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1 Introduction and the main result
In this paper, we are focused on the nonlinear sub-elliptic systems involving sub-quadratic
(1 < m < 2) controllable growth terms in divergence form in Carnot groups G,

k
— Y XiAY (&, u, Xu) = B*(§,u,Xu), &€Qa=1,..,N, 11)

i=1

where Q is a bounded domain in G, X = {Xj,..., X} with X; (i = 1,..., k) to see (2.1) below,
u:Q—> RN, A% Q x RN x RN — RON and B : Q@ x RN x RN — RN,

The aim is to weaken assumptions on coefficients AY with Holder continuity in the vari-
ables (&, u) to the assumptions of Dini continuity, and to show a partial regularity result
with optimal estimates for the modulus of continuity for the horizontal derivative Xu; see
[1, 2] for the case of sub-elliptic systems with Holder continuous coefficients.

As is well known, even under reasonable assumptions on the coefficients AY, B* in the
systems, people cannot in general expect that weak solutions of nonlinear elliptic systems
of equations will be classical (i.e., C2-solutions) like elliptic scalar equations; see [3] by
De Giorgi. Then the goal is to establish partial regularity of weak solutions for systems;
see monographs [4—6] for more details. Moreover, Duzaar and Steffen in [7] introduced a
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new method called A-harmonic approximation technique, which was then simplified by
Duzaar and Grotowski in [8], to investigate elliptic systems with quadratic growth case.
This technique avoids proving a reverse Holder inequality. Later, many results have been
obtained for more general coefficients AY or B* in the Euclidean setting; see [9-12] for
Holder continuous coefficients, and [13—15] for Dini continuous coefficients.

With respect to sub-elliptic systems in Carnot groups, there are some new difficulties
and challenges which remain due to the lack of commutation and homogeneity of the hor-
izontal vector fields. We list several results for sub-elliptic systems with Holder continuous
coefficients. Capogna and Garofalo [16], and Shores [17] considered the quadratic growth
case, whereas Foglein [18], Wang and Niu [1], and Wang and Liao [2] treated non-quadratic
cases. It is remarkable that Zheng and Feng [19] showed everywhere regularity for weak
solutions of sub-elliptic p-harmonic systems while p is closed to 2 in Carnot groups. We
also refer readers to [20—25] for regularity of weak solutions and to [26—30] for other in-
teresting topics such as variational principle, uniqueness, existence and nonexistence of
solutions to sub-elliptic equations on Carnot groups.

Recently, Wang and Liao [31] considered sub-elliptic systems with Dini continuous coef-
ficients under super-quadratic conditions (2 > 2). In this paper, we treat the sub-quadratic
case (1 < m < 2). It is worth mentioning that the key point is to establish a certain excess-
decay estimate for the excess functional ®. In the case m > 2, this functional is given by

(&0, pr o) =][ [1Xu - pol® + 1Xu - po|"] d,
Bp(ﬁo)

. 1 .
where we have used the notation fBr(Eo) u(g)dé = BEc fBr(Eo) u(&) d&. However, in the
sub-quadratic case 1 < m < 2, one should establish the excess-decay estimate for the fol-
lowing functional:

@ (0, p,po) = ][

Bp(EO

) |V (Xu) - V(po)| de, 1.2)

where V(A4) = (1 + |A|?) 72 for A € R*N, which itself leads to the continuity of the hori-
zontal gradient Xu of the weak solution via the integral characterization of continuity by
Campanato. For 1 < m < 2, we first have to generalize the approximation lemma directly
(see Lemma 4 below), and the proof requires a Sobolev-Poincaré type inequality related
to the functions V' (see Lemma 5 below).

In the sequel, let 2 C G be a bounded domain in Carnot groups G with general step and
consider weak solutions of the sub-elliptic systems (1.1), i.e.,

/ AY(E, u, Xu)X;p® d& = / B (&,u, Xu)p® d&, Vo € C3°(QRN) (1.3)
Q Q

with sub-quadratic controllable structure conditions (H1)-(H4), where:
(H1): A% (£, u,p) is differentiable with respect to p, with bounded and continuous deriva-
tives, that is, there exists a constant C such that

m=2

’Aj‘/(é,u,p)‘SC(1+|p|2) , l<am<?2, (1.4)
T

where we denote by A% ; (-) = M40 Furthermore, (H1) implies that there exists a con-
L

7y o,

tinuously nonnegative and bounded function w(s, £) : [0,00) x [0,00) — [0, 00), where



Liao et al. Boundary Value Problems (2017) 2017:150

w(s,0) = 0 for all 5, and w(s,t) is monotonously nondecreasing in s for fixed ¢; w(s,t) is
concave and monotonously nondecreasing in ¢ for fixed s such that

A% (&, 1,p) ~ A% (&, p)| < C(L+ pI2 + 1) T w(lph Ip - B1). (15)
i, i,

(H2): AY(&,u, p) satisfies the following ellipticity condition:

m=2
A7 & uwpnin! =r(1+1pP) T % ¥pe RN, (1.6)
LPp

where A is a positive constant.
(H3): There exists a modulus of continuity u : (0, 00) — [0, 00) such that

SN

A%, u,p) — A2 G, )| < K (1ul) (a6, B) + lu—a") 7 ) 1+ |pl) (17)

where K(-) : [0,00) — [0, 00) is monotonously nondecreasing. Without loss of generality,
we assume K(-) > 1 and that (1) p is nondecreasing with ;«(0+) = O (1) = 1; (142) u is con-
cave, and r — r~ u(r) is nonincreasing for some exponent y € (0,1); (£3) Dini condition

H(r)= [y —‘Z(m dp < oo for some r > 0.
(H4) (Controllable growth condition): The term B* satisfies sub-quadratic controllable
growth condition

|B°‘(§,u,p)| < C(l +lul |p|m(’_1)/’), l<m<?2, (1.8)

where C is a positive constant, and r = (;"_—(Bn ifm< Q;or Q<r<+ooif m=Q. We note that
Q > 3 is the homogeneous dimension in non-Abelian Carnot groups (see (2.3) below),
and the exponent m satisfies 1 < m < 2. So those infer that m < Q, and then r = Q’"_—?ﬂ in our
setting.

We follow the strategy in the Euclidean case used by Duzaar et al. in [14] and Duzaar
and Grotowski in [8] with the necessary modification to handle the sub-elliptic case in
Carnot groups. First, inspired by [18], we choose horizontal variables to construct an aux-
iliary function to establish Caccioppoli type inequality; see Lemma 7 below. The method
of using Taylor’s expansion in [14] cannot be easily adapted to our situation. Instead, we
choose different auxiliary functions and apply the Sobolev-Poincaré type inequality (3.6)
to obtain the desired excess improvement estimates.

The main result in this paper is as follows.

Theorem 1 Assume that coefficients AY and B* satisfy conditions (H1)-(H4) with (u1)-
(u3), and u € HWY"(Q,RN) is a weak solution to (1.3) with bounded domain Q C G. Then
there exists an open subset Qo C Q2 such that u € C*(Q, RYN). Furthermore, the closed sin-
gular set @\ Qo C X1 U X, of Lebesgue measure zero, where

= {0 < 2 lim sup([ 000 |) = o).

¥, = {go €Q: lim inf][ |Xu — (Xu)g, .| d& > o}.
BV(SO)

r—0t

Page 3 of 24
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In addition, for T € [y,1) and & € Q\ Qo, the derivative Xu has the modulus of continuity
r— 1" + M(r) in a neighborhood of &,.

It is worth pointing out that the Haar measure in Carnot groups G with the underlying
manifold R” is just the Lebesgue measure in R”. Our result is optimal in the sense that
r

when 1(p) = p¥,0 < y <1, we have M(r) = |, % dp = y~1r7,and C” regularity is known

to be optimal in that case; see the reference [2] by Wang and Liao.

2 Preliminaries

A Carnot group G of step r is a simply connected, nilpotent Lie group whose Lie al-
gebra g admits a stratification, i.e., g = @}'le V7 such that [V, V] = Vit j=1,...,r-1
and [V1, V"] = {0}. Let Xf be a left-invariant basis vector field of V! with 1 </ < r and
1 < i < my, where my; is the dimension of V. For simplicity, we write X; = Xil, k = my, and
denote by X = (Xj,...,X) the horizontal gradient. We say that X; (i =1,..., k) are the hor-

izontal vector fields with the form

Xi=0i+ Y ag&)d,  Xi(0) =0, (2.1)

J=itl

where a;(£) is a polynomial.

We write
S = (51,52,'”,5’) = (xi’xé""’x}'m;‘xf’""xfﬂz;"';x;""’x;"l) egq,

and the distance from origin is defined by

d(é){Z(ZMz) ] : 2.2)

=1 i=1

For any &, € G, we set d(£,n) =d(n~' 0 &), where n™' = =iy = (=n\,...,—7") is the reverse
of n, and o is the multiplication rule in G defined by £ o '§ =&+ 5 + P(S,g), é,g € G, where
P: G x G+ G has polynomial components. Following [32], we denote by wg = [B1(0)|g
the volume of unit ball. Then |B,(§)|g = wgr<, where

Q=) Im (2.3)
=1

is the homogeneous dimension of G.
The non-Abelian Heisenberg group H" is the simplest and the most important prototype
of the Carnot group with step r = 2, which is defined as R?"*! endowed with the following

group multiplication:

(‘51, t) . (51’2) = (i:l + g;-l’ t+ Z + % Z (x,»j/,' —5Ciyl')>. (24)

i=1
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The basic vector fields corresponding to its Lie algebra g can be explicitly calculated by
the exponential map and are given by

0 ;0 0 ; 0 0
i= 2 ’ i+n=_+£_y T=— (25)
dy; 2 ot ot
fori=1,2,...,n. The homogeneous dimension Q in the Heisenberg group H” is 2n+2 > 4.
Given the property of the Heisenberg algebra g, one has g = R¥*! = V; @ V, with V; =
R?" x {0} and V3 = {O0}g2 x R such that [X;, X,,.j] = T8; and [V3, Vi] = Va.

Let1 <m < oo and Q2 C G be an open set. If u € L™ (2) satisfies

k

el prwimgy = lallimey + D 1 Xiullmiey < 00, (2.6)
i=1

we say that u belongs to the horizontal Sobolev space. The space H Wé’m (2) is the com-
pletion of C3°(2) under the norm (2.6).
Throughout the paper, we shall use the functions V, W : R” — R” defined by

2-m
4

V) =c/(L+IsPP) ',  W(e)=¢/(1+s|*™)

ST

(2.7)

for each ¢ € R” and m > 1. By the elementary inequality ”x”% <%l <27 |« 2 ap-
plied to the vector x = (1, |¢|*>™) € R?, we conclude that

1+16P) 7 <141cPm <2% 1+ 1) T, (2.8)
which immediately yields
(W(s)| < |[V(5)] <2%|W(s)|. (2.9)

The purpose of introducing W is the fact that in contrast to | V| Z , the function |W/| W is
convex (see [9]).

The following lemma includes some useful properties of the function V, which can be
found in Lemma 2.1 of [33].

Lemma?2 Letme (1,2) and V, W : R" — R”" be the functions defined in (2.7). Then there
holds for any ¢1,¢, € R" and t > 0:

(1) 5 min(gil, [a11%) < [V(so)l < min(lail, 1611 );

(2) [V(t)| < max(t,7)|V(c)l;

(3) 1V(s1+ 62)l < Cm)(IV(s1)| + [V (s2)]);

(@) F151- 0l < [V(s) - V(@A +|s1]? + 1) "5 < Clmm)lsi - el

(5) 1V(s1) = V()| < Clm,n)|V(s1 - s2)|;

(6) V(51— 62)| < Clm, M)|V(s1) - V(2 for all g1 with |2| < M.
The inequalities (1)-(3) also hold if V is replaced by W'.

Let ¢1, 63 € R” with |g;| < M, and we mention that the following two estimates can be
deduced from Lemma 2(1) and (6):

61— &f? < Clm, M| V(g1) - V(so)|® (2.10)



Liao et al. Boundary Value Problems (2017) 2017:150 Page 6 of 24

for |¢1 — ¢3] <1, while for |¢1 — o] > 1,
m 2
51— Gl < Clm, M)| V(1) - V()| (2.11)
The next lemma is an algebraic fact from [34].

Lemma 3 Foreveryte (—%, 0) and n > 0, it holds

_ b 0P +lpesp-p)P)ds 8
(P +lpP+pPy T2l

(2.12)

for any p, p € RN not both zero if n = 0.

The nondecreasing property of w yields su(£) < su(t) for all 0 < ¢ < s. By the nonin-
creasing property of r @ and (1) <1, we conclude that

su(t) <su(s)+t, sel0,1],¢>0. (2.13)

By (12), we further obtain for 6 € (0,1),£>0,j e NU {0},

2 . 2
9 ' 0%t 12(9% 0%t 120,
—(1—9”)/L1/2(92’t):/ r%_IMdrf/ w )dr,
14 920+1)¢ (0%t)r/2 02, T

which implies

o]

12 (p2j 4 1/2
;u @ t)S—Z(l—GV)H ®).

Ityields particularly that p(z) < 7’4—2H (¢) forallt < 0,and t +— t~¥ H(t) is also nonincreasing.
In what follows, we denote p;(s,£) = (1 + s + £)"'K (s + £)~}, and Ki(s, ) = (1 + £)2"K*(s +
t) for s,t > 0, and note that p; <1 and that s — pi(s,£), t — pi(s,t) are nonincreasing

functions.

3 Caccioppoli type inequality
We first generalize an .A-harmonic approximation lemma in our setting. Then a Sobolev-
Poincaré type inequality (Lemma 5) and a prior estimate (Lemma 6) are introduced for
the sub-quadratic case in Carnot groups, and the detailed proofs can be found in [2] by
Wang, Liao and Yu. The last and key point is to prove a Caccioppoli type inequality.

By Bil(R**N) we denote the collection of bi-linear forms defined in RN, Let A
Bil(R¥*N), we say that a function # € HW"(Q2,RN) is A-harmonic if / satisfies

/ AXh,Xe)dé =0, Vo e Cy(Q,RY). (3.1)
Q

Similarly to [9], one can establish the following .A-harmonic approximation lemma for
the case 1 < m < 2 in Carnot groups.
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Lemma 4 Let A and L be fixed positive numbers, 1 < m < 2, and k,N € N with k > 2.
Suppose that for any given ¢ > 0, there exists § = §(k,N, A, L,¢) € (0,1] with the following
properties:

() for any bi-linear form A € Bil(RPN) satisfying

AW, v) > Av|> and AW, b) <L|v|[p], v,beRN, (3.2)

(1) for any function g € HW"(B,(&o), RN) satisfying

][ |W(Xg)|*de <> <1 and (3.3)
Bp(fo)
A(Xg, Xg)d&| <8 sup [Xgl|, Ve e Cy(B,(E) RY). (3.4)
B,G(EO) Bp(f())

Then there is an A-harmonic function
heH= {h € HWL’”(BP(EO),]RN)‘][ | W (Xh)|* dg < 1}
Bp(EO)
such that

-7
fo"(557)
By (£0) o

Lemma 5 (Sobolev-Poincaré type inequality) Let m € (1,2) and u € HW " (B,(&), RY)
with B,(&) C Q, then

(][ W(u_ uéo:ﬂ)
By (%0) P

Furthermore, the analogous inequality is valid with W replaced by V defined in (2.7), and

2
de < Y2e. (3.5)

2Q Q-m 1
o dg) ¢ gcp(][ |W(Xu)y2dg> . (3.6)
By (&0)

in particular, the inequality also holds if we substitute 2 for Qz_—Qm

Lemma 6 Letu € HW (2, RY) be a weak solution of the systems with constant coefficients
/Q AP X Xip* dE =0, ¢ € CF(Q,RY). (3.7)
Then u is smooth and there exists Cy > 1 such that for any B, (&) C S,

2
sup (|u - ugo,p|2 + o2 Xul® + p4|X2u| ) < Co,ozj[ | Xu|? dE. (3.8)
By 2(60) Bp(&0)

To establish the main result, a crucial ingredient in the local regularity of weak solutions
to systems (1.3) is a Caccioppoli type inequality. We prove a version which is adapted to

our situation.
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Lemma 7 (Caccioppoli type inequality) Let u € HWY"(Q,RN) be a weak solution to sys-
tem (1.3) under conditions (H1)-(H4) with (u1)-(u3). Then, for any & = (&,...,€}) € Q,

m(

[uol, |pol), it holds

V(u—uo —Poigl—‘f&)) ?

S —

and0<t<s<p

][ |V (X~ po) | dt < C<][
Bt (&) Bg(&0)

with

dE + u) (3.9)

u=[K()(1+ |p0|)]2m/(m—1)u2(s(2 mm=Dm) (14 2M + o |S)m/m 02 -1

(-4
+M2(S(2_m)(m_1)/m) |:][( )(le/l'm + |u|V + 1) dgi| , (3'10)
Bs(§o

where we denote K(-) = K(|luo| + |pol), Cc = C.(Q,N,m,L,\, M), and &* = (§],€},...,&}) is
the horizontal component of & € G.

Proof Let n € C§°(Bs(&o)) be a standard cut-off function satisfying 0 < n < 1,|Xn| < &
and 7 =1 on B,(&). Inspired by the way of [18], we let v = u(€) — ug — po (&' — £}), and then
define two functions

p=nv ¢=01-ny, (3.11)
one has

X +X¢p=Xu-po (3.12)
and

Vxe)|, |V(Xe)| < Clm (]v )| + v(é) D (3.13)

Using hypothesis (H2), Lemma 3 and the elementary inequality
1+lal> +1b-al* <3(1+lal* +1b%), (3.14)
we have
|| [ mpo+Xo) - A7 oy de
5(50

dAY(E, 6X
/ / (&, u,po + w)dexjwﬁxiwads
By(£o) op!

ZA/ [/ (1+|p0+9X<p|2)
Bs(50) LJO

_ —2)/2
> 30212, / (1+ pol? + 1Xe )" 1 Xgl dt. (3.15)
Bs(%0)

(m-2)/2
de} | Xo|* d&
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From (3.15), it follows that

_ (m-2)/2
3022, / (ol Xel) "
B (&

< /E [A%(&, 1, po + X) — A%(E, 1, po) | Xigp® diE

<- / ) - A7 (6o o€ - 83)po) g e
Bs EO
- / [ o o6 -5, po) = A7 e )i
Bs 50
L OA%(E, u, Xu—60(Xu—Xo —
_/ / * (&, u,Xu (ﬁu [ pO))dé?)(jqﬁﬂXi(p"’dE
By(0) J0 op;
+/ Bi(&, u, Xu)p® d&
BS(SO)
=TI+ +IT+1V, (3.16)

where we have used (3.12), (1.3) and the fact that
[ At o puixgr de 0.
BS(EO)

Noting that ¢ = v on B(&), m — 2 < 0 and (3.14), the left-hand side in (3.16) can be
estimated by

) (m-2)/2

3022 / (Ll + ) Xe de
(&0

= 30m- 2/2)\/ (1+ Ipol® + 1Xv1?) "2 X0 de
Bt(£o)

m-2)/4

2
zC(m))\/( )[(1+|P0|2+|XM|2)( Xt~ pol] de
Bt (&

> Clk,N,m, ) /B vk - v as

> C(k,N,m, », M) Vo) [ de, (3.17)
Bt(&o)

where we have applied Lemma 2(4) in the second inequality and Lemma 2(6) for the final
inequality.
The structure condition (H3) yields

< / KO+ pol)" 1 (1vl) 1 Xo] &
Bs(&o)

1 m _)/m
m/]g@)[lﬂ)(lﬂp )2 s (1)) | X | d
s\50

IA

1 / m/2 (- -1)/
— [K()(1+ Ipol) =i
§(2-m)(m-1)/m By(6o)
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x (K (1+ Ipol)™2sZm0m=0imy o 1y|]| X d

1
< < / [K2()(1 + [pol) s (s@=mem-0imy 111X | d
BS(EO)

) vl
= /B(E ) [1(2(.)(1 +lpol)” (s ) 4 e | Xl e, (3.18)
s\S50

where we have used the inequality suu(£) < su(s) + ¢ for s € [0,1] and £ > 0.

To obtain a suitable estimate for I, we need to take the domain B(&,) into four parts:
By(50) N {Iv/s| >1} N {IXep| <1}, By(50) N {[v/s| >1} N {|IXe| >1}, By(%) N {lv/s| <1} N
{IXo| > 1}, Bs(&0) N {|v/s| <1} N{|X¢| <1}, and we will use Young’s inequality, (2.10) and
(2.11), repeatedly.

Case 1: On the part By(&p) N {|v/s| > 1} N {|X¢| > 1}, we see

o i
[1(2(')(1 +lpol) " (s®TI) e || Xl

- 1%
< 28|X§0|m +871[1<2(')(1 + |p()|)m/1/(s(27m)(m71)/m)]m”m 1) +8—1 1/(WI*1)SW171

—|IvI
s

< 26Xl + e [K2()(1+ [pol) " (0 7D

v|™ 2
-1 7 +8—1|v|m/(m—1) m

+& S

2
< 26Clm, M)|V(Xg)|” + e‘IC(m,M)‘V<£>

+ & [K2() (1 + |pol)" (s m=0my 0D oM 4 s V29 (3.19)
Case 2: On the set Bs(&y) N {|v/s| > 1} N {|X¢| <1}, it holds

) om— vl
[1<2(')(1 +lpol)” p(s@0I) + e | X9

m

1%
< 261X + e [K2() (1 + [pol) " e (s@ 0 0/m) TP 4 71 o+ g y|mlom-Dgm

2
< 28C(WZ,M)’V(X(,0)’2 + 8‘1C(m,M)‘V<E>

+ e [K2() (L + |pol) " (s |2 4 e71|2M + pos| ™/ Ds, (3.20)

where we have used the inequality 2(m — 1)/m < 1.
Case 3: On the set Bs(&o) N {|v/s] <1} N {|X¢]| > 1}, observing m/(m — 1) > 2, one has

) 4
|:K2(.)(1 + 1pol) " (s e | X!

— 14
< 28|X§D|m +£—1[1(2(.)(1+ |p0|)mu(s(2—m)(m—1)/m)]m/(m 1) +€—1 -z |V|l/(m—1)sm—1

S
< 26C(m, M)|V(X@)|” + ™ [K2(-) (1 + |po)" (s> =) 77D

+ &7V 2M + pos| VD gmL, (3.21)
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Case 4: For By(&) N {|v/s| <1} N {|Xp| <1}, there is

) om— vl
[1(2(')(1 +lpol)” p(s@0I) + Sammim | X9

< 2<9C(m,M)|V(X<p)|2 +e! [1(2(~)(1 + |po|)m,u(5(2_”’)(’"_1)/’”)]2 +e7 g™, (3.22)

Combining these estimations with (3.18), we get

2

I < eC(m, M) /B . )|V(Xv)|2d$ + C(e, m, M) dg

()

# e KD (L o)™ R (52 B )

BS(EO)

G

ve (L 2M + pols) ™" | By(g0) | 5" (3.23)

Similarly to I, it follows that

)(WHZ)/Z

s [ KO p) "Xl ds
BS(EO)

< / (11" + s KD (1 |pol) "2 D 5)| g
Bi(%0)

+ / [e1Xp)* + e K*()(1 + |p0|)(m+2)u2(s)] dE
Bs(&0)

2

< 26C(m, M) Vo) [* dt +26Clm, M) dt

1%
By(&o) Bs(&o) s—t

1 7m/(m— m(m+2)/2(m—
+e KD (14 pol) " 12 (5) [ Bo(&o) | - (3.24)

By (H1), Lemma 3 and (3.14), it holds

/
<3 / (1+ 1X612) " 221X | X | . (3.25)
B.

Noting that X¢ C B; \ B; and —1/2 < (m — 2)/2 < 0, we split the domain B;(&p) into four
parts: By(§0) N {|X¢| > 1} N {|Xe| > 1}, Bs(§o) N {IX | <1} N{|Xep| <1}, Bs(§o) N{IX¢| >1}N
{IXe| <1} and By(&) N {|X¢| <1} N {|X¢| > 1}. Similarly to I, it follows that

C(L,mM 2
1 < S M) (/ V)| de +/ v(i) dg). (3.26)
m—1 By(50)\Bt(%0) Bygo) | \S—1
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Using Holder’s inequality, one has

1
IV < c/ (1IXul” + |ul” +1)"7 || de
BS(SO)

1-1 1
< c[/ (IXul™ + |u|” +1) dé} (/ |¢|’ds> ) (3.27)
Bs(go) BS(EO)

Analogously to 1, we take the domain B;(&) into two parts.
Case 1: For Bs(&y) N {|Xv| > 1}, by Sobolev type inequality, Young’s inequality and (2.11),
it follows that

1_% T

[/ (|Xu|'"+|u|’+1)ds] (/ |<p|’ds)
Bs(fo) BS(EO)

-3 i

§C[/ (|Xu|m+|u|’+1)d$] (/ |Xv|md5)
BS(SO) Bs(Eo)

(1-3) 5y
< C(e)[/ (1Xul™ + |u|” +1) dg] + Ce(/ |Xv|md§>
BX(EO) BS(EO)

=
< C(e)[/ (1Xul™ + |u|” +1) ds]
BS(EO)

+ Clm, M)e ( / . |V(Xv)|2dg), (3.28)
Bs(&o

where we have used |¢|" < |v|".
Case 2: On the set Bs(&y) N {|Xv| <1},

1_% r
[/ (Xl + u” +1) ds] (/ |¢|’ds>
BS(SO) BS(SO)
21-1)
< C(8)|:/ (|Xu|”’ +|ul” + 1) dé‘] + C(m,M)e (/ |V(Xv)’2d“§>, (3.29)
BS(EO) 33(50)

where we have used (2.10).
Combining these estimates in IV, we have

) =75
IV < C(m,M)e(/B o |V dg) + C(s)[/B ) )(|Xu|m +ul” +1) ds}

21-1)
+ C(a)[/ o (1Xul™ + |ul” +1) d&] . (3.30)
Bs(&o

Substituting (3.17), (3.23), (3.24), (3.26) and (3.30) into (3.16), we finally arrive at

|:3(m2))»C2(Wl,M) + M] / |V(XV)|2d§
m—1 By(&0)

<

|:C(L,m,M)

+4sC(m,M)] /B (g)|V(XV)}2d§
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2
+ C(e,L,m,M)/ dé

By (o)

()

+ CE)[KO(L+ pol) " w2 (s@-mim) | B(0)

mj/(m-—. 2
+C(e)(1+2M + |pols) m=1) ’BS(EO)}GSWI_I

=P
+ Cl(e) / (1Xul™ + |ul” +1) dé}
BS(EO)

21-1)
+C(8)[/ (|Xu|’"+ |u|’+1)d§:| .
Bs(&0)

C(L,m,M)
We let ¢ = [3"72A1C(m, M)]/5. ‘Filling the hole’ with 6 = 24 3+4Zf(cy;"(M)M
+3M= m,

m-1
/ V(X - po)| dt < c(/ V(L)
By(£o) Bs(go)l \S—1

+9/ |V(Xu—p0)|2d$,
Bs(éO)

S < 1 yields

2

d.§+lfl>

where C = C(N, L, A, m, M), and

0 = [KC) L+ lpol) ] (520 | By (8o)

2
+(L+2M + |p0|s)M/(m b |Bs(£0)| o8

(1-
+ |:/ (|Xu|"’ + |ul” + 1) di—‘]
BS(SO)
(
)

20-1)
+ |:/ | Xu|” + |u|” + 1) di—‘] . (3.31)
BS(SO

1y m
7>m—1

The proof is completed by taking mean values of integral and noting that [m(r — 1)/r(m —
1) _ l]Q — m/(m _ 1) and Sm/(m—l) < SZ(Z—m)(m—l)/m < l/L2 (S(Z—m)(m—l)/m). 0

4 Proof of the main result
This section will proceed to the proof of Theorem 1 by Lemmas 8-9. We first give a lin-

earization strategy for nonlinear systems.

Lemma 8 We claim that if p < p1(2"")('"'1) (luol, Ipol) and ¢ € C5°(B,(&0), RN) with
SUPg, (&) 1 Xel =1, then there exist some constants Cy = Cy(L, m, M, Cp,K) > 1 such that

F A% (ot o) - po) X"
By (o) LPg
1 1 1
S Cl Sl(lp) IX(P|[CU2 (|P0|» o2 ($0: prpo))q)z (EO! P;po)
Bp &

+ D (0, 05 po) + n(/P)F (luol, [pol) ], (4.1)

where we denote F(s, t) = K¥C (s + )2+ £)> + (1 +s+t) L.
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Proof Noting the fact

1
/ |:/ A‘f‘[/- (éo,uo,GXu +(1 —G)po)(Xu—po)d9:|X¢“ d&
By (o) LPp
-/ Ao 300 - A7 oo po) X
Bp o0
= / ) )[A;"(g‘o,uo,Xu)—A?‘(S,u,Xu)]Xw“ dg
By (&0

+ / B*(&, u, Xu)p* d&, (4.2)
By (&0)
we have

/ A (Gt po) Ot po) X d
By (&0) LPg

/ N [ / (6ot po) o p0>]X¢ dé
By (o

/ |:/ \A (So;uo:Po) ‘,11/' (§0» 140, 0 Xu + (1 —9)P0)||XM—Po|d91|
Bp(EO b B

x sup |Xo|d§
Bp(EO)

+/ |AY (&0, 10, Xu) — AY (&, u0 + po (6" — &), Xu)| sup |Xo|dE
Bp(éo)

Bp (EO)

+ / |AY (&, u0 + po (&' - &), Xu) — AF (&, u, Xu)| sup |Xo|dE
By (&0)

Bp EO)
. c/ (P19 ¢ ™ + 1) )
By (&0)

=0 + 10 + 0T +1V. (4.3)

Using (H1) and estimate (1.5) yields (note that m — 2 < 0)

Nl

1 — m-2
I' < C(L) sup |Xg| {/ [(1+1pol? )T (1+|po +O(Xu - p0)| ) 7]
By (o) By (o)

x [(L+1pol* + |po + 6 (Xu — p0)|) )]%d6}|Xu—p0|d§

m—2

1
< C(L,m) sup |X¢| (1+|Xu—pol*) * w2(|pol, |Xu— pol) | Xu — po| d&
B, (&0) By (&0)
< C(L,m) sup |Xg| (1+ Xt - pol "7 )1 Xu = pole? (Ipol, | Xu — pol) dE. (4.4)
B, (&0) By (&0)

Let

By =:B,(&) N {|Xu - pol <1}, B, =: B, (&) N {1Xu - po| > 1}. (4.5)
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Then it follows that, by first Holder’s inequality and then Jensen’s inequality, we have

1
I' < C(L,m) sup Ile[/ |Xu — polw? (Ipol, | Xu — pol) dé
By (&0) By

m 1
+/ |Xu - po| 2 2 (|pol, | Xu —pol)dé]
By

1 1
2 2
< C(Lm) sup |X<p|( / |Xu—po|2ds) ( / w(|po|,|Xu—po|)ds>
By (&0) By By (&0)

1 1
2 2
+C(L,m) sup |X<p|< IXu—poI"’d$> </ w(lpol,lXu—poI)dE>
By By (o)

B,o (50)

< C(L,m) sup |X<p||Bp(so)|G<][ |V (Xu) - V(po)lzds)2
) By (o)

Bp(Eo

1
2
x (][ w(|po|,|Xu—po|)ds)
Bp(EO)

< Cm) sup IX0l[B, (€0)| ;2 (50, £, p0)

Bp(éO

% 1

1 m

X w? (Ipol,(][ IXM—polsz) +(/ |XM—Po|md$> )
B By
1 1 1
< C(L,m,M) Sl(lp)IXsOI!Bp(éo)\gdﬁ(éo,p,po)wf(Ipol,fbf(%‘o,p,po)), (4.6)
Bp o

where we have used estimates (2.10) and (2.11) in the last inequality.
By employing (H3), estimates (2.10) and (2.11), Young’s inequality, and noting the fact
that K(-) is monotone nondecreasing and K(-) > 1 and that p <1, we deduce

i< / KOV 1+ pol) (1 + X)) de
Bp(éo)

< KOulo)(1+ pol)" ¥ |B, &), + /

B+

B KO ()1 + pol) |1 Xu - pol  d

< KOup) 1+ pol) "2 B, o) + [KOo) (1 + Ipol) ]’ 1Bale

4
+[KCOu(e) 1+ |pol) | ¥ 1Bl + | [ Xu—pol™dé + | |Xu~—pol*dE
By By

< B, (£0)| (0, . p0) + 3[K() (L + Ipol) |’ By (E0) | o12(0)s (4.7)

where we have used 4/(4 —m) < 2,1+ m/2 <2 and u(p) <1 for p € [0,1].
Similarly to (3.23) to estimate III', the domain B, (&) is divided into four parts as previ-
ously mentioned. Then we obtain that, by Lemma 2(6) and Lemma 5,

II' < sup |Xo| K()(1+ |Xu|)m/2,u(|v|)d§'
Bp(fo) B/)(SO)

< sup |X¢| [Mﬁ+1<2(~)(1 +po)mu(ﬁ)+1<2(~)IXu—po|’”u(«/E)] dg
By (&) By(&) L P
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< sup Ile[C(m,M)(Cp +K2(~))/
Bp(EO) B,G(EO

) | V(Xu —190)|2 dé
+ KM ()2 + po)™ 14(/0)| B, (50)|G}

< Jup | X|[C(m, M)(Cp + K*(-)) (&0, Pos £)| B, (§0) |

+ K¥C()(2 4 o) 1 (/P)| By €0)] - “.8)

With the help of the assumptions that SUP3 (&) lp| < p <1, Holder’s inequality, Sobolev
type inequality and Young’s inequality, we get

v < c/ (X0 + |l + 1) | de
By (&0)

-1 L
< C(/ |Xu|V”d§> (/ |<p|’ds) +Cp|Bp(&0)| o[L + (Itol + Ipol) ']
Bp(So) B,o(fo)

a-1 1
re( [ fumuo-mie-ghrar) ([ rorae)
By (o) By (o)

-1 L
< c( / (|Xu—po|'"+|po|'")ds) ( / |¢|’d$)
Bp(éo) Bp(SO)

r-1

1
. C(/ |Xu—po|’"ds> (/ |<p|’ds)
B, (&) B, (&0)

+ Cp|By(&o)| o1 + (1m0l + pol) ]

r-1 1

1
§C</ |Xu—po|’"ds) (/ |¢|’ds)
Bp(f()) Bp(éo)

r-1 1

r-1 1
. C(/ |po|’"ds> (/ |¢|’dg>
Bp(fo) Bp(éo)

r=1 1
. c( / Xt~ o™ ds) ( / |¢|’ds)
By (&0) By (&0)

+CplB,(60)|g[1 + (1ol + Ipol) ]

1
§C</ |Xu—po|"“ds) (/ |¢|’ds>
Bp(SO) Bp(fo)

+Cp|B,(§0)| ;1 + (1ol + |p0|)r’1 . Ipol”‘(l‘b]

< c/ Xt~ pol™ d& + Cp' B, (&)
By (&0)
r-1 m-1
+Cp|Bo(€o) | [1+ (ol + Ipol)™ + Ipol™7]. (4.9)
On the case By =: B, (&) N {|Xu — po| <1}, by (2.10) and Young’s inequality, one gets

Xt — pol™ < [Xu—pol> +1 < |V(Xu) = Vpo)|* + 1,
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and then

(4.9) < Culy/P)|B,(E0)|[(1 + 10l + pol) ™ + (1 + ol + Ipo])”]
+ C|B,(&)| (&0, 05 0)- (4.10)

On the other hand, on By =: B, (&) N {|Xu — po| > 1}, by (2.11) and Young’s inequality, one
has

(4.9) < Cul/P)|B,(E0)|[(1 + 10l + pol) ™ + (1 + ol + Ipo])™]
+ C|B,(&)| (0, 05 o). (4.11)

Thus we infer that, by combining these estimates and noting the definition of F(s, t), we
have

1V < C®(&o, p, po)|By(§0)| ; + CF (luols |pol) | B, ()| o1 (/0). (4.12)

Combining the estimates I’, II', III' and IV’ with (4.3), we immediately conclude (4.1).
O

We next establish an initial excess improvement estimate assuming that the excess ® is
initially small enough. Precisely,

Lemma 9 (Excess improvement) Let u € HW'"(Q2,RN) satisfy the conditions of Theo-
rem 1. Assume that Lemma 4 and the following smallness conditions hold:

(g |+ | Xt | (0, (X)) + V2 (60, (i) = 2, (413)

CoF? (|ugy,pls | (Xua)ey | ) 11 (/) < 67, (4.14)
with Cy = 8C12 Cy, together with the condition

p = 0 (L gy 11+ [0 ). (4.15)
Then the following growth inequality is valid for T € [y,1):

D (£0,0p, (Xtt)go ) < 077 @ () + K* (|1t | (Xtt)go ) 14 (07), (4.16)

where o = min{(2 — m)(m — 1)/m, (m —1)/2}, and K*(s,t) = CgF% 1 +s,M+t).

Proof For simplicity, we will use the abbreviation ®(p) = ®(&, p, (Xu),,,) in the sequel.
For ¢ > 0 to be determined later, we take 6 € (0,1) and T € [0,1] to be the corresponding
constant from the .4-harmonic approximation lemma (Lemma 4), and set

w =1 — (ugy,p — Vhiy0p) — (Xut)g, p (€' = &)

and

T = ComMIT(p),  T(p) = Gy @(p) + 45212 (VD)2 g 1, | (Xt ).
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Noting (4.13) and (4.14) yields

0)1/2(|(Xu)€0,p

,@(p)) + () < g (4.17)

and by (4.1), we derive (note the definition of Y and I'(p))

][ [A‘?‘/ (&0» ths, 00 (X1t)gy,p ) X | Xi0® dg‘
By (&) WP

"2 (|(Xu)gy,0 1, @2(0)) P2 (p) + D(p) + 1 (/P)F (|t | (Xth)g )

<7 sup [Xo|
C(m, M)T (p) By(&0)

1)

<t [0 (0 | 920) + 7001+ 5| sup 0l
2 1 B,(z0)

<7Y$§ sup |Xg|. (4.18)

Bp(éo)
Then from the definition of Y, Lemma 2(6) and (2.9), we have
][ | W (xw) | de 5][ |V Ow)|> de < Clom, M)D(p) < Y. (4.19)
Bp(So) Bp(fo)

Inequalities (4.18) and (4.19) fulfill the conditions of A-harmonic approximation
lemma, which ensures than we find an A = A% ; (&, ug,, 0, (Xu)g,,,)-harmonic function
L

Py
h e WY(B,(&),RN) such that

-7
fowoofas,  f W(W h)
By (£o) By (&o) o

Using Lemma 2(3) and (6), we have

2
de < Y2e. (4.20)

o(0p) = ]i Vet - V(o) ds
0p\50
gc][ |V (X~ (Xu)ey,, )| d
BH/)(&O)

<C ][ |V (Xu — (Xu)g, , — T (Xh)g,20)) \2 dg
By, (&0)

+ ClV ((Xwey,, — (Xit)gy p — Y (XH)g0.20) |

, (4.21)

where the constant C depends only on m, k and N.

Next, we proceed to estimate the right-hand side of (4.21). Decomposing By, (&)
into two parts: By = By, (&) N {IXu — (Xu)g, , — Y (Xh)(gy,200)| < 1} and By = By, (&) N
{IXu — (Xu)z, p — Y (Xh)(go,200)| > 1}. Then by Lemma 2(1) and Hélder inequality, we ob-

tain

|(Xu)50,9ﬂ - (X”)Eo,p - T(Xh)(éo,29p)|

< ][ |Xu — (th)go,/J - T(Xh)(go,zgp) | d&
Byy (50)
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<2 ’ |V (Xt — (Xu)g, p — T (XN 50,200 ) | dE

+ V2o V(XU X0y, - Y (Xh) g 200)| " d

< %(Euz + El/m), (4.22)

where we have denoted

0]

. ][ |V (Xt = (Xat)gy p = T e 0) | .
BH,O(EO)

Using Lemma 2(1), we deduce that V2(EY? + EV™) < C(E + E2/™). So we get
®(0p) < C( + V*(EM* + EY™)) < G3(E + EY™), (4.23)

where the constant C; depends only on 2, Q and N. Then it remains for us to estimate E.
By considering the cases |Xk| <1 and |Xh| > 1, separately and keeping in mind (4.20), we
obtain

f wnde<avaf |woofds <292 (4.24)
Bp (50) Bp (50)

where we have used Lemma 2(1).

Note that the smallness conditions (4.13) and (4.14) imply C,Y? < 1 with C4 =
max{8C3,(20)~?}, where we have assumed 1C?C,6* < 1, which is no restriction. Then
it follows by applying the priori estimate for constant coefficients sub-elliptic systems (see
Lemma 6)

Y|(Xh)go200 | <Y sup |Xh| < Tco][ |Xh|dE < 2/2YCy < 1. (4.25)
Bp/2(§0) Bp(éo)

Caccioppoli type inequality applied on By, (&) with uy = ug,,, and po = (Xu)g,, +
T(Xh)go,zgp, 0 e (0,1/4] yields

2
dg

V(“ — ttgg,p = (Xt)go,p + Y (XH)(g0,00)) (§" = 53))
20p

E< Cc|:|329p($0)|(_;1/3

20 (€0)

. u], (4.26)

where

U = [K (1t ] + | (Xt0)eg,p + T O 200 |) (1+ | (Xt + Y X200 |)

x MZ ((29p)(2—m)(m—1)/m)

/(m-1)2 _
#(L4+2M + | (Xu)gy p + T (X 20 ]) ™" (20p)"

+ MZ ((zep)(Z—m)(m—l)/m) |:f‘;

it (1-3)
(|Xu|”‘+ |u|’+1)d“§] .
p(éo)
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By Lemma 2(3), one gets

/Bzep(fo)
<,
Bagp (§0)

2

d§

v ( U=tz p — (Xtt)gy o + ¥ (Xh)(gy,200)) (" — & ))
20p

V(M — (ugy,p — Vhey0p) — Xty p (E' = &)) — Th(E)
20p

PRUGERUIED: —Z;rp(Xh)@o,zep)(sl —sg>) ? i
2
<[ (")
Bagp (60) 20p
+ ‘V(T h(E) = hey20p — ggz)@ozem@ - 55)) 2) dg]. (4.27)

To estimate the right-hand side, we employ (2.9), Lemma 2(2) (note that % > 1) and (4.20)

to infer
2 2
/ v(iw‘ ”’@)) ds < C(29)’Q’2][ W(—W_ Th(g)) de
Bagp (&) 20p By (€0) P
< C(20)" 212, (4.28)

Using Lemma 2, Sobolev-Poincare type inequality (3.6), Lemma 6, (2.9) and (4.20) leads

][Bzep(fo)

<cr? ][ |V (XR(E) ~ (Xh) ey 200)|” B
By (o)

to

2

d§

V<T h(E) = hey 0o — (Xh) (g0 200) (E' — 5&))
20p

< Cg(29p)2T2][ |V (X2h)|* dg

Bagp (60)

< CH26p)*Y? sup |X*h|’
By2(60)

< C0C§(29)2T2][ |Oeh)|* dg

Bp (EO)

< CCyCH26)* > ][ \wOxm)|” de
Bp(éo)

< Cs6272, (4.29)

where we denote Cs = 4CC,Cp.
Using (4.25), we get

[K (1t o] + | (XD p + Y X020 ) (14 | (X0t)eg, + 0 (KB e 200 )"
x MZ ((ng)(Z—m)(m—l)/m)
< [K (Jtgg o] + | (Xua)gg ] + 1) (2 + | (Xt )i (p 2000

< F2m/(m—1) (1 + |qu,p|’ (Xu)go,p|),U«2 (p(Z—m)(m—l)/m)
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and

/(m-1)2 _
(1+2M + | (Xu)ey p + T (XR)igy 2 |) """ (260p)"

m/(m-1)%

< (2+2M + |(Xu)g,,|) 2 (pD12).

Applying Sobolev type inequality, we have

[][ (IXu|™ + |ul” +1) ds]
Bagp(&0)

< [2*“ ][ (|Xu — Xu)g,,p|™) dg]
Baop (60)

+ (2m—1 ’ (Xu)go,p ‘m)m(r—l)/r(m—l)

m(r-1)/r(m-1)

m(r-1)/r(m-1)

m(r-1)/r(m-1)

T 2 - G- ) |
Bagp (o)

+ (2r—1|u§0,p + (Xu)g(),p (%_1 _ %_é) |r + 1)m(r—l)/r(m—l)

< (2m,1)m(r—1)/r(m—l) |:(29)Q][
B

+ (2m—1 | (Xu)go,p |W1)m(r—1)/r(m—1)

m(r-1)/r(m-1)

o | Xu — (Xu)g,,|” d&]
50

ey oy - G, " e

p(%‘o)

:| (r-1)/(m-1)

+ (27 g, o + X)gg | + l)m(r_l)/r(m_l)

_ m(r-1)/r(m—
=< C(WI,M, Q)[(ZG) QCD(EO! O (XM)EO,;))] =Dirm=n
m(r-1)/(m—
+ Clm, Q) (1 + |ugy | + |(Xua)ey ) e h), (4.30)
The smallness conditions imply

(20)"2® (€0, p, (Xu)g,, ) < 1.

And then it follows

|:][ (|Xu|m+|u|r+1)d§
Bagp (50)

(Xu)éo,p |)M2 (IO(Z—m)(m—l)/m)’

m(r-1)/r(m-1)
] /'L2 ((29p)(2—m)(m—1)/m)

< CFmt (|u§0,0|’

where we have used the definition of F in the first step.
Combining all the above estimates with (4.26) and letting & = 824, we arrive at

E< C6[92T2 + (1 + ugy,pl, M+ ‘(Xu)go_p‘)pcz(p“)], (4.31)

where o = min{(2 — m)(m — 1)/m, (m — 1)/2}, Cs depends only on Q, N, m, M, L, A and
Cp. For given 7 € [y, 1), choosing 0 € (0, i) suitable such that C3Cs6? < 6%7, we easily find
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(note the definition of Y1)

®(0p) < 0% [D(p) + CrEmT (1 + |ugy, |, M + | (Xua)ey ) 11 (0°)]

=07 d(p) + K*(|u;0,p|, (Xu)go,p})uz(,o"), (4.32)

where we have used that (2 — m)(m — 1)/m < 3 — 24/2 <1/2, K*(s,t) = Cﬂ-"% 1 +s,M+1),

and the constant C; has the same dependencies as Cy. O

For T > 0, we find ®¢(T) > 0 (depending on Q, N, A, L, T and w) such that

0} (2T, 202 (T)) + 207 (T) < %5, and (4.33)
2L+ /Cp)y/ @o(T) <09*(1-67)T. (4.34)

With ®4(T) from (4.33) and (4.34), we choose po(T) € (0,1] (depending on Q, N, A, L, 7,
w, n and «) such that

po(T) < p™™mImq L 2T,142T), (4.35)
CF*(2T,2T)1*(po(T)) < 82, (4.36)
Ko(T)u?(po(T)7) < (6% =07 )@o(T), and (4.37)
2(1 + C,)Ko(T)H (po(T)?) < 62(1 - 67)* (6% - 6°7) T2, (4.38)

where Ko(T) := K*(2T,2T).
The rest of the process to obtain Theorem 1 is very similar to [13]. We omit it here.

5 Conclusion

For ELLIPTIC systems in Euclidean spaces, there are many literature sources to study
partial regularity of weak solutions by the so-called .4-harmonic approximation method.
With respect to SUB-ELLIPTIC equations and systems in Heisenberg groups, or gen-
eral Carnot groups, there are some new difficulties and challenges which remain due
to the lack of commutation and homogeneity of the horizontal vector fields. This work
is concerned with nonlinear sub-elliptic systems (1.1) with Dini continuous coefficients
which are weaker than Holder continuous coefficients. Under sub-quadratic controllable
growth conditions, a C? partial regularity result is obtained by adapting the technique of
A-harmonic approximation to our setting. The new result generalizes the corresponding
result for elliptic systems in Euclidean spaces and enriches regularity theory for nonlin-
ear sub-elliptic systems in Carnot groups. The authors also believe that this work helps
further study nonlinear sub-elliptic systems structured on Héormander vector fields.
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