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Abstract
We apply a series expansion technique to estimate the water content distribution and
front position in finite boundary conditions. We derive an approximate analytical
solution of the Richards equation (RE) for the horizontal infiltration problem. The
solution is suitable for arbitrary hydraulic diffusivity in water infiltration. Compared
with the finite element method, two examples in power law diffusivity and van
Genuchten model are shown to test the accuracy of present approximation.
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1 Introduction
The Richards equation (RE) presents the movement of water in unsaturated soils []. It is
usually a nonlinear parabolic partial differential equation for one-dimensional horizontal
infiltration problem, which can be expressed as [, ]

∂θ

∂t
=

∂

∂x

(
D(θ )

∂θ

∂x

)
, ()

where θ is the volumetric water content of unsaturated porous media, x and t are the space
and time coordinates, and D(θ ) is the hydraulic diffusivity. We consider the analytical so-
lution in a finite domain  ≤ x ≤ L, which owns the Dirichlet boundary conditions

θ |x= = θL, θ |x=L = θ, ()

where θL ( �= θ) and θ are constant moisture contents in wetting front analysis, and the
initial condition is

θ |t= = θ. ()

In these years, Heaslet and Alksne technique [], perturbation technique [], traveling
wave method [], and series method [–] are used to obtain an analytical solution of RE
with semi-infinite boundaries. Fourier transformation, separation of variables [, ], and
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other approaches [–] are applied for some linear or linearized RE with finite bound-
aries (). Nevertheless, there are few approximate analytical solutions of equations ()-()
that can illustrate the long-time behavior for water infiltration in constant moisture con-
tent boundary conditions of equation (), especially when the hydraulic diffusivity is an
arbitrary function of θ . Our goal is deriving an approximate analytical solution of equa-
tions ()-().

Motivated by the methods and approaches mentioned, we focus on analyzing the water
infiltration varying from a transient state to steady one and try to approximate the changes
of water profile. By a series expansion technique we construct an approximate solution
about space variable x and water profile to approximate the water content distribution for
arbitrary diffusivity in RE. In addition, we analyze the relationship of time variable t and
θ in a definite space coordinate.

2 Wetting front analysis
The RE for horizontal infiltration with initial and boundary conditions equations ()-() in
this paper is divided into two parts: water infiltration in semiinfinite layer and in finite layer
by boundary analysis [, ]. Before the wetting front arrives at the boundary point x = L,
it is considered as a semiinfinite boundary problem, which is well approximated by the
Boltzmann solution [], shifted front solution [], and series solution []. The profiles of
infiltration in semiinfinite layer are shown by dotted lines in Figure , and the front position
of the finite boundary problem is shown by solid and thick solid lines in Figure . The
thick solid line shows a steady flow for water infiltration and presents a steady state that is
irrelevant to time variable t. The steady flow can be described by the ordinary differential
equation

d
dx

(
D(θ )

dθ

dx

)
=  ()

with Dirichlet boundary conditions

θ |x= = θL, θ |x=L = θ. ()

Figure 1 Horizontal infiltration in a finite layer.
Dotted lines show the wetting front position in
semiinfinite boundary problem, and solid and thick
solid lines show it in finite boundary one.
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The analytical solution of equation () with () can be solved as

x =
L∫ θL

θ
D dθ

(∫ θL

θ

D dθ –
∫ θ

θ

D dθ

)
. ()

The solid lines in Figure  show the process of water infiltration varying from a transient
flow to steady one. In this section, we construct an approximate analytical solution to
simulate the infiltrate process.

Introducing the Boltzmann variable φ = x/t/, we can transform equation () as

–


φ

dθr

dφ
=

d
dφ

(
D(θr + θ)

dθr

dφ

)
, ()

where θr = θ – θ. Integrating equation (), we obtain

∫ θr


φ dθr = –D(θr + θ)

dθr

dφ
+ C, ()

where

C = D(θr + θ)
dθr

dφ

∣∣∣∣
θr=

. ()

By the mean value theorem equation () can be written as

φ(ηθr) = –
D(θr + θ)

θr

dθr

dφ
+

C
θr

, ()

where η ∈ (, ). Substituting θβ = ηθr and θr = θβ + a into equation (), we obtain

φ(θβ ) = –
D(θβ + a + θ)

θβ

dθβ

dφ
+

C
θβ + a

, ()

where a is a constant. Integrating equation (), we obtain

∫ φ



[
φ
(
η(θβ + a) + θ

)
–

C
θβ + a

]
dφ = 

∫ θL–θ–a

θβ

D(θβ + a + θ)
θβ

dθβ , ()

which yields

[
φ
(
η(θζ + a) + θ

)
–

C
θζ + a

]
φ = 

∫ θL–θ–a

θβ

D(θβ + a + θ)
θβ

dθβ , ()

where θζ = θβ + ζ (θL – θ – a – θβ ) and ζ ∈ (, ). Equation () shows the relationship
between the Boltzmann variable φ and the integration function ξ ,

ξ =
∫ θL–θ–a

θβ

D(θβ + a + θ)
θβ

dθβ . ()
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Influenced by a series expansion technique [], we show the analytical solution of the
Boltzmann variable as a series

φ(ξ ) ≈
n∑

i=

Uiξ
i, ()

where Ui (i = , , , . . . , n) are calculation parameters. Based on zero and θβ , we apply the
integer-order derivatives theorem [] to equation ():

d(k)

dθ
(k)
β

(∫ θβ


φ dθβ + D

dθβ

dφ

)∣∣∣∣
θβ =θL–θ–a

= 
d(k)

dθ
(k)
β

[
D

dθβ

dφ

∣∣∣∣
θβ =

]∣∣∣∣
θβ =θL–θ–a

, ()

where k = , , , , . . . , n – . The parameters Ui can be obtained by substituting equation
() into equation () and solving nonlinear algebraic equations. When a = , equation
() with () is the series solution for semiinfinite problem []. Considering this, we con-
struct an approximate relationship between space variable x and water content θβ in both
semiinfinite and finite boundaries as

x ≈
{√

tφ, a = , t ≤ tL,
L

φ|θβ =
φ,  > a ≥ aL, t > tL, ()

where aL can be solved by comparing equation () and Taylor expansion of equation ()
based on ξ , tL is the time of the wetting front that arrives at the finite boundary point x = L
and can be calculated by substituting x = L into equation ():

tL ≈ L
/( n∑

i=

Ui

(∫ θL–θ



D
θ̃β

dθ̃β

)i
)

. ()

In equation (), the approximations of water profiles for horizontal infiltration are shown
as the calculation parameter a varies. When t > tL, we substitute θr = θ – θ, θr = θβ + a,
and equation () into equation ():

∂θ

∂t
=

φ|θβ =

L

(
∂φ

∂θβ

)–

+
∂

∂θβ

(
D

φ|θβ =

L

(
∂φ

∂θβ

)–)
. ()

Substituting equations () and () into (), θβ can be shown as a function of a in a
definite space point x = xd ∈ (, L):

xd ≈
L

∑n
i= Ui(

∫ θL–θ–a
θβ

D
θ̃β

dθ̃β )i

∑n
i= Ui(

∫ θL–θ–a


D
θ̃β

dθ̃β )i
, ()

and θ = θ + θβ + a. We take a as

a = aj (j = , , , , . . .), ()

where aj ∈ [aL, ) is a given constant. Then the corresponding θj can be obtained from
equation (). Substituting a = aj and θj = θβj + θ + aj into equation (), we can calculate
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the value of ∂θ/∂t at x = xd . We apply a polynomial series to approximate the changes

∂θ

∂t
≈

n∑
k=

Vkθ
k , ()

where k = , , , , . . . , n, and Vk can be calculated by the least-squares method. Then the
time variable t can be solved:

t =
∫ θ

θβ

∑n
k= Vkθ k dθ – tL, ()

where θβ is the water content as the wetting front arriving at the boundary point x = L
and can be solved from

xd√
tL

≈
n∑

i=

Ui

(∫ θL–θ

θβ

D
θ̃β

dθ̃β

)i

. ()

3 Numerical simulation
In this section, two examples are shown to confirm the accuracy of the present method.

Example  (Power-law model) We take the power law diffusivity from Hall’s mortar [,
] model as D(θ ) = .θ. The initial and boundary values are taken as θ = . and
θL = , respectively, and L in equation () is  mm. Before the wetting front arrives at the
point x =  mm, it can be treated as a semiinfinite problem. Applying equation () at
a = , we have

φ ≈
n∑

i=

Ui

(∫ .

θr

.(θr + .)

θr
dθr

)i

, ()

where Ui are calculated as n varies from  to .
n = : U = ..
n = : U = ., U = –. × –.
n = : U = ., U = –. × –, U = . × –.
n = : U = ., U = –. × –, U = . × –,
U = –. × –.
n = : U = ., U = –. × –, U = . × –,
U = –. × –, U = . × –.

Compared with the finite element method (FEM), we depict approximations of orders
- of φ in Figure  and present relative errors of the th-order solution in Table .

We obtain that the present approximations are more close to the FEM as order increases
from  to  in Figure , and the maximum relative error is .% in . mm/min/ in
Table . According to the fith-order approximation above and equation (), we obtain that
tL = . min when the wetting front arrives at the boundary point x =  mm. Applying
equations ()-(), xd =  mm is taken as a definite space value in aj and θj calculation,
and the sixth-order approximation of ∂θ/∂t is presented as

∂θ

∂t
≈ –,.θ + ,.θ – ,.θ + ,.θ

– ,.θ + ,.θ – ,.. ()
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Figure 2 Results of φ obtained from the FEM
and approximations of orders 1-5.

Table 1 Results of θ obtained from the FEM and fifth-order approximation

φ (mm/min1/2) Present method FEM Relative error (%)

36.3899 0.5001 0.5 0.02
20.1946 0.55 0.54266 1.353
18.1551 0.6 0.594696 0.892
14.8670 0.7 0.69924 0.109
11.2396 0.8 0.8007 –0.087
6.5490 0.9 0.900045 –0.005
0 1 1 0

Figure 3 The changes of water profile for power
law model. Dotted lines show the present
approximations, and solid lines show the results by
the FEM.

When t ≥ tL, the fifth-order approximation between the space variable x and water content
θ is

x ≈ ∑
i= Ui(

∫ .–a


.(θβ +a+.)

θβ
dθβ )i

×
∑

i=

Ui

(∫ .–a

θ–a–.

.(θβ + a + .)

θβ

dθβ

)i

, ()

where Ui can be obtained by solving equation () for different a. As t increases, we cal-
culate the approximations for a = , a = –., a = –., a = –., a = –., and
a = –., and the corresponding time by solving equation (). The corresponding water
profiles are shown in Figure , which presents the process of water infiltration varying
from transient state to steady one. The thick solid line in Figure  is derived by equation
() and shows the steady solution in front analysis. The solid lines and dotted ones are
obtained by the FEM and present method, respectively, and show the changes of water
profiles as time goes by. Compared with the FEM, the relative errors between solid lines
and dotted ones are shown in Figure .
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Figure 4 Relative errors of present solutions
and the FEM.

Figure 5 Relationship between t and θ in
xd = 9 mm.

Table 2 The results of θ obtained from the present method and the FEM in xd = 9 mm

t (min) Present method FEM Relative error (%)

0.1276 0.505193 0.5027 0.4959
0.2169 0.550959 0.562178 –1.9956
0.2794 0.62067 0.6319 –1.7772
0.3149 0.65244 0.6587 –0.9504
0.3666 0.692165 0.69494 –0.3993
0.4685 0.742965 0.743 –0.0047
0.5337 0.76222 0.7638 –0.2069
0.5765 0.77126 0.7737 –0.3154
0.6353 0.780382 0.7841 –0.4742
0.658 0.783064 0.7874 –0.5507
0.6772 0.785114 0.7897 –0.5807

We observe that the present approximation is agreed with numerical solution, and the
maximum relative error of present solution is less than –% in Figure . In addition, we
solve equation () and derive the relationship between the time variable t and water con-
tent θ , which shows that the present solution approximates well with the FEM as time
increases in Figure , and the maximum relative error is less than % in Table .

Example  (van Genuchten model) The hydraulic diffusivity defined by the van
Genuchten model [, ] is

D(θ ) = Kskr
∂H
∂θ

, ()

where Ks is the saturated hydraulic conductivity, H is the water head, and kr is the intrinsic
permeability []

H =

α

[(
θ – θR

θS – θR

)–/m

– 
]/n

,

kr =
(

θ – θR

θS – θR

)/[
 –

(
 –

(
θ – θR

θS – θR

)/m)m]

,

()
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where θR is the residual volumetric water content, θS is the saturated volumetric water con-
tent, α is a parameter related to the mean pore-size, n is a parameter related to the unifor-
mity of the pore-size distribution, and m = –/n. We take the parameters of Glendale clay
loam [] as θR = ., θS = ., α = . m–, m = ., and Ks = . × – m · s–.
The length of L is taken as  × – m, and the initial and boundary values in equations
()-() are θ = . and θL = ..

According to ()-(), the diffusivity in () is

D(θr + .) =
c[ – ( – (c(θr + .) – c)c ).]

[(c(θr + .) – c)–c – ]c (c(θr + .) – c)c
, ()

where θr = θ – .. Substituting the parameters of Glendale clay loam [] into equa-
tions () and (), we obtain that c = . × –, c = ., c =
., c = ., c = ., in c = . in equation
(). Similarly, we derive φ at a =  before the wetting front travels through the boundary
point x =  × – m:

φ ≈
n∑

i=

Ui

(∫ .

θr

D(θr + .)
θr

dθr

)i

, ()

where first- and second-order approximations of Ui are
n = : U = ,..
n = : U = ,., U = –. × .

Compared with the FEM, first- and second-order approximate solutions of φ are pre-
sented in Figure , and the relative errors are shown in Table .

We observe that the present approximations are closer to the FEM as order varies from
 to  in Figure , and the maximal value of the relative error is –.% in .
mm/min/ for second-order approximation in Table .

Figure 6 Results of φ obtained from the FEM
and approximations of orders 1-2.

Table 3 Results of θ obtained from the FEM and second-order approximation

φ (mm/s1/2) 2nd-order approximation FEM Relative error (%)

0.9316 0.251 0.2529 –0.757
0.8717 0.255 0.2594 –1.71
0.8397 0.26 0.2656 –2.097
0.7651 0.28 0.2853 –1.861
0.7012 0.3 0.3033 –1.076
0.483 0.35 0.3499 0.025
0.3418 0.37 0.3697 0.09
0 0.4 0.4 0
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From the second-order approximation above and equation () we obtain tL = . s
when the wetting front arrives at the boundary point x =  × – m. Similarly, xd =
. × – m is taken as a definite space value in aj and θj calculation, and the sixth-order
approximation of ∂θ/∂t is presented as

∂θ

∂t
≈ ,,.θ – ,,.θ + ,,.θ

– ,,.θ + ,.θ – ,.θ

+ ,.. ()

Then the second-order approximation between the space variable x and water content θ

is

x ≈ .∑
i= Ui(

∫ .–a


D(θβ +a+.)
θβ

dθβ )i

∑
i=

Ui

(∫ .–a

θ–a–.

D(θβ + a + .)
θβ

dθβ

)i

, ()

where Ui can be calculated by solving equation () as a varies. As t increases, we calculate
the approximations for a = , a = –., a = –., and a = –. and the correspond-
ing time by solving equation (). The corresponding water profiles are shown in Figure ,
where the thick solid line shows the steady solution in equation (). The dotted lines show
the present approximations, and solid lines show the results by the FEM as time increases.
Compared with the FEM, the relative errors are shown in Figure .

The present approximation agrees with numerical solution, and the maximum relative
error of present solution is less than –% in Figure . In addition, we solve equation ()
and derive the relationship between time variable t and water content θ , which is shown
in Figure , and the relative errors are presented in Table .

Figure 7 The changes of water profile for the
van Genuchten model. Dotted lines show the
present approximations, and solid lines show the
results by the FEM.

Figure 8 Relative errors of present
approximations and the FEM.
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Figure 9 Relationship between t and θ in
xd = 1.5 mm.

Table 4 The results of θ obtained from the present method and the FEM in xd = 1.5 mm

t (s) Present method FEM Relative error (%)

3.58233 0.27141 0.2771 –2.05341
4.211 0.29188 0.2929 –0.34824
4.97556 0.30889 0.3075 0.452033
5.2274 0.31535 0.314 0.429936
6.026 0.32109 0.3208 0.090399
7.036 0.32607 0.32878 –0.82426

The present solution shown by dotted line approximates well with the FEM shown by
solid lines in time simulation in Figure , and the maximum relative error is –.% in
Table .

4 Conclusion
In this paper, we analyzed the changes of wetting front position and derived an approx-
imate analytical solution of RE with finite boundaries (). The solid lines in Figure  can
be approximated by the solution equation (), which is a series solution. According to
equation (), the series solution in fact is an approximation for semiinfinite boundary
with different initial values, which means that the process of water infiltration varying
from transient flow to steady one in Figure  can be simulated by the solution of semiinfi-
nite problem with a variable initial value. The presented examples for the power law and
van Genuchten model demonstrate the accuracy of the present solution by comparing the
present results with the results obtained by the FEM.
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