers for different values of Casson fluid parameter β , Hartman num-
ber M, mixed convection parameter λ, concentration buoyancy parameter N , heat transfer
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Figure 12 Variation of Pr on θ (η).

Figure 13 Variation of γ2 on ϕ(η).

Biot number γ, mass transfer Biot number γ and radiation parameter R. Numerical val-
ues of the skin friction coefficients, local Nusselt number and Sherwood number decrease
with an increase in Casson parameter β . For assisting flow (λ > ), local Nusselt number
and Sherwood numbers enhance when N increases. The skin friction coefficients reduce
for larger N , and opposite behavior is noted in the case of opposing flow (λ < ). Sher-
wood number and transversal skin friction coefficient are increased with an increase in
Biot number γ, while skinfriction coefficient and local Nusselt number decrease with an
increase in γ.
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Figure 14 Variation of Sc on ϕ(η).

Figure 15 Variation of m on ϕ(η).

5 Conclusions
The present study inspected the MHD mixed convection flow over a stretching sur-
face with thermal radiation and Hall effects. Casson fluid model is recycled as a non-
Newtonian fluid. Key facts of the current study are as follows:

(a) Momentum boundary layer thickness and the velocity profile f ′(η) decline for
higher values of M and m.



Bilal Ashraf et al. Boundary Value Problems  (2017) 2017:137 Page 16 of 17

Table 2 Mathematical values of physical constraints at the boundaries for altered values of
factors β , R, M, γ1, γ2 when m = 0.5, Pr = 1.0, Sc = 0.7 and �f = �h = �θ = �ϕ = –0.3

β M λ N γ1 γ2 R –(1 + 1
β )f ′′(0) (1 + 1

β )h′(0) –θ ′(0) –ϕ′(0)

0.3 0.2 0.3 0.3 0.2 0.2 0.3 2.0819 0.10957 0.14801 0.14777
0.5 1.7240 0.093799 0.14659 0.14645
0.7 1.4865 0.086024 0.14534 0.14569
0.5 0.2 1.7240 0.093799 0.14660 0.14670

0.5 1.8292 0.22869 0.14613 0.14614
0.8 1.9390 0.35670 0.14560 0.14556

0.5 0.2 –0.3 1.8792 0.092367 0.14594 0.14574
0.0 1.8005 0.093237 0.14628 0.14596
0.5 1.6743 0.094184 0.14679 0.14656

0.5 0.2 0.3 0.0 1.7416 0.093717 0.14653 0.14590
0.3 1.7240 0.093775 0.14660 0.14610
0.6 1.7065 0.093952 0.14667 0.14640

0.5 0.2 0.3 0.3 0.2 1.7240 0.093775 0.14660 0.14610
0.5 1.6789 0.094190 0.26222 0.14667
0.7 1.6610 0.094277 0.30859 0.14701

0.5 0.2 0.3 0.3 0.2 0.3 1.7183 0.093792 0.14661 0.19390
0.5 1.7102 0.093829 0.14664 0.26108
0.7 1.7047 0.093841 0.14668 0.30757

0.5 0.2 0.3 0.3 0.2 0.2 0.0 1.7391 0.093643 0.15413 0.14624
0.3 1.7240 0.093720 0.14659 0.14639
0.6 1.7098 0.093855 0.14038 0.14651

(b) In the situation of assisting flow (λ > ), both the velocity profile f ′(η) and
momentum boundary layer thickness are increase, while opposite performance is
perceived in the case of opposing flow (λ < ).

(c) Transversal velocity h(η) upsurges with an upturn in Hartman number M and
concentration buoyancy constraint N , while it declines with an upturn in Hall
restriction m.

(d) Thermal boundary layer thickness improves with an upsurge in Biot number γ and
thermal radiation factor R, while it lessens for superior Pr.

(e) Skin friction quantity, transversal skin friction coefficient, local Nusselt and
Sherwood numbers are compact for greater Casson fluid parameter β .

(f ) In the case of assisting flow (λ > ), the skin friction coefficient reduces, although
opposite performance for opposing flow (λ < ) is perceived.

(g) Skin friction coefficient declines with a rise in concentration buoyancy factor N ,
while transversal skin resistance number, local Nusselt and Sherwood records drop.

(h) Local Nusselt and Sherwood figures upsurge for larger Biot quantities γ and γ.
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