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Abstract
The present paper deals with the dependence of eigenvalues of 2nth order boundary
value transmission problems on the problem. The eigenvalues depend not only
continuously but also smoothly on the problem. Some new differential expressions of
eigenvalues with respect to an endpoint, a coefficient, the weight function, boundary
conditions, and transmission conditions, are given.
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1 Introduction
It is well known that boundary value transmission problems are of great importance for
their wide applications in physics and engineering. These problems, such as heat, mass
transfer (see []), and diffraction problems, relate to discontinuous material properties,
and their miscellaneous physical applications connected with these problems are found
in many literature works, see, e.g., [–] and the corresponding references cited therein.
To deal with interior discontinuities, some conditions are imposed on the discontinuous
points, which are often called transmission conditions (see [, , , , , ]), interface
conditions (see [, ]), or point interactions (see []).

Eigenvalue problems play an important role in the theory of differential operators. There
are several methods to characterize the eigenvalues of boundary value problems (see,
for example, [–]), in particular, on the existence of solutions for linear or nonlinear
Sturm-Liouville problems and higher order boundary value problems, we refer to [–].
In the classical case, i.e., without discontinuous points, Dauge and Helffer in [] found
that the Neumann eigenvalues are differentiable functions of the right endpoint b satisfy-
ing a differential equation of the form

λ′ = u(q – λw).

They also obtained the differential expression for the Dirichlet eigenvalues

λ′ = –pu′,
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which is sometimes called Hadamard’s formula. In [], Kong and Zettl gave a different
proof of the Dauge-Helffer theorem and obtained a similar result for coupled boundary
conditions in the case where the space L(a, b) is replaced by L(a, b). In [], Kong and
Zettl showed the continuity and differentiability of eigenvalues for regular Sturm-Liouville
problems with respect to all the parameters and obtained differential expressions of the
eigenvalues. Corresponding results for fourth order case were also obtained by Suo and
Wang in []. Kong et al. generalized the continuity and differentiability of eigenvalues to
higher order case in []. The obtained results on the properties of eigenvalues and eigen-
functions play an important role in the Bailey, Everitt, and Zettl code SLEIGN (see []).
The major general purpose code for the numerical computation of the eigenvalues and
eigenfunctions of boundary value problems is SLEUTH (see []). In recent papers, Zhang
and Wang in [] considered the discontinuous Sturm-Liouville eigenvalue problems, and
obtained the differential expressions of eigenvalues with respect to the data. Zhang et al.
also studied singular eigenvalue problems in []. Li et al. considered the fourth order
discontinuous case and obtained some new differential expressions of the eigenvalues in
[].

In this paper, we study the dependence of eigenvalues of nth order boundary value
transmission problems on the problem. Using the ideas of Mukhtarov and Yakubov [] and
Wang et al. [], a new Hilbert space is constructed, in which the considered problems are
put. We prove that if λ is an eigenvalue of the considered problem, then λ can be embedded
in a continuous eigenvalue branch. We also give some new differential expressions of the
eigenvalues, which generalize the previous results obtained by Kong et al. (see []).

This paper is composed as follows. We give some notations and preliminaries in Sec-
tion . The continuity results of eigenvalues and eigenfunctions are obtained in Section .
Section  presents differential expressions of the eigenvalues with respect to all the data.

2 Notations and preliminaries
Consider the nth order symmetric differential equation

MP(y) =

w

n∑

k=

(–)k(pn–k(x)y(k))(k) = λy,

on J ′ =
(
a′, c

) ∪ (
c, b′), –∞ ≤ a′ < c < b′ ≤ +∞. (.)

Let

J = J ∪ J, J = [a, c), J = (c, b], a′ < a < c < b < b′.

Consider the boundary conditions

AY (a) + BY (b) =  (.)

and transmission conditions

Y (c–) = CY (c+), (.)
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where

p–
 (x), p(x), . . . , pn(x), w(x) ∈ Lloc

(
J ′,R

)
, w(x) >  a.e. on J ′. (.)

Here λ is the spectral parameter, A = (aij) and B = (bij) are n × n complex matrices,
C = (cij) is n × n real matrix, det C = ρn, ρ >  and satisfy

rank(A|B) = n, (.)

ρAQnA∗ = BQnB∗, C∗QnC = ρQn, (.)

where

Qn =

(
 En

–En 

)
,

En =

⎛

⎜⎜⎜⎜⎝




. . .



⎞

⎟⎟⎟⎟⎠
,

Y (x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

y(x)
y[](x)

...
y[n–](x)
y[n–](x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Here y[](x), y[](x), . . . , y[n–](x) are called quasi-derivatives of y which are defined by (see
[])

y[k](x) =
dky
dxk , k = , , . . . , n – ,

y[n](x) = p
dny
dxn ,

y[n+k](x) = pk
dn–ky
dxn–k –

d
dx

y[n+k–], k = , , . . . , n.

Let Rz(x) = (z[](x), z[](x), . . . , z[n–](x)), Cy(x) = (y[](x), y[](x), . . . , y[n–](x))T , the equa-
tion

MP(y)z̄ – yMP(z̄) =
d

dx
[y, z](x) (.)

is called Lagrange formula [], where

[y, z](x) = W (y, z̄; x)

=
n∑

k=

{
y[k–](x)z̄[n–k](x) – y[n–k](x)z̄[k–](x)}

= Ry(x)QnCz̄(x). (.)
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Following Mukhtarov and Yakubov [] and Wang et al. [], we construct a new inner
product in the Hilbert space H = L

w(J) ⊕ L
w(J) and a self-adjoint operator defined on H

such that the eigenvalues of (.)-(.) coincide with the spectra of this operator. To this
end, the inner product is defined by

〈f , g〉 =
∫ c

a
f gw dx + ρ

∫ b

c
f gw dx

for all f , g ∈ H .
Let us consider the operator L with domain

D(L) =
{

f ∈ H|f , f [], . . . , f [n–] ∈ ACloc(J),

AF(a) + BF(b) = , F(c–) = CF(c+), Lf ∈ H
}

, (.)

Lf = MP(f ), f ∈ D(L).

Lemma  (See []) Let (.)-(.) hold, the operator L be defined as in (.). Then L is a
self-adjoint operator in H . The eigenvalues of L are real, and they are finite or countably
infinite without finite accumulation point.

3 Continuity of eigenvalues and eigenfunctions
In this section, we prove the continuity of eigenvalues and normalized eigenfunctions for
the nth order boundary value transmission problems. Moreover, the characterization of
the eigenvalues as zeros of an entire function is established.

Denoted by ϕ(x,λ), ϕ(x,λ), . . . ,ϕn(x,λ) and χ(x,λ), χ(x,λ), . . . ,χn(x,λ) the solu-
tions of (.) on the interval [a, c) satisfy the initial conditions

(Cϕ , Cϕ , . . . , Cϕn , Cχ , Cχ , . . . , Cχn )(a,λ) = I, (.)

where I is the identity matrix. Obviously, the above solutions are linearly independent.
Let ϕ(x,λ), ϕ(x,λ), . . . ,ϕn(x,λ) and χ(x,λ), χ(x,λ), . . . ,χn(x,λ) be the solutions of

equation (.) on the interval (c, b] satisfying the conditions

(Cϕ , Cϕ , . . . , Cϕn , Cχ , Cχ , . . . , Cχn )(c–,λ)

= C · (Cϕ , Cϕ , . . . , Cϕn , Cχ , Cχ , . . . , Cχn )(c+,λ). (.)

According to the properties of dependence of the solutions on the parameter, the Wron-
skian

wi(λ) = W
(
ϕi(x,λ),ϕi(x,λ), . . . ,ϕin(x,λ),χi(x,λ),χi(x,λ), . . . ,χin(x,λ)

)
(i = , )

are independent of the variable x and are entire functions of parameter λ. Short calculation
yields that

w(λ) =

ρn w(λ), (.)
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which implies that ϕ(x,λ), ϕ(x,λ), . . . ,ϕn(x,λ) and χ(x,λ), χ(x,λ), . . . ,χn(x,λ) are
linearly independent on the interval (c, b].

Let

�(x,λ) = (Cϕ , Cϕ , . . . , Cϕn , Cχ , Cχ , . . . , Cχn )(x,λ), x ∈ [a, c) (.)

and

�(x,λ) = (Cϕ , Cϕ , . . . , Cϕn , Cχ , Cχ , . . . , Cχn )(x,λ), x ∈ (c, b],λ ∈ C, (.)

where �(c,λ) and �(c,λ) are defined by left and right limits. Let

�(x,λ) =

⎧
⎨

⎩
�(x,λ), x ∈ [a, c),

�(x,λ), x ∈ (c, b],

and �(c–,λ) = �(c,λ), �(c+,λ) = �(c,λ). For arbitrary x ∈ J , �(x,λ) is an entire function
of λ.

Lemma  A complex number λ is an eigenvalue of the operator L if and only if

�(λ) = det
(
A + B�(b,λ)

)
= .

Proof Let λ be an eigenvalue of L and u(x) be the corresponding eigenfunction. Then
u(x) can be represented by (see [])

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cϕ(x,λ) + · · · + cnϕn(x,λ) + cn+χ(x,λ) + · · · + cnχn(x,λ),

x ∈ [a, c),

cϕ(x,λ) + · · · + cnϕn(x,λ) + cn+χ(x,λ) + cnχn(x,λ),

x ∈ (c, b],

where at least one of coefficients ci (i = , , . . . , n) is not zero. Substituting u(x) into
boundary conditions (.) yields

A(Cϕ , . . . , Cϕn , Cχ , . . . , Cχn )(a,λ)(c, . . . , cn)T

+ B(Cϕ , . . . , Cϕn , Cχ , . . . , Cχn )(b,λ)(c, . . . , cn)T = .

By (.), (.), and (.), one gets that

(
A + B�(b,λ)

)
(c, . . . , cn)T = . (.)

Since c, . . . , cn are not all zero, det(A + B�(b,λ)) = .
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On the contrary, if det(A + B�(b,λ)) = , then the homogeneous system of the linear
equations (.) for the constants ci (i = , . . . , n) has non-zero solution (c′

, . . . , c′
n). Let

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c′
ϕ(x,λ) + · · · + c′

nϕn(x,λ) + c′
n+χ(x,λ) + · · · + c′

nχn(x,λ),

x ∈ [a, c),

c′
ϕ(x,λ) + · · · + c′

nϕn(x,λ) + c′
n+χ(x,λ) + · · · + c′

nχn(x,λ),

x ∈ (c, b],

then u(x) is the non-trivial solution of equation Lu = λu satisfying conditions (.) and
(.). Therefore, λ is an eigenvalue of L. �

In the following, we introduce the notation

� =
{
ω = (a, b, A, B, C, /p, p, . . . , pn, w)

}

such that (.)-(.) hold.
We aim to illustrate the continuous dependence of eigenvalues and eigenfunctions on

the problem, i.e., one small change of the problem only results in a diminutive change of
each eigenvalue and eigenfunction. This means we need to compare the spectra of dif-
ferent problems which may be defined on different intervals determined by different ω.
From the definition of �, we know that each of ω ∈ � uniquely determines a boundary
value transmission problem. And the values of 

p
, p, . . . , pn, w outside the interval J , i.e.,

in J ′ \ J , do not affect the spectrum determined by ω. For these reasons, let

�̃ =
{
ω = (a, b, A, B, C, ̃/p, p̃, . . . , p̃n, w̃)

}
,

where

̃/p =

⎧
⎨

⎩
/p, x ∈ J ,

, x ∈ J ′ \ J ,

and p̃, . . . , p̃n, w̃ have similar definitions. Then we investigate the Banach space which is
defined as

X = R×R× Mn×n(C) × Mn×n(C) × Mn×n(R) × L(a′ ,b′) × · · · × L(a′ ,b′)︸ ︷︷ ︸
n+

,

and its norm is given by

‖ω‖ = |a| + |b| + ‖A‖ + ‖B‖ + ‖C‖ +
∫ b′

a′

(
|̃/p| +

n∑

i=

|p̃i| + |w̃|
)

, (.)

where ‖ · ‖ is any fixed matrix norm. Because /p, p, . . . , pn, w are only defined in L
loc(J ′),

� is not a subset of X, but �̃ is. To study the continuity of eigenvalues and eigenfunc-
tions on the problem, � is assumed to be a subset of X and inherits its norm from X on
which the convergence in � depends. Because every point in � is an accumulation point
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of � in relation to the norm (.), so it is meaningful to discuss convergence of boundary
value transmission problems with respect to this norm. Based on the space X, the set �

and Lemma , we obtain that the eigenvalues of nth order boundary value transmission
problems depend continuously on the problem.

Theorem  Let ω = (a, b, A, B, C, 
p

, p , . . . , pn , w) ∈ �. Assume that μ = λ(ω) is
an eigenvalue of the operator L determined by ω. Then λ is continuous at ω, that is, given
any ε > , there exists δ >  such that

‖ω – ω‖ < δ

for any ω ∈ �, then

∣∣λ(ω) – λ(ω)
∣∣ < ε.

Proof From Lemma , we get that for ω ∈ �, λ(ω) is an eigenvalue of the operator L if and
only if �(ω,λ) = . For any ω ∈ �, �(ω,λ) is an entire function of λ and is continuous in
ω (see [], Theorems ., .), and �(ω,μ) = . Since the operator L is self-adjoint, we
know that μ is an isolated eigenvalue, and then �(ω,λ) is not constant in λ. Hence there
exists ρ >  such that �(ω,λ) �=  for λ ∈ Sρ := {λ ∈ C : |λ – μ| = ρ}. By the well known
theorem on continuity of the roots of an equation as a function of parameters (see [],
..), the proof for Theorem  is completed. �

In what follows we will always assume that each eigenvalue λ(ω) is embedded in a con-
tinuous eigenvalue branch.

Lemma  Consider the initial value problem

⎧
⎨

⎩

∑n
k=(–)k(pn–k(x)y(k))(k) = λwy,

y(t) = d, y[](t) = d, . . . , y[n–](t) = dn–,

where t ∈ [a, c) ∪ (c, b] ∪ {c+, c–}. Then the unique solution

y = (·, t, d, . . . , dn–, C, /p, p, . . . , pn, w)

satisfying the above mentioned initial conditions and transmission conditions (.) is a
continuous function of all its variables. That is, for any ε > , there exists δ >  such that if

|t – t| +
n–∑

i=

|di – di | + ‖C – C‖ +
∫ b

a

(∣∣∣∣


p
–


p

∣∣∣∣ +
n∑

i=

|pi – pi | + |w – w|
)

< δ,

then
∣∣∣∣y
(

x, t, d, . . . , dn–, C,


p
, p, . . . , pn, w

)

– y
(

x, t, d , . . . , d(n–) , C,


p
, p , . . . , pn , w

)∣∣∣∣ < ε,
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∣∣∣∣y
[]

(
x, t, d, . . . , dn–, C,


p

, p, . . . , pn, w
)

– y[]
(

x, t, d , . . . , d(n–) , C,


p
, p , . . . , pn , w

)∣∣∣∣ < ε,

...
∣∣∣∣y

[n–]
(

x, t, d, . . . , dn–, C,


p
, p, . . . , pn, w

)

– y[n–]
(

x, t, d , . . . , d(n–) , C,


p
, p , . . . , pn , w

)∣∣∣∣ < ε

uniformly for all x ∈ J .

Proof For t = c– and x = c+, by transmission conditions (.) and det C = det C = ρn > ,
the result holds for x = c+. By the extension of continuity of y(x,λ) on J or J, respectively,
the statement can be seen from Lemma . in [] when x ∈ J . As t = c+, utilizing the same
method, the result follows. For x ∈ J , using Lemma . in [] and the above method, the
statement follows. �

Lemma  Let ω = (a, b, A, B, C, 
p

, p , . . . , pn , w). Let λ = λ(ω) be an eigenvalue of
the operator L. If the multiplicity of λ(ω) is , then there exists a neighborhood N of ω

belonging to � such that the multiplicity of λ(ω) is  for every ω in N .

Proof If λ(ω) is simple, then �′(λ(ω)) �= . Since �(λ) is an entire function of λ, then the
conclusion follows from Theorem . �

A normalized eigenfunction u of the operator L means an eigenfunction u satisfies

〈u, u〉 =
∫ c

a
uuw dx + ρ

∫ b

c
uuw dx = .

Theorem  Let the notation and hypotheses of Theorem  hold. If the multiplicity of eigen-
value λ(ω) is l (l = , , . . . , n) for all ω ∈ N , and N ∈ � is a neighborhood of ω. Then there
exist l linearly independent normalized eigenfunctions uk(·,ω) of λ(ω). As ω → ω, we have

uk(·,ω) → uk(·,ω),

u[j]
k (·,ω) → u[j]

k (·,ω), k = , , . . . , l, j = , , . . . , n – ,
(.)

uniformly on the interval J .
Particularly, if λ(ω) is simple for some ω ∈ �, then there exists a normalized eigenfunc-

tion u = u(·,ω) such that (.) holds for k = .

Proof (a) If the multiplicity of λ(ω) is , then, by Lemma , there exists a neighborhood
N of ω such that the multiplicity of λ(ω) is  for any ω ∈ N . For each ω ∈ N , choose an
eigenfunction u = u(·,ω) of λ(ω) satisfying

∥∥U(x,ω)
∥∥ =

∣∣u(x,ω)
∣∣ +

∣∣u[](x,ω)
∣∣ + · · · +

∣∣u[n–](x,ω)
∣∣ = , u(x,ω) > ,
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for some x ∈ (a, c)∪(c, b) and x near x, where U(·,ω) = (u(·,ω), u[](·,ω), . . . , u[n–](·,ω))T .
It is sufficient to prove that

U(x,ω) → U(x,ω), ω → ω,ω ∈ �. (.)

If (.) is not fulfilled, then we can choose a sequence ωk → ω such that

U(x,ωk) → Y , ωk → ω,ω ∈ �.

Due to the normalization at x, Y and U(x,ω) are two linearly independent vectors in
C

n. Let Z(x) be the vector solution of (.) with ω = ω, λ = λ(ω) and the initial condition
Z(x) = Y . By Lemma , U(x,ωk) → Z(x) uniformly on J . Particularly,

U(a,ωk) → Z(a), U(b,ωk) → Z(b),

U(c–,ωk) → Z(c–), U(c+,ωk) → Z(c+).

Since U(·,ωk) satisfies the conditions

AkU(a,ωk) + BkU(b,ωk) = , U(c–,ωk) = CkU(c+,ωk),

by taking limits as k → ∞, we obtain that

AZ(a) + BZ(b) = , Z(c–) = CZ(c+).

Hence Z(x) is a vector eigenfunction for ω = ω and λ = λ(ω), which contradicts the fact
that λ(ω) is simple.

Again by Lemma , u(x,ω) → u(x,ω), u[](x,ω) → u[](x,ω), . . . , u[n–](x,ω) →
u[n–](x,ω) as ω → ω, and x ∈ J . The conclusion follows.

(b) If the multiplicity of λ(ω) is l (l = , . . . , n) for all ω in some neighborhood N of ω

in �. Then we can choose eigenfunctions of λ(ω) satisfying the same initial conditions at
c for some c ∈ J since a linear combination of l linearly independent eigenfunctions can
be chosen to satisfy arbitrary initial conditions.

The above discussion illustrates that for every self-adjoint boundary value transmis-
sion problem and every eigenvalue λ(ω), the eigenfunction u(·,ω) and its quasi-derivatives
u[](·,ω), . . . , u[n–](·,ω) are uniformly convergent in ω for x ∈ J . Then we normalize the
eigenfunctions to end the proof. �

4 Differential expressions of eigenvalues on the problem
In this section, we will obtain the differential expressions of eigenvalues with respect to
the data. To this end, we will use Frechet derivative and list its definition as follows.

Definition  (See []) Let X, Y be Banach spaces. A map T : X → Y is Frechet differ-
entiable at a given point x ∈ X if a bounded linear operator dTx : X → Y satisfies that for
h ∈ X

∣∣T(x + h) – T(x) – dTx(h)
∣∣ = o(h) as h → .



Li et al. Boundary Value Problems  (2017) 2017:143 Page 10 of 14

Lemma  (See []) Assume a real-valued function f ∈ Lloc(a, b). Then

lim
h→


h

∫ x+h

x
f = f (x) a.e. in (a, b).

Lemma  Suppose that P = (p, p, . . . , pn) and Q = (q, q, . . . , qn). Then we have

〈MPy, z〉 – 〈y, MQz〉

= [y, z]c
a + ρ[y, z]b

c +
∫ c

a

n–∑

k=

(–)n+k(pn–k – qn–k)y(k)z̄(k) +
∫ c

a
(p – q)y(n)z̄(n)

+ ρ

∫ b

c

n–∑

k=

(–)n+k(pn–k – qn–k)y(k)z̄(k) + ρ

∫ b

c
(p – q)y(n)z̄(n). (.)

Proof This follows directly from integration by parts. �

Theorem  Let ω = (a, b, A, B, C, P, w) ∈ � with P = ( 
p

, p, . . . , pn) and λ = λ(ω) be an
eigenvalue of operator L connected with ω, and let u = u(·,ω) be the corresponding eigen-
function. Assume that λ(ω) has constant geometric multiplicity in some neighborhood
N ⊂ � for all fixed components of ω except one component.

. Let all components of ω except pk for some (k = , , . . . , n) be fixed. Consider λ as a
function of pk ∈ L(J). Then λ is Frechet differentiable at pk and

dλpk (h) =
∫ c

a
(–)n+k∣∣u(k)∣∣h + ρ

∫ b

c
(–)n+k∣∣u(k)∣∣h, h ∈ L(J). (.)

. Let all components of ω except /p be fixed. Consider λ as a function of /p ∈ L(J).
Then λ is Frechet differentiable at /p and

dλ/p (h) = –
(∫ c

a

∣∣pu(n)∣∣h + ρ

∫ b

c

∣∣pu(n)∣∣h
)

, h ∈ L(J). (.)

. Let all components of ω except w be fixed. Consider λ as a function of w ∈ L(J). Then λ

is Frechet differentiable at w and

dλw(h) = –λ

(∫ c

a
|u|h + ρ

∫ b

c
|u|h

)
, h ∈ L(J). (.)

Proof We only give the proofs of (.) and (.) since (.) can be proved similarly. Let
u = u(·, pk) and v = u(·, pk + h) such that u(k)(·, pk + h) → u(k)(·, pk) (k = , , . . . , n) uniformly
on J as h → . From (.) and (.) it is obtained that

[
λ(pk + h) – λ(pk)

]〈u, v〉

= –[u, v]c
a – ρ[u, v]b

c +
∫ c

a
(–)n+ku(k)v̄(k)h + ρ

∫ b

c
(–)n+ku(k)v̄(k)h.

Condition (.) implies

[u, v]c
a + ρ[u, v]b

c = ,
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then by Theorem  and Theorem  we have

[
λ(pk + h) – λ(pk)

](
 + o()

)
=

∫ c

a
(–)n+k∣∣u(k)∣∣h + ρ

∫ b

c
(–)n+k∣∣u(k)∣∣h + o(h),

and hence

λ(pk + h) – λ(pk) =
[∫ c

a
(–)n+k∣∣u(k)∣∣h + ρ

∫ b

c
(–)n+k∣∣u(k)∣∣h + o(h)

](
 + o()

)

= (–)n+k
∫ c

a

∣∣u(k)∣∣h + (–)n+kρ

∫ b

c

∣∣u(k)∣∣h + o(h) as h → .

Therefore, the proof for (.) is completed.
In the following, we prove formula (.). Let u = u(·, 

p
) and v = u(·, 

q
) with 

q
= 

p
+ h,

and when h → , u(·, 
q

) → u(·, 
p

). Then

p – q = pqh.

Using (.) and the integration by parts, we can obtain

[
λ

(


p

)
– λ

(


q

)]
〈u, v〉 = [uv]c

a + ρ[uv]b
c +

∫ c

a
(p – q)u(n)v̄(n)

+ ρ

∫ b

c
(p – q)u(n)v̄(n).

From condition (.) we get that

[
λ

(


q

)
– λ

(


p

)]
〈u, v〉 = –

∫ c

a
pu(n)qv̄(n)h + ρ

∫ b

c
pu(n)qv̄(n)h.

Taking limits as h → , we complete the proof of (.). �

Theorem  Assume that the assumptions in Theorem  hold. Let all components of ω

except b be fixed, and let λ = λ(b) and u = u(·, b). Then λ is differentiable at b and

λ′(b) = ρ

n∑

k=

(
u[k–](b)

(
ū[n–k])′(b) – u[n–k](b)

(
ū[k–])′(b)

)
, a.e. for b ∈ (

c, b′). (.)

Proof For small h, choose u = u(·, b) and v = u(·, b + h). By (.), (.), and Lemma , we
get that

[
λ(b + h) – λ(b)

]〈u, v〉
= –[uv]c

a – ρ[uv]b
c = [uv](a) – ρ[uv](b)

= Ru(a)QnCv̄(a) – ρRu(b)QnCv̄(b)

= Ru(b, b)
(
A–B

)
QnA–BCū(b + h, b + h) – ρRu(b, b)QnCū(b, b + h)

= ρRu(b, b)QnCū(b + h, b + h) – ρRu(b, b)QnCū(b, b + h)
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= ρRu(b, b)Qn

∫ b+h

b
C′

ū(s, b + h) ds

= ρRu(b, b)Qn

[∫ b+h

b
C′

ū(s, b) ds + o(h)
]

.

Therefore, from Lemma  we have

λ(b + h) – λ(b) = ρRu(b, b)Qn

[∫ b+h

b
C′

ū(s, b) ds + o(h)
]

= ρhRu(b, b)QnC′
ū(b, b) + o(h) a.e. in

(
c, b′).

Dividing both sides of the above equality by h and letting h →  yield that

λ′(b) = ρRu(b, b)QnC′
ū(b, b) = ρ

[
u, u′](b).

Then the result follows from (.). �

Theorem  Assume that the assumptions in Theorem  hold.
. Let all components of ω except A be fixed. Denote the eigenvalue and the normalized

eigenfunction with respect to A by λ = λ(A) and u = u(·, A), respectively. For all E
satisfying ρ(A + E)Qn(A + E)∗ = BQnB∗ in the neighborhood of A, λ is differentiable
at A and

dλA(E) = –Ru(a)QnA–HCū(a). (.)

. Let all components of ω except B be fixed. Denote the eigenvalue and the normalized
eigenfunction with respect to B by λ = λ(B) and u = u(·, B), respectively. For all E
satisfying ρAQnA∗ = (B + E)Qn(B + E)∗ in the neighborhood of B, λ is differentiable
at B and

dλB(E) = ρRu(b)QnB–HCū(b). (.)

. Let all components of ω except C be fixed. Denote the eigenvalue and the normalized
eigenfunction with respect to C by λ = λ(C) and u = u(·, C), respectively. For all E
satisfying det (C + E) = ρn and (C + E)∗Qn(C + E) = ρQn in the neighborhood of C, λ
is differentiable at C and

dλC(E) = –Ru(c+)C∗QnHCū(c+). (.)

Proof For small E, choose u = u(·, A), v = u(·, A+E) such that u(·, A+E) → u(·, A) as E → ,
then by condition (.) we have

[
λ(A + E) – λ(A)

]〈u, v〉
= [u, v](a) – ρ[u, v](b)

= Ru(a)QnCv̄(a) – ρRu(b)QnCv̄(b)

= Ru(a)QnCv̄(a) – ρRu(a)
(
BA–)QnB–(A + E)Cv̄(b). (.)
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By (.) one gets that

A∗–QnA– = ρB∗–QnB–, (.)

and hence

(
B–A

)∗QnB–A =

ρ

Qn. (.)

Substituting (.), (.) into (.) and letting E → , we get that

λ(A + E) – λ(A) = –Ru(a)QnA–ECū(a) + o(E),

this completes the proof of (.). The proof for (.) is similar to this proof, hence is omit-
ted here.

Let u = u(·, C), v = u(·, C + E) and assume that when E → , u(·, C + E) → u(·, C). Using
the same method mentioned above, we can get

[
λ(C + E) – λ(C)

]〈u, v〉 = –[uv]c
a – ρ[uv]b

c .

By condition (.) and transmission conditions (.) we have

[
λ(C + E) – λ(C)

]〈u, v〉
= –[uv](c–) + ρ[uv](c+)

= ρRu(c+)QnCv̄(c+) – Ru(c–)QnCv̄(c–)

= ρRu(c+)QnCv̄(c+) – Ru(c+)C∗Qn(C + E)Cv̄(c+)

= –Ru(c+)C∗QnECv̄(c+).

Let E → , then we get (.). �

5 Conclusion
The dependence of eigenvalues with respect to the data plays an important role in the
theory of differential operators. It gives theoretical support for the numerical computation
of eigenvalues. Moreover, the properties of monotonicity of eigenvalues with respect to the
parameters can be obtained by the derivatives of eigenvalues on the given parameter.

In this article, we obtained the continuity results of eigenvalues and eigenfunctions and
presented some new differential expressions of the eigenvalues with respect to the data.
Our results in this article generalize the previous results by Kong et al. [] into a discon-
tinuous version. It can be verified that it turns into the classical case when ρ = .

Acknowledgements
The authors thank the referees for their comments and detailed suggestions. These have significantly improved the
presentation of this paper. The work of the authors is supported by the National Nature Science Foundation of China (No.
11561050, No. 11401325).

Competing interests
The authors declare that there are no competing interests.



Li et al. Boundary Value Problems  (2017) 2017:143 Page 14 of 14

Authors’ contributions
All authors contributed equally to the writing of this paper. The authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 May 2017 Accepted: 15 September 2017

References
1. Likov, AV, Mikhailov, YA: The Theory of Heat and Mass Transfer. Qosenerqoizdat, Russian (1963)
2. Aydemir, K, Mukhtarov, OS: Variational principles for spectral analysis of one Sturm-Liouville problem with

transmission conditions. Adv. Differ. Equ. 2016, 76 (2016)
3. Aydemir, K, Mukhtarov, OS: Qualitative analysis of eigenvalues and eigenfunctions of one boundary value

transmission problem. Bound. Value Probl. 2016, 82 (2016)
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