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Abstract
The symmetry analysis method is used to study the Drinfeld-Sokolov-Wilson system.
The Lie point symmetries of this system are obtained. An optimal system of
one-dimensional subalgebras is derived by using Ibragimov’s method. Based on the
optimal system, similarity reductions and explicit solutions of the system are
presented. The Lie-Bäcklund symmetry generators are also investigated. Furthermore,
the method of constructing conservation laws of nonlinear partial differential
equations with the aid of a new conservation theorem associated with Lie-Bäcklund
symmetries is presented. Conservation laws of the Drinfeld-Sokolov-Wilson system
are constructed by using this method.
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1 Introduction
The Lie symmetry method was initiated by Lie [] in the second half of the nineteenth cen-
tury. It has become one of the most powerful methods to study nonlinear partial differen-
tial equations (NLPDEs). The core idea of the Lie symmetry method is that one-parameter
groups of transformations acting on the space of the independent and dependent variables
leave the NLPDEs unchanged [–]. Most problems in science and engineering can be
represented by NLPDEs [–]. Application of the Lie symmetry method for constructing
the explicit solutions of the NLPDEs can always be regarded as one of the most important
fields of mathematical physics. Many important properties of NLPDEs such as symmetry
reductions, conservation laws, and explicit solutions by using symmetries can be consid-
ered successively [–].

Studying conservation laws is helpful in analyzing NLPDEs in the physical point of
view []. Some studies have indicated that conservation laws play an important role in
the numerical integration of PDEs []. Conservation laws are also helpful in solving equa-
tions by means of the double reduction theory [, ]. In order to construct conservation
laws various methods have been developed, such as Noether’s theorem [], the partial
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Noether approach [], the multiplier approach [], and a new conservation theorem [,
]. Noether’s theorem and the partial Noether approach establish a relationship between
symmetries and conservation laws for NLPDEs. Nevertheless, these methods do not work
on a nonlinear equation without a Lagrangian. It is notable that a new conservation theo-
rem was proposed by Ibragimov []. The conservation laws of a nonlinear equation and
its adjoint equation can be constructed by using formal Lagrangian.

In the present paper, we shall consider the Drinfeld-Sokolov-Wilson system (DSWS)

ut + vvx = ,

vt – avxxx + buxv + kuvx = ,
()

where a, b, and k are real valued constants. System () is a physical model for describing
nonlinear surface gravity waves propagating over a horizontal sea bed.

The DSWS has attracted the attention of many scholars. Some conservation laws of
DSWS were obtained with the aid of the multiplier approach []. Then the double re-
duction analysis was employed to study the reductions of some conservation laws for
DSWS []. This system has an infinite number of conservation laws, has a Lax repre-
sentation, and is a member of KP hierarchy [, ], which indicates the integrality of this
system. The scaling invariant Lax pairs of the DSWS were derived by Hickman and Here-
man et al. []. The homotopy analysis method was applied to obtain the approximate
solutions of DSWS []. Matjila et al. derived the exact solutions of system () by using
the (G′/G)-expansion function method. They also constructed conservation laws using
Noether’s approach []. We gave some symmetry reductions and conservation laws of
this system [].

This paper is arranged as follows. In Section , we derive the Lie point symmetries of the
DSWS using Lie group analysis and find the transformed solutions. In Section , a new
optimal system of subalgebras of system () is constructed by using a concise method.
The new optimal system contains five operators. Then in Section , based on the opti-
mal system, the similarity reduced equations and the explicit solutions of system () are
investigated systematically. In Section , the method of constructing conservation laws
of NLPDEs with the aid of the new conservation theorem associated with Lie-Bäcklund
symmetries is presented. In Section , the conservation laws of the DSWS are constructed.
Finally, the conclusions are given in the last section.

2 Lie point symmetries
The infinitesimal generators

X = ξ (t, x, u, v)
∂

∂t
+ ξ (t, x, u, v)

∂

∂x
+ η(t, x, u, v)

∂

∂u
+ η(t, x, u, v)

∂

∂v
()

will give rise to the Lie group of symmetries []. Then X should satisfy the following
invariant surface conditions:

pr()X(�)|�= = , ()

pr()X(�)|�= = , ()
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where � = ut + vvx and � = vt – avxxx + buxv + kuvx. The invariant surface conditions
give the overdetermined system of PDEs

ξ 
u = , ξ 

v = , ξ 
x = , ξ 

tt = , ξ 
t = ,

ξ 
u = , ξ 

v = , ξ 
x =



ξ 

t , η = –



uξ 
t , η = –




vξ 
t .

()

By solving (), we get

ξ  = ct + c, ξ  = cx + c, η = –cu, η = –cv, ()

where c, c, and c are arbitrary constants. Therefore we obtain the three infinitesimal
symmetry generators

X =
∂

∂t
,

X =
∂

∂x
,

X = t
∂

∂t
+ x

∂

∂x
– u

∂

∂u
– v

∂

∂v
.

()

The above three infinitesimal symmetry generators form a three-dimensional Lie algebra
L by commutation.

One can obtain the group transformation generated by the Lie point symmetry operator
Xi (i = , . . . , ) by solving the ordinary differential equations with initial conditions

dt∗

dε
= ξ (t∗, x∗, u∗, v∗), t∗|ε= = t,

dx∗

dε
= ξ (t∗, x∗, u∗, v∗), x∗|ε= = x,

du∗

dε
= η(t∗, x∗, u∗, v∗), u∗|ε= = u,

dv∗

dε
= η(t∗, x∗, u∗, v∗), v∗|ε= = v.

()

Then the one-parameter transformation groups Gi of the DSWS are given as follows:

G : (t, x, u, v) → (t + ε, x, u, v),

G : (t, x, u, v) → (t, x + ε, u, v),

G : (t, x, u, v) → (
teε , xeε , ue–ε , ve–ε

)
.

()

Therefore, the following theorem is established.

Theorem  If {u(x, t), v(x, t)} is a solution of the DSWS, so are the transformed solutions

G(ε) · u(x, t) = u(x, t – ε), G(ε) · v(x, t) = v(x, t – ε),

G(ε) · u(x, t) = u(x – ε, t), G(ε) · v(x, t) = v(x – ε, t),

G(ε) · u(x, t) = e–εu
(
e–εx, e–εt

)
, G(ε) · v(x, t) = e–εv

(
e–εx, e–εt

)
.

()
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3 Optimal system of subalgebras
Over the past few decades, the problem of classifying the subgroup was studied by many
researchers. In order to demonstrate the classification of the group invariant solutions,
Ovsiannikov put forward the concept of optimal systems of subalgebras of a Lie algebra [].
Then this method extended to many examples of optimal systems of subgroups for the Lie
group of mathematical physics models by Winternitz et al. [, ]. Notably, Olver [] used
a different technique for constructing a one-dimensional optimal system, which was based
on a commutator table and adjoint representation. Furthermore, Ibragimov presented a
concise method to get the optimal system in their paper []. Zhao and Han extended
this method to the Heisenberg equation [], the AKNS system [], and the Broer-Kaup
system []. This method only relies on a commutator table. In this section, we shall use
the Ibragimov method to construct an optimal system of one-dimensional subalgebra of
the Lie algebra L for the DSWS.

An arbitrary infinitesimal operator X of Lie algebra L can be written

X = lX + lX + lX. ()

The transformations of the symmetry group with the Lie algebra L provide the three-
parameter group of linear transformations. The following generators

Ei = cλ
ijl

j ∂

∂lλ
, i = , , , ()

are useful in finding these transformations, where cij is determined by [Xi, Xj] = cλ
ijXλ. The

commutator table of generators X, X, and X is given in Table . Using equation () and
commutator Table , E, E, and E can be written

E = l ∂

∂l ,

E = l ∂

∂l ,

E = –l ∂

∂l – l ∂

∂l .

()

For the generator E, the Lie equations with the initial condition l̃|a= = l are written

dl̃

da
= l̃,

dl̃

da
= ,

dl̃

da
= , ()

where a is the parameter. The solutions of the above initial value problem give the trans-
formation

l̃ = l + al, l̃ = l, l̃ = l. ()

Table 1 Commutator table

[Xi, Xj] X1 X2 X3

X1 0 0 3X1
X2 0 0 X2
X3 –3X1 –X2 0
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Other Lie equations for E and E are

dl̃

da
= ,

dl̃

da
= l̃,

dl̃

da
= , ()

dl̃

da
= –l̃,

dl̃

da
= –l̃,

dl̃

da
= , ()

where a and a are the parameters. In a similar way, we obtain the following transforma-
tions:

l̃ = l, l̃ = l + al, l̃ = l, ()

l̃ = a–
 l, l̃ = a–

 l, l̃ = l, a > . ()

Theorem  The following five operators constitute an optimal system of one-dimensional
subalgebras of the three-dimensional Lie algebra L:

X, X, X, X – X, X + X. ()

Proof The process of constructing optimal systems is equivalent to the classification of
the vector

l =
(
l, l, l), ()

by means of the transformations (), (), and (). We focus on finding the simplest
representatives of each class of similar vectors ().

Case . l �= . First of all, we take a = – l
l

in () and reduce the vector () to the form

(
l, , l). ()

By taking a = – l
l

in the transformations (), we make l̃ = . Hence the vector () is
reduced to the form

(
, , l). ()

Thus this case provides the operator X.
Case . l = .
(I) l �= . We assume l =  and make l = ± by the transformations (). In addition,

taking into account the possibility l = , we obtain the following representatives for
the optimal system

X, X – X, X + X. ()

(II) Let l = . If l �=  we can set l =  and obtain the vector (, , ). This gives rise to
the operator X. �
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4 Symmetry reductions and explicit solutions of the DSWS
In Section , an optimal system of one-dimensional subalgebras of the DSWS has been ob-
tained. We now make use of the symmetries of the optimal system () to reduce system
() to a system of nonlinear ordinary differential equations in one variable. All the sym-
metry reductions are presented in Table . By solving the reduced equations, the group
invariant solutions to the DSWS can be obtained.

4.1 Explicit solutions of system (1) using the simplest equation method
The method of the simplest equation was first proposed by Kudryashov [, ] and sys-
tematically developed by Vitanov [–]. We have summarized the main steps of the
simplest equation method and have obtained the traveling wave solutions of the ( + )-
dimensional KP equation and the generalized Fisher equation []. In this section, we will
employ the simplest equation method and obtain explicit solutions of reduced equations
of case () in Table . The equation of Bernoulli is used as the simplest equation. Consider
a solution of (B) of case () in Table  of the form

F(ξ ) =
m∑

i=

ai
(
G(ξ )

)i,

H(ξ ) =
n∑

i=

bi
(
G(ξ )

)i,

()

where m and n are positive integers that can be determined by a homogeneous balance
procedure and G(ξ ) satisfies the Bernoulli equation

G′(ξ ) = cG(ξ ) + dG(ξ ). ()

The Bernoulli equation () has the solution

G(ξ ) = c
{

cosh[c(ξ + C)] + sinh[c(ξ + C)]
 – d cosh[c(ξ + C)] – d sinh[c(ξ + C)]

}
. ()

Table 2 Reduction of the DSWS

Case Similarity variables Reduced equations

(1) X1 ξ = x,
u(x, t) = F(ξ ),
v(x, t) = H(ξ ).

H′ = 0, 3kFH′ + 3bF′H – aH′′′ = 0.

(2) X2 ξ = t,
u(x, t) = F(ξ ),
v(x, t) = H(ξ ).

F′ = 0, H′ = 0.

(3) X3 ξ = xt–
1
3 ,

u(x, t) = t–
2
3 F(ξ ) ,

v(x, t) = t–
2
3 H(ξ ).

ξF′ – 6HH′ + 2F = 0, –9kFH′ – 9bF′H + ξH′ + 3aH′′′ + 2H = 0. (A)

(4) X2 – X1 ξ = x + t,
u(x, t) = F(ξ ),
v(x, t) = H(ξ ).

2HH′ + F′ = 0, 3bF′H + 3kFH′ – aH′′′ + H′ = 0.

(5) X2 + X1 ξ = x – t,
u(x, t) = F(ξ ),
v(x, t) = H(ξ ).

2HH′ – F′ = 0, 3bF′H + 3kFH′ – aH′′′ – H′ = 0. (B)
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We get m = , n =  by balancing system (B). Hence the solution of (B) can be written

F(ξ ) = a + aG + aG,

H(ξ ) = b + bG.
()

Substituting system () along with equation () into (B) and collecting the coefficient
of the same power Gi leads to a set of constraining equations for ai and bi. Solving these
constraining equations, we obtain one solution

a =
–abc + ack + b + k

k(b + k)
, a =

acd
b + k

, a =
ad

b + k
,

b = ±
√

c√a


√

d
, b =

db

c
.

()

Therefore, the solutions of system () are

u(x, t) = a + ac
{

cosh[c(ξ + C)] + sinh[c(ξ + C)]
 – d cosh[c(ξ + C)] – d sinh[c(ξ + C)]

}

+ ac
{

cosh[c(ξ + C)] + sinh[c(ξ + C)]
 – d cosh[c(ξ + C)] – d sinh[c(ξ + C)]

}

,

v(x, t) = b + bc
{

cosh[c(ξ + C)] + sinh[c(ξ + C)]
 – d cosh[c(ξ + C)] – d sinh[c(ξ + C)]

}
,

()

where ξ = x – t and C is a constant of integration (see Figure ).

4.2 Explicit solutions of system (1) using generalized tanh method
The generalized tanh method was proposed by Fan [], who constructed a series of trav-
eling wave solutions for some special types of equations [–]. We take the solution of
reduced equations (B) of case () of Table  in the form

F(ξ ) =
m∑

i=

aiϕ
i, H(ξ ) =

m∑

i=

biϕ
i, ()

where ϕ = ϕ(ξ ) is a solution of the Riccati equation

ϕ′ = q + ϕ. ()

The Riccati equation has a series of solutions

ϕ =

⎧
⎨

⎩
–√–q coth(√–qξ ),

–√–q tanh(√–qξ ),
q < ,

ϕ = –

ξ

, q = ,

ϕ =

⎧
⎨

⎩
–√q cot(√qξ ),

–√q tan(√qξ ),
q > .

()
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Figure 1 Plot of explicit solution (30) with a = b = c = d = k = 1, C = 0. (a) Perspective view of the solution
u(x, t). (b) Overhead view of the solution u(x, t). (c) Perspective view of the solution v(x, t). (d) Overhead view
of the solution v(x, t).

The solutions of (B) are of the form

F(ξ ) = a + aϕ + aϕ
,

H(ξ ) = b + bϕ.
()

Substituting system () along with the equation () into (B) and collecting the coefficient
of the same power ϕi, we can obtain a set of constraining equations for ai and bi. Solving
these constraining equations, we obtain one solution

a =
aq + 

k
, a = , a =

a
b + k

,

b = , b = ±√
a.

()
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Therefore we obtain five solutions, namely

⎧
⎨

⎩
u(ξ ) = aq+

k + a
b+k [–√–q tanh(√–qξ )],

v(ξ ) = ∓
√

a
b+k

√–q tanh(√–qξ ), q < .
⎧
⎨

⎩
u(ξ ) = aq+

k + a
b+k


ξ ,

v(ξ ) = ∓
√

a
b+k


ξ

, q = ,
⎧
⎨

⎩
u(ξ ) = aq+

k + a
b+k [√q tan(√qξ )],

v(ξ ) = ∓
√

a
b+k

√q tan(√qξ ), q > ,
()

⎧
⎨

⎩
u(ξ ) = aq+

k + a
b+k [–√–q coth(√–qξ )],

v(ξ ) = ∓
√

a
b+k

√–q coth(√–qξ ), q < ,
⎧
⎨

⎩
u(ξ ) = aq+

k + a
b+k [√q cot(√qξ )],

v(ξ ) = ∓
√

a
b+k

√q cot(√qξ ), q > ,

where ξ = x – t (see Figure  and Figure ).

4.3 Explicit power series solutions of system (1)
We shall seek a solution to reduced equations (A) of case  in Table  in a power series of
the form

F(ξ ) =
∞∑

n=

rnξ
n, H(ξ ) =

∞∑

n=

snξ
n. ()

Substituting () into (A) and comparing coefficients, we obtain

r = ss,

s =
krs + brs – as


.

()

For the case n = , , , . . . , we have

n ≥ ,

rn – 
n+∑

l=

(n +  – l)slsn+–l + rn+ = ,

–k
n+∑

l=

(n +  – l)rlsn+–l – b
n+∑

l=

(n +  – l)slrn+–l + sn

+ a(n + )(n + )(n + )sn+ + sn+ = .

()
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Figure 2 Plot of explicit solution (36) with a = b = k = q = 1. (a) Perspective view of the solution u2(x, t).
(b) Overhead view of the solution u2(x, t). (c) Perspective view of the solution v2(x, t). (d) Overhead view of the
solution v2(x, t).

Therefore, we get the following relationship between the coefficients ri and si:

rn+ = –



rn + 
n+∑

l=

(n +  – l)slsn+–l,

sn+ =



k
n+∑

l=

(n +  – l)rlsn+–l +



b
n+∑

l=

(n +  – l)slrn+–l –



sn

–



a(n + )(n + )(n + )sn+.

()

The exact power series solution to system (A) can be written as follows:

F(ξ ) = r + rξ + rξ
 + rξ

 + rξ
 + · · · ,

H(ξ ) = s + sξ + sξ
 + sξ

 + sξ
 + · · · .

()
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Figure 3 Plot of explicit solution (36) with a = b = k = q = 1. (a) Perspective view of the solution u5(x, t).
(b) Overhead view of the solution u5(x, t). (c) Perspective view of the solution v5(x, t). (d) Overhead view of the
solution v5(x, t).

Thus, we obtain the exact power series solution of system () as follows:

u(x, t) = t– 

[
r + rxt– 

 + r
(
xt– 


) + r

(
xt– 


) + r

(
xt– 


) + · · ·],

v(x, t) = t– 

[
s + sxt– 

 + s
(
xt– 


) + s

(
xt– 


) + s

(
xt– 


) + · · ·].

()

Remark  The power series method is a useful approach to solve higher order variable
coefficient ordinary differential equations. A large number of solutions for ordinary differ-
ential equations are constructed by utilizing the method by Liu et al. [, ]. Moreover,
we can show the convergence of the power series solution () just as the method from the
paper []. If we regard the series solution () to a particular section, we get the polyno-
mial solution. In addition, we may obtain the approximate solutions of system () by using
Newton’s interpolating series [].
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5 Construction of conservation laws using Lie-Bäcklund symmetries
In this section, we briefly present the notations and theorem which are useful for con-
structing conservation laws with the aid of Lie-Bäcklund symmetries. For more detailed
information, the reader is referred to the literature [, –].

Consider a system of PDEs

Eα(x, u, u(), . . . , u(k)) = , α = , , . . . , m, ()

where u(k) are the kth order derivatives, x = (x, x, . . . , xn), and u = (u, u, . . . , um). uα
i de-

notes the derivatives of uα with respect to xi, which is explicitly expressed by uα
i = Di(uα),

where

Di =
∂

∂xi + uα
i

∂

∂uα
+ uα

ij
∂

∂uα
j

+ · · · , i = , , . . . , n. ()

Di is the total derivative operator. A Lie-Bäcklund operator is given by

X = ξ i ∂

∂xi + ηα ∂

∂uα
+

∞∑

j=

ζ α
ii···ij

∂

∂uα
i···ij

, ()

where ζ α
ii···ij are determined by the following relations:

ζ α
i = Di

(
ηα

)
– uα

s Di
(
ξ s),

ζ α
ii···ij = Dij

(
ζ α

ii···ij–

)
– uα

sii···ij–
Dij

(
ξ s), j > .

()

The Lie-Bäcklund operators () which have characteristic functions are

X = ξ iDi + W α ∂

∂uα
+

∞∑

j=

Di · · ·Dij
(
W α

) ∂

∂uα
i···ij

, ()

where W α = ηα – ξ juα
j , α = , , . . . , m are the Lie characteristic functions. The Euler-

Lagrange operator is represented by

δ

δuα
=

∂

∂uα
+

∞∑

j=

(–)jDi · · ·Dij
∂

∂uα
i···ij

, α = , , . . . , m. ()

A Noether operator associated with a Lie-Bäcklund operator X is defined as

Ni = ξ i + W α δ

δuα
i

+
∞∑

j=

Di · · ·Dij
(
W α

) δ

δuα
ii···ij

, i = , , . . . , n. ()

For example, the first order derivative of the Euler-Lagrange operator is given by

δ

δuα
i

=
∂

∂uα
i

+
∞∑

j=

(–)jDi · · ·Dij
∂

∂uα
ii···ij

, i = , , . . . , n,α = , , . . . , m. ()
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A vector T = (T , T, . . . , Tn) is a conserved vector of system () if Ti satisfies

DiTi|() = . ()

The adjoint equations for the system of PDEs () are defined by

E∗
α(x, u, v, . . . , u(k), v(k)) = , α = , . . . , m, ()

where

E∗
α(x, u, v, . . . , u(k), v(k)) =

δ(vβEβ )
δuα

, α,β = , . . . , m.v = v(x). ()

The relationship between Lie-Bäcklund symmetries and conservation laws can be estab-
lished by the following theorem.

Theorem  Every Lie-Bäcklund symmetry generator [, ]

U = ηα(x, u, u(), u(), . . .)
∂

∂uα
, α = , , . . . , m, ()

of PDEs () can give rise to a conservation law for the system consisting of () and the
adjoint system (). The components Ti of the conserved vector T = (T , . . . , Tn) are deter-
mined by the formula

Ti = W α

[
∂L
∂uα

i
– Dj

(
∂L
∂uα

ij

)
+ DjDk

(
∂L

∂uα
ijk

)
– · · ·

]

+ Dj
(
W α

)
[(

∂L
∂uα

ij

)
– Dk

(
∂L

∂uα
ijk

)
+ · · ·

]

+ DjDk
(
W α

)
(

∂L
∂uα

ijk
– · · ·

)
+ · · · , ()

where the formal Lagrangian is

L = vαEα(x, u, . . . , u(k)). ()

Remark  For the formal Lagrangian L which has a third order derivative, the conserva-
tion laws equation () can be written

Ti = W α

[
∂L
∂uα

i
– Dj

(
∂L
∂uα

ij

)
+ DjDk

(
∂L

∂uα
ijk

)]
+ Dj

(
W α

)
[(

∂L
∂uα

ij

)
– Dk

(
∂L

∂uα
ijk

)]

+ DjDk
(
W α

)( ∂L
∂uα

ijk

)
. ()

6 Conservation laws of the DSWS
The Lie-Bäcklund transformation group [, ] can be regarded as a tangent transfor-
mation group. It is the extension of one-parameter continuous symmetry group transfor-
mations. Lie-Bäcklund symmetry group of () will be generated by the vector field of the
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form

U = ηu(x, t, u, v, ux, vx, uxx, vxx, uxxx, vxxx)
∂

∂u
+ ηv(x, t, u, v, ux, vx, uxx, vxx, uxxx, vxxx)

∂

∂v
,

where U satisfies U ()�i|�i = , i = , . By applying the third prolongation U () to system
(), we obtain an overdetermined system of PDEs. The general solutions of the overdeter-
mined system are

ηu = ϑtvvx + ϑvvx – ϑuxx + ϑux – ϑu,

ηv = ϑvx + ϑbuxv + ϑkuvx – aϑvxxx + ϑbtuxv – ϑv – ϑvxx + ϑktuvx

– ϑatvxxx,

where ϑ, ϑ, ϑ are arbitrary constants. Thus, the third order Lie-Bäcklund symmetries
of () are given by

U = ux
∂

∂u
+ vx

∂

∂v
,

U = vvx
∂

∂u
+ (buxv + kuvx – avxxx)

∂

∂v
,

U = (tvvx – uxx – u)
∂

∂u
+ (btuxv + ktuvx – atvxxx – vxx – v)

∂

∂v
.

For system (), the formal Lagrangian is

L = φ(x, t)(ut + vvx) + τ (x, t)(vt – avxxx + buxv + kuvx). ()

The adjoint equations of system () are given by

– φt – b(τxv + τvx) + kτvx = ,

– φxv – τt + aτxxx + buxτ – k(τxu + τux) = ,
()

where φ(x, t) and τ (x, t) are the new dependent variables. On the basis of equation (),
one can derive components of the conservation vector for system () as follows:

Tt = W  ∂L
∂ut

+ W  ∂L
∂vt

,

Tx = W  ∂L
∂ux

+ W 
[

∂L
∂vx

+ D
x

(
∂L

∂vxxx

)]

+ Dx
(
W )

[
–Dx

(
∂L

∂vxxx

)]
+ D

x
(
W ) ∂L

∂vxxx
,

()

where W  = ηu and W  = ηv.
(I) For the Lie-Bäcklund symmetry generator U = ux

∂
∂u + vx

∂
∂v , the Lie characteristic

functions are W  = ux and W  = vx. Using equation (), we obtain the following
components of the conserved vector:

Tt
 = φux + τvx,

Tx
 = bτuxv + φvvx + kτuvx – aτxxvx + aτxvxx – aτvxxx.

()
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(II) The Lie-Bäcklund symmetry generator U = vvx
∂
∂u + (buxv + kuvx – avxxx) ∂

∂v
has the Lie characteristic functions W  = vvx and W  = buxv + kuvx – avxxx.
Using equation (), we obtain the following components of the conserved vector:

Tt
 = φvvx + (buxv + kuvx – avxxx)τ ,

Tx
 = bτvvx + (buxv + kuvx – avxxx)(kτu + φv – aτxx)

+ aτx(buxxv + buxvx + kuxvx + kuvxx – avxxxx)

– aτ (buxxxv + buxxvx + buxvxx + kuxxvx + kuxvxx

+ kuvxxx – avxxxxx).

()

(III) Finally, for the Lie-Bäcklund symmetry generator

U = (tvvx – uxx – u)
∂

∂u
+ (btuxv + ktuvx – atvxxx – vxx – v)

∂

∂v
,

the Lie characteristic functions are W  = tvvx – uxx – u and
W  = btuxv + ktuvx – atvxxx – vxx – v. Using equation (), we obtain the
following components of the conserved vector:

Tt
 = φ(tvvx – uxx – u) + (btuxv + ktuvx – atvxxx – vxx – v)τ ,

Tx
 = bτv(tvvx – uxx – u)

+ (btuxv + ktuvx – atvxxx – vxx – v)(kτu + φv – aτxx)

+ aτx(btuxxv + btuxvx + ktuxvx + ktuvxx – atvxxxx – vxxx – vx)

– aτ (btuxxxv + btuxxvx + btuxvxx + ktuxxvx + ktuxvxx

+ ktuvxxx – atvxxxxx – vxxxx – vxx).

()

7 Conclusions
Lie symmetry analysis has been employed to investigate Lie point symmetries of the
Drinfeld-Sokolov-Wilson system. The symmetries X, X, and X form a three-
dimensional Lie algebra L. By using Ibragimov’s method, we have derived an optimal
system of one-dimensional subalgebra. It is proved that the optimal system has five op-
erators. Based on the optimal system, we have considered the symmetry reductions and
group invariant solutions of the DSWS. To the best of our knowledge, very little work
has been devoted to constructing conservation laws of NLPDEs by using Lie-Bäcklund
symmetries. Lie-Bäcklund symmetries of the DSWS have been derived. The method of
constructing conservation laws of NLPDEs with the aid of a new conservation theorem
associated with Lie-Bäcklund symmetries has been presented. Conservation laws of the
DSWS have been constructed by using this method.
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