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Abstract
The aim of this paper is to explore the method of lower and upper solutions in order
to give some existence results for equations of the form

y(4)(x) + (k1 + k2)y′′(x) + k1k2y(x) = f (x, y(x)), x ∈ (0, 1),

with the Navier condition

y(0) = y(1) = y′′(0) = y′′(1) = 0

under the condition k1 < 0 < k2 < π 2. The main tool is the Schauder fixed point
theorem.
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1 Introduction
The aim of this paper is to explore the method of lower and upper solutions in order to
give some existence of solutions for equations of the form

y()(x) + (k + k)y′′(x) + kky(x) = f
(
x, y(x)

)
, x ∈ (, ), (.)

with the Navier condition

y() = y() = y′′() = y′′() = . (.)

Such boundary value problems appear, as it is well known [–], in the theory of hinged
beams.

Recently, Vrabel [] studied problem (.), (.) under the assumption

(H) k and k are two constants with

k < k < . (.)
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He constructed the Green function for the linear problem

L(y)(x) ≡ y()(x) + (k + k)y′′(x) + kky(x) = , x ∈ (, ),

y() = y() = y′′() = y′′() = ,
(.)

and proved its non-negativity and established the method of lower and upper solutions
for (.), (.).

Definition . ([]) The function α ∈ C[, ] is said to be a lower solution for (.), (.)
if

L
(
α(x)

) ≤ f
(
x,α(x)

)
for x ∈ (, ), (.)

and

α() ≤ , α() ≤ , α′′() ≥ , α′′() ≥ . (.)

An upper solution β ∈ C[, ] is defined analogously by reversing the inequalities in (.),
(.).

Theorem A ([, Theorem ]) Let (H) hold. Suppose that for problem (.), (.) there exist
a lower solution α and an upper solution β such that

α(x) ≤ β(x) for x ∈ [, ]. (.)

If f : [, ] ×R →R is continuous and satisfies

f (x, u) ≤ f (x, u) for α(x) ≤ u ≤ u ≤ β(x) and x ∈ [, ], (.)

then there exists a solution y(x) for (.), (.) satisfying α(x) ≤ y(x) ≤ β(x) for  ≤ x ≤ .

Of course the natural question is what would happen if (H) is replaced with the condi-
tion

(H) k <  < k.

Roughly speaking, for some kind of second order boundary value problems, it is well
known that the existence of a lower solution α and an upper solution β , which are well or-
dered, that is, α ≤ β , implies the existence of a solution between them (see []). However,
the use of lower and upper solutions in boundary value problems of the fourth order, even
for the simple boundary conditions (.), is heavily dependent on the positiveness prop-
erties for the corresponding linear operators, see the counterexample in [, Remark .].

It is the purpose of this paper to establish the method of lower and upper solutions for
fourth order problem (.), (.) under condition (H). To do that, we study the positive-
ness properties of the solutions of the nonhomogeneous linear problems

Ly(x) = , x ∈ (, ),

y() = , y′′() = y() = y′′() = ,
(.)



Ma et al. Boundary Value Problems  (2017) 2017:152 Page 3 of 9

and

Ly(x) = , x ∈ (, ),

y′′() = , y() = y() = y′′() = .
(.)

Since the general solution of Ly =  under (H) is different from that under (H), we de-
termine the sign of solution of (.) via its equivalent second order systems.

In [], Cabada et al. have extensively studied the positiveness properties of the operator

Ly = y() – My

with the homogeneous boundary value conditions (.) as well as the more general nonho-
mogeneous boundary value conditions, and then applied the positiveness properties in a
systematic way to obtain existence theorems in the presence of lower and upper solutions
allowing the case where they are not ordered. Obviously, Cabada et al. [] only dealt with
the case that

k + k =  (.)

in (.) and (.).
For the related results on the existence and multiplicity of positive solutions or sign-

changing solutions for fourth order problems, see Bai and Wang [], Chu and O’Regan
[], Cid et al. [], Drábek and Holubová [, ], Hernandez and Manasevich [], Korman
[], Liu and Li [], Ma et al. [–], Rynne [, ], Schröder [], Webb et al. [], Yang
[] and Yao [] and the references therein.

The rest of the paper is arranged as follows. In Section , we show that the Green func-
tion of (.) possesses the positiveness properties under the condition k <  < k < π.
Finally, in Section , we develop the method of lower and upper solutions for (.), (.)
under some monotonic condition on the nonlinearity f , and give some applications of our
main results.

2 Green function in the case k1 < 0 < k2

Let E = C[, ] be the Banach space of continuous functions defined on [, ] with its usual
normal ‖ · ‖. Denote

k = –r, k = m

with some r >  and m > . Let us consider

y′′′′(x) +
(
m – r)y′′(x) – rmy(x) = , x ∈ (, ),

y() = y() = y′′() = y′′() = .
(.)

Define a linear operator L : D(L) → E

Ly := y′′′′ +
(
m – r)y′′ – rmy, y ∈ D(L),
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with the domain

D(L) :=
{

y ∈ C[, ] : y() = y() = y′′() = y′′() = 
}

.

Firstly, we construct the Green function G(x, s) for Ly = .
Define a linear operator

Ly := y′′ – ry, D(L) :=
{

y ∈ C[, ] : y() = y() = 
}

.

The Green function of Ly =  is

G(t, s) =

⎧
⎨

⎩

sinh(rt) sinh(r(–s))
r sinh r ,  ≤ t ≤ s ≤ ,

sinh(rs) sinh(r(–t))
r sinh r ,  ≤ s ≤ t ≤ .

Define a linear operator

Ly := y′′ + my, D(L) :=
{

y ∈ C[, ] : y() = y() = 
}

.

The Green function of Ly =  is

G(t, s) =

⎧
⎨

⎩

sin(mt) sin(m(–s))
m sin m ,  ≤ t ≤ s ≤ ,

sin(ms) sin(m(–t))
m sin m ,  ≤ s ≤ t ≤ .

Obviously,

Ly = L ◦ Ly,

and the Green function of Ly =  is

G(x, s) :=
∫ 


G(x, t)G(t, s) dt, (x, s) ∈ [, ] × [, ],

which can be explicitly given by

G(x, s) =

⎧
⎨

⎩


m+r [ sin(mx) sin(m(s–))

m sin m + sinh(rx) sinh(r(–s))
r sinh r ],  ≤ x ≤ s ≤ ,


m+r [ sin(ms) sin(m(x–))

m sin m + sinh(rs) sinh(r(–x))
r sinh r ],  ≤ s ≤ x ≤ .

(.)

Theorem . Let m ∈ (,π ) and r ∈ (,∞). Then

G(x, s) ≥ , (x, s) ∈ [, ] × [, ].

Proof It is an immediate consequence of the facts that for m ∈ (,π ),

G(t, s) ≥ , (t, s) ∈ [, ] × [, ],

and for r ∈ (,∞),

G(t, s) ≥ , (t, s) ∈ [, ] × [, ]. �



Ma et al. Boundary Value Problems  (2017) 2017:152 Page 5 of 9

3 Method of lower and upper solutions
In this section, we will establish the method of lower and upper solutions for (.), (.) in
the case k <  < k.

Denote

gα(x) = L
(
α(x)

)
– f

(
x,α(x)

)
, gβ (x) = L

(
β(x)

)
– f

(
x,β(x)

)
, x ∈ [, ]. (.)

Then

gα(x) ≤ , gβ (x) ≥ , x ∈ [, ]. (.)

Now let vα(x) be the solution of

Lvα(x) = , x ∈ (, ),

vα() = α(), vα() = α(), v′′
α() = α′′(), v′′

α() = α′′().
(.)

Then vα(x) is uniquely determined as

vα(x) = α()w(x) + α()w( – x) + α′′()χ (x) + α′′()χ ( – x), (.)

where w(x) is the unique solution of the nonhomogeneous problem

L(y) = , y() = , y′′() = y() = y′′() = , (.)

and it can be explicitly given by

w(x) =
m

r + m
sinh[r( – x)]

sinh r
+

r

r + m
sin[m( – x)]

sin m
, (.)

χ (x) is the unique solution of the nonhomogeneous problem

L(y) = , y() = , y′′() = , y() = y′′() = , (.)

and it can be explicitly given by

χ (x) =


(r + m)
sinh[r( – x)]

sinh r
–


(r + m)

sin[m( – x)]
sin m

.

Let vβ (x) be the solution of

Lvβ (x) = , x ∈ (, ),

vβ () = β(), vβ () = β(), v′′
β () = β ′′(), v′′

β () = β ′′().

Then vβ (x) is uniquely determined as

vβ (x) = β()w(x) + β()w( – x) + β ′′()χ (x) + β ′′()χ ( – x).
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Lemma .
() Let  < r < ∞ and  < m < π . Then w(x) >  for x ∈ (, ).
() Let  < r < ∞ and  < m < π . Then χ (x) <  for x ∈ (, ).

Proof () Since r( – x) >  and –∞ < m( – x) < π for x ∈ (, ), it follows from (.) that
w(x) >  for x ∈ (, ).

() Obviously, (.) is equivalent to the system

Lχ = Z, χ () = ,χ () = , (.)

LZ = , Z() = , Z() = . (.)

It is easy to see from (.) and the fact G(t, s) >  for (t, s) ∈ (, ) × (, ) that

Z(x) >  for x ∈ [, ).

Combining this with (.) and using the fact G(t, s) >  for (t, s) ∈ (, )× (, ), we deduce
that χ (x) <  in (, ). �

From Lemma . and the definitions of vα and vβ , it follows that

vα(x) ≤ , vβ (x) ≥ , x ∈ [, ]. (.)

Now, for a lower solution α of (.), (.), we have the following implications:

L(α(x)) = f
(
x,α(x)

)
+ gα(x)

⇒ α(x) = vα(x) +
∫ 


G(x, s)f

(
s,α(s)

)
ds +

∫ 


G(x, s)gα(s) ds

⇒ α(x) ≤ Tα(x) on [, ],

and, by a similar way, we obtain β(x) ≥ Tβ(x) on [, ], where T : C[, ] → C[, ] is the
operator defined by

Tφ(x) =
∫ 


G(x, s)f

(
s,φ(s)

)
ds,  ≤ x ≤ , (.)

where the Green function G is as in (.). It is easy to check that (.), (.) is equivalent
to the operator equation

y = Ty. (.)

As a direct consequence of the Schauder fixed point theorem [, Theorem ], we have
the following lemma.

Lemma . Let there exist a constant M such that

∣∣f (x, y)
∣∣ ≤ M

for (x, y) ∈ [, ] ×R. Then (.), (.) has a solution.
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Theorem . Let k <  < k < π. Suppose that for problem (.), (.) there exist a lower
solution α and an upper solution β such that

α(x) ≤ β(x) for x ∈ [, ].

If f : [, ] ×R →R is continuous and satisfies

f (x, u) ≤ f (x, u) for α(x) ≤ u ≤ u ≤ β(x), and x ∈ [, ], (.)

then there exists a solution y(x) for (.), (.) satisfying

α(x) ≤ y(x) ≤ β(x) for  ≤ x ≤ . (.)

Proof Define the function F on [, ] ×R by setting

F(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

f (x,β(x)), y > β(x),

f (x, y), α(x) ≤ y ≤ β(x),

f (x,α(x)), y < α(x).

Since F is continuous and bounded on [, ] ×R, by Lemma ., there exists a solution y
of the problem

L(y) = F(x, y),

y() = y() = y′′() = y′′() = .

We now show that inequality (.) is true. We have

L
(
y(x) – β(x)

)
= L

(
y(x)

)
– L

(
β(x)

) ≤ F
(
x, y(x)

)
– f

(
x,β(x)

) ≤ .

Thus L(y(x) – β(x)) = h(x) ≤  for x ∈ [, ], that is, from Theorem . and (.)

y(x) – β(x) = –vβ (x) +
∫ 


G(t, s)h(s) ds ≤  for x ∈ [, ].

By a similar way,

L
(
y(x) – α(x)

)
= L

(
y(x)

)
– L

(
α(x)

) ≥ F
(
x, y(x)

)
– f

(
x,α(x)

) ≥ .

Thus L(y(x) – α(x)) = h(x) ≥  for x ∈ [, ], that is, from Theorem . and (.)

y(x) – α(x) = –vα(x) +
∫ 


G(t, s)h(s) ds ≥  for x ∈ [, ].

Therefore, α(x) ≤ y(x) ≤ β(x) for x ∈ [, ], and accordingly, y is a solution of (.), (.). �

Remark . It is worth remarking that if (.) is not valid, then the existence of a lower
solution α and an upper solution β with α(x) ≤ β(x) in [, ] cannot guarantee the ex-
istence of solutions in the order interval [α(x),β(x)]. Let us see the counterexample in
Cabada et al. [, Remark .].
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Remark . In the case |k| > k, the assertions of Theorem . can be deduced from
Habets and Sanchez [, Theorem .].

Remark . Let us consider the problem

u()(x) – u′′(x) + u(x) = u + sin x, x ∈ (, ),

u() = u() = u′′() = u′′() = .
(.)

It is easy to verify that f (x, u) = u + sin x, k = – and k = , and

α(x) ≡ –, β(x) ≡ 

satisfy all of the conditions in Theorem .. Therefore, (.) has a solution u satisfying

– ≤ u(x) ≤ , x ∈ [, ].
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