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Abstract

In this paper, we study an eigenvalue problem for stochastic Hamiltonian systems
driven by a Brownian motion and Poisson process with boundary conditions. By
means of dual transformation and generalized Riccati equation systems, we prove the
existence of eigenvalues and construct the corresponding eigenfunctions. Moreover,
a specific numerical example is considered to illustrate the phenomenon of statistic
periodicity for eigenfunctions of stochastic Hamiltonian systems.
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1 Introduction

The backward stochastic differential equations driven by Poisson process (BSDEP) were
first introduced and studied by Tang and Li [1]. Later, Situ Rong [2] proved the existence
and uniqueness of solutions to BSDEP with non-Lipschitz coefficients. Barles et al. [3]
adopted the BSDEP to provide a probabilistic interpretation for a system of parabolic
integro-partial differential equations. Then, the fully coupled forward-backward stochas-
tic differential equations driven by Poisson process (FBSDEP) were deeply investigated by
Wu [4, 5], etc. Precisely, in [4], the author established the well-posedness for FBSDEP un-
der the so-called ‘monotone assumptions’ via the continuation method; while in [5], the
author discussed the BSDEP and FBSDEP with stopping time duration.

The stochastic Hamiltonian systems are proposed in the optimal control theory as a
necessary condition for optimality, called the stochastic maximum principle. The funda-
mental works related to this topic include Bismut [6], Bensoussan [7], Peng [8] and so
on. Due to the discontinuity of stock prices and other common ‘random jump’ phenom-
ena in reality, the stochastic Hamiltonian systems driven by Poisson process, which is a
special kind of FBSDEP, are very suitable for us to study the stochastic optimal control
problems with random jumps. Wu and Wang [9] discussed a linear quadratic stochastic
optimization problem with random jumps, and furthermore associated its Hamiltonian
system with a generalized Riccati equation system to give the linear feedback optimality
for this problem.

However, all literature works above only concern the uniqueness of solutions to FBSDEP
as well as stochastic Hamiltonian systems. Peng [10] studied a kind of eigenvalue problem
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for stochastic Hamiltonian systems driven by Brownian motion with boundary conditions.
In this paper, we extend that problem to stochastic Hamiltonian systems driven by Pois-
son process within the formulation of FBSDEP established by Wu [4]. Generally speaking,
for a class of stochastic Hamiltonian systems driven by Poisson process parameterized by
A € R which always admit the trivial solution (x¢, y:, z¢, k:) = (0,0, 0,0) for all A, our prob-
lem is to find some real numbers X;, i =1,2,..., such that the corresponding Hamiltonian
system has multi-solutions. Here, A; are called eigenvalues and the corresponding non-
trivial solutions are called eigenfunctions of this class of stochastic Hamiltonian systems.
Inspired by the method of dual transformation introduced in [11] and the relationship be-
tween stochastic Hamiltonian systems driven by Poisson process and generalized Riccati
equation systems given in [9], we obtain the existence of eigenvalues and construct the
eigenfunctions explicitly. We also provide some sufficient conditions for the existence of
multi-solutions to FBSDEP. Moreover, it follows from the construction of eigenfunctions
that they keep the ‘statistic periodicity’ property as that in the deterministic case and also
in the stochastic case with Brownian motion. On the other hand, for any real number A
larger than 1, we establish a family of stochastic Hamiltonian systems whose eigenvalue
systems contain A and give the corresponding eigenfunctions. A numerical example is pre-
sented to illustrate the theoretical result as well as the phenomenon of statistic periodicity
for eigenfunctions.

The rest of this paper is organized as follows. In Section 2, we first recall the formula-
tion of general FBSDEP and then formulate the eigenvalue problem for stochastic Hamil-
tonian systems driven by Poisson process. The main results are given by two theorems in
Section 3: one is the existence of eigenvalues and eigenfunctions for an arbitrarily dimen-
sional case; the other is a more concrete conclusion for a one-dimensional case. To prove
our results, we introduce the dual transformation for stochastic Hamiltonian systems and
establish the relationship between stochastic Hamiltonian systems driven by Poisson pro-
cess and a kind of Riccati equation systems in Section 4. Thus, the proofs of two theorems
above are completed in Section 5. In Section 6, we discuss the ‘statistic periodicity’ prop-
erty for eigenfunctions from another viewpoint and present a numerical example to show

our theoretical result vividly. The last section is devoted to concluding the novelty of this

paper.

2 Formulation

Let (2, F, P) be a probability space equipped with the filtration {F;};>¢ such that Fy con-
tains all P-null sets of F and F, = (..o Fese = Ft, t > 0. We suppose that the filtration
{Ft}i=0 is generated by two independent processes: one is a one-dimensional standard

>0

Brownian motion {B;};>0; the other is a Poisson random measure {N;};~¢ with the com-
pensator N(dt) = 6 dt, such that N([0, £]) = (N = N)([0, t]);>0 is a martingale, where 6 > 0 is
a constant called the intensity of {N;};>0. T > 0 is a fixed time horizon. Denote by (-, -) and
| - | the scalar product and the norm of an Euclidean space, respectively. We also introduce

the following notations:

MZ(R”) = {{¢t}0<t<T is an R”-valued F;-adapted process

T
such that]E|:/ |¢t|2dt} < oo},
0
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Y(RY) = {{kt}0§t§T is an R”-valued F;-predictable process

T
such thatE[/ Iktlzdt:| < oo}.
0

First, let us recall an existence and uniqueness result of solutions to FBSDEP from Wu
[4]. Consider the following FBSDEP:

dxt :ﬁ(t’xt’ytfzt’ kt) dt +fé(t)xt1yt;zt; kt) dBt
+_ﬁl(t;xt—7_yt—; Zty k[) le;

8 @)
—d)/t z_fl(t!xt!ytyzt!kt) dt_zt dBt - kt dNt! 0 S t E T:

Xo = Xo, yr = Wxr).

Here, fi,f2,f5.fa : R¥ x [0, T] x Q + R” and W : R” > R” are all measurable functions.

We denote
A
_ f2 . 4n 4n
f= P :(%,9,2,k) eR" x [0, T] x Q>R
3
Jfa

and assume the following.
Assumption 2.1 The functions f and W satisfy:

(i) Forany £ = (x,9,2,k) € R¥, f(£,-) € M2(R™™);
(ii) There exists a constant C > 0 such that

. VEE eRYM™,

V(E)t) _f(s/rt)| = C|E _S/

‘\Il(x) - \Il(x’)’ < C‘x—x/ , Vx4 eRY

(iii) There exists a constant o > 0 such that

2 VEE eRY,

(f(g’t) _f(g/’t)’g _'§,> = _O‘|S -&
(\Il(x) —W(x),x —x/) >0, Vxx eR"

We have the following from Theorem 3.1 of Wu [4].

Theorem 2.2 Let Assumption 2.1 hold. Then FBSDEP (1) admits a unique solution
(xt;yt)ztrkt) € MZ(RH) X MZ(RH) X FI%[(RH) X FKI(RH)

Remark 2.3 The result above is slightly stronger than that of Wu [4]. In fact, Theorem 2.2
can be proved by the same arguments of Wu [4] since the martingale representation the-
orem from [1] guarantees that the component z; belongs to FI%,(]R”).

The result in Theorem 2.2 can be applied to discuss the boundary problem of stochas-
tic Hamiltonian systems with Poisson process. Suppose that /(x,y,z,k) : R” x R” x R” x
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R” = R is a C! real function called the Hamiltonian function and ®(x) : R” — R is a
C! real function. The problem is to find a quadruple (x;, y;, 2, k;) € M2(R") x M?(R") x
F2(R") x F}(R") satisfying the following stochastic Hamiltonian system:

dx; = ayh(xnyt,zg, k) dt + 3zh(xz,yt, zy, k) dBy + akh(xt—’yt—; z¢, ky) dNt;
—dy, = 0xh(x, Y1, 20, k) dt — z, dB, — k; dN,, 0<t<T, (2)

xo=%0,  yr=0xP(x7).
It is obvious that (2) is a special case of (1) with

o,k
o h
o.h
oxh

f= , and W =20,0.

From Theorem 2.2, the stochastic Hamiltonian system (2) admits a unique solution
%6y 20 k) € M2(R") x M2(R") x F%(R") x F4(R") under Assumption 2.1.

Now, we are ready to formulate the eigenvalue problem for stochastic Hamiltonian sys-
tems with Poisson process. Suppose that /(x,y,z,k) : R” x R” x R” x R” - R is a C" real
function, and denote for each A € R

W (x,9,2,k) = h(x,5,2,k) + Ah(x,,2, k).
Moreover, we assume that for (x,y,z,k) = (0,0,0,0),
Ol =0l =d,h=h=0h=0d,h=0dh=dh=0.
Consider the following parameterized stochastic Hamiltonian system:

dxy = dyh* (x4, 1, 20, k) dt + 3,0 (er, Y1, 20, ke) ABy

+ I (%y—, Yoer 20 ki) AN,
~dy; = 3. (%0, Yo, 20 k) dt — 2, dB, — kAN, 0<t<T,
x0 =0, yr =0.

It is obvious that (x;, y;, z:, k;) = (0, 0,0, 0) is a trivial solution of (3). The eigenvalue prob-

lem is to find some real number A such that (3) admits nontrivial solutions. Throughout
this paper, we shall focus on the case that / and % are in the form of

1 - 1 -
h(S):§<H§,§), h(E)=§(H$,€), V€ = (x,3,2,k) € R,

where H and H are both 47 x 41 symmetric matrices:

Hy Hpy Hiz Hu Hy Hyp Hy Hy
- Hy Hy Hy Hoy g Hy Hy Hy Hy
Hy Hs Hp 0 | H3y Hz» H 0

Hy Hip 0 Hy Hy Hp 0  Hy
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Here, H;j and ]:Iij, i,j=1,2,3,4, are all # x n matrices such that Hj; = Hl.]T and Hji = IZIUT. We

also set
H*=H-AH,  Hj=Hy—-AHj ij=1,234.

Thus, (iii) of Assumption 2.1 is equivalent to

-Hy -Hp -Hiz —-Hy
Hy, Hy) Hys Hy,

<—0l14n
H3;  Hz  Hi 0
Hy  Hyp 0 Hy,
Hence,
—-Hy —-Hiz —Hu Hy, Hys Hjg
H3  Hs 0 |<-al, and |H3 Hi 0 | <-al.
H41 0 H4,4 H4-2 0 H44-

It follows from (5) that

—Hyy + HisHy3 Hsy + HiaHyyHy < 0,

Hoy — HosHyy Hsy — HoaHyyHys < 0.

Besides, for this specific case, (3) can be written as

dx, = (Hyx, + Hjyy, + Hize + Hyyke) dt + (Hyx, + Hiyy, + Hisz,) dB,
+ (Hpyxe- + Hyyye + Hyy k) dNG,

—~dy, = (H}yx, + Hyy, + Hiyz + Hiyk,)dt — z,dB, - ke dN,, 0<t<T,

X0 =0, yr =0.

(6)

Now, we give the definition of eigenvalues and eigenfunctions of stochastic Hamiltonian

systems.

Definition 2.4 A € R is called an eigenvalue of stochastic Hamiltonian system (7) if

(7) corresponding to A admits nontrivial solutions (x,y:,zs, ks) € M2(R") x M2(R") x

F2(R") x F4(R"). These solutions are the eigenfunctions corresponding to A. The linear
subspace of M*(R") x M*(R") x F5(R") x F4(R") consisting all eigenfunctions corre-

sponding to eigenvalue A is the eigenfunction subspace corresponding to A.

Remark 2.5 According to Theorem 2.2, if condition (4) holds, then (7) only admits a

trivial solution (x4, y¢, z¢, k) = (0,0,0,0) corresponding to A = 0. So A = 0 cannot be an

eigenvalue of (7).
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3 Main results
There are two main theoretical results in this paper. For the multi-dimensional situation,
we shall study the problem in which H is taken as

0 0 Hiz Hy

0 Hy Hy Hy
H; Hzp O 0
Hy Hy 0 0

]:[:

Hence, (7) can be written as

dx, = [Hyxe + (1 — M) Haye + (1 — X)Haszy + (1 — M) Hpak] dt

+[(1 = M)Hsx + (1 — A)Hsoy: + H3zz,] dB,

+[(1 = M)Huxe— + (1= M)Haoye + Hiak dN,, 8)
—dy, = [Hux, + Hioy + 1 = A)Hisz, + (1 — \)Hysk,) dt — z, dB, — k, dNj,

x0=0, yr =0.

Theorem 3.1 Let condition (4) hold. Then the system of all eigenvalues of stochastic Hamil-
tonian system (8) has at least one element ) > 0, which is the smallest eigenvalue. Moreover,
the dimension of the eigenfunction subspace corresponding to X is no more than n.

As for the one-dimensional situation where H is taken as

0 0 0 0
- 0 Hy 0 0
j7 22 ’
0 0 0 0
0o 0 0 0

(7) is in the following form:

dx, = [Hyxe + (1 — X)Haoyy + Hasz, + Hogky] dt

+ [Ha1x¢ + H3py, + Hazz:] dB,

+ [Hux- + Hypy,— + Haak) dN,, 9)
—dy, = [Hux, + Hioy, + Hisz, + Huk,] dt — z, dB, — k; dN,

x0=0, yr =0.
Then we have the following theorem, a more concrete result than Theorem 3.1.

Theorem 3.2 Forn = 1, let condition (4) hold, and assume Hyz = —H33Hy3, Hyy = —HysHia.
Then the system of all eigenvalues of stochastic Hamiltonian system (9) is a strictly increas-
ing real number sequence {;}i>1 with X; going to infinity as i — oo. Moreover, the dimension
of the eigenfunction subspace corresponding to each X; is 1.

4 Dual transformation of stochastic Hamiltonian systems with Poisson process
Inspired by the method given in Peng [11], we introduce the dual transformation of
stochastic Hamiltonian systems driven by Poisson process. We shall see that this dual
transformation is a powerful tool for solving the eigenvalue problem.
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4.1 General case
Suppose that the stochastic Hamiltonian system (2) admits a solution (x;, y;, 2, k;). Now,
we exchange the role of x; and y;, i.e., define (%, J;) = (y;, ;) to see whether (%, ;) will still

satisfy some stochastic Hamiltonian system. In addition, we assume

Assumption 4.1 % and ® are both C? functions. Moreover, for all (x,y) € R*", h(x,y, -, -)

is concave and ®(-) is convex.

Thus, we can give the following Legendre transformation of # and ® with respect to

(z, k) and «, respectively:

hx 5,2k = inf {(z2) + (kK - h3,%2k)}
(z,k)eR2"

= (z*(%5,2,k),2) + (K*(%,5,2,k),k) - h(3, %, 2" (%,5, 2, k), k* (%5, 2, K)),

d(%) = sup {(x,ic) - CD(x)} = (x*(fc),ic) - CD(x*(ic)),

xeR”

where (z*(%, 7, 2, k), k* (%, 7, Z, k)) is the unique minimum point for each (%, 7, z, k) € R*, and
x*(%) is the unique maximum point for each % € R”. /1 is called the dual Hamiltonian func-

tion of (2). Inversely, we can get

h(x,y,2,k) = inf {(z, zZ) + (k, k) — il(y,x, zZ, /~<)}
(& k)R

= (2.2" (5,9, 2, k) + (k. K* (%, 9,2, k) = B (3, %, 2" (x,9, 2, k), k* (x,9,2, k),

d(x) = sup {(6,%) - @)} = (v, () - D(¥*(x)).
Moreover, we have

2= ,h(5,%,2(%,5,2k),k% 5,2,K),  k=8h(5,%2(%5,2,k), k% 75,2,k)),
%= 3,®(x(®), &2k eR™,
z= agi:(y, %, 2(%, 9,2, k), k(%, 9, 2, k), k= Bl;iz(y, x,2(%, 9,2, k), k(%, 9, 2, k)),
X = 3,}&)(56(96)), (%, 9,2,k) € R,
Then it can be easily verified that the quadruple (x;,%;, z:, k;) defined by
Re=yo  Fe=%n  Z=8h, v zok), ko= ke, i,z k) (10)

satisfies the stochastic Hamiltonian system driven by Poisson process:

di, = 5h(Ee 3o 2o ki) dit + 0513, 51 20, i) B,
+ O, 5o 2 ki) AN, (11)
_dj’t = 3;/71(5%)7:,%, i(t) dt -z, dB, - ]}t dNE’ 0<t=T,

X0 = Yo, yr = 3P (r).
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We call (11) the dual stochastic Hamiltonian system of (2). Moreover, it is obvious that
the dual stochastic Hamiltonian system of (11) is our original stochastic Hamiltonian sys-
tem (2).

4.2 Linear case

Now, let us consider a specific linear stochastic Hamiltonian system as follows:

dx, = [Hyxe + Hyyy + Hoszy + Hoske] dt
+ [Ha1x¢ + H3py; + Hazz:] dB,
+ [Hux, + Hypys— + Husk,) dN,,
—dy; = [Hyx; + Hipy: + Hisze + Hiake] dt
-z dB, ~kdN,, 0<t<T,

12)

X0 = X0, yr = Qxr,

where Q and Hj; are n x n matrices such that Q7 = Q and Hj; = Hi]T, i,j=1,2,3,4. In this
situation, Assumption 4.1 can be guaranteed by

Hs33 <0, Hy <0, and Q>0.
Thanks to (10), if we define

5&[ :ytr 5/t =Xt
zs = Hyx, + Hzpyp + H3zzy,

ke = Hux,— + Hipy,— + Huak,
then the dual stochastic Hamiltonian system of (12) is

d%; = [Ho&, + ooy + HysZ, + Hogky dt
+ [Ha\%, + H3§, + H33%,) dB,
+ [HuZe + Hio¥p- + Haakt) dN,,
—dy, = [Hn&, + Hioj, + HysZ, + Huuk,) dt
~%dB, —kdN,, 0<t=<T,

(13)

- - 1~
X0 = Yo, yr = Q XT,

where

Hy3Hi) Hsy + HyaHyyHay — Hyy  HozHid Hay + HyuHyiHy — Hy —HysHis  —HaaHgg

= Hy3Hz Hsy +H14HL{H42 —Hy, HpH3Hg +Hi4H;iH4l —Hu —H131;1§31 —Hy Hy}
—Hfi%Hgg —Hstgl Hi; 071
—HyHy —H 3 Hy 0 Hy,

4.3 Generalized Riccati equation systems

The Riccati equations are widely applied to investigate the linear-quadratic optimal con-
trol problems, e.g., Wonham [12], Bismut [6], Peng [8], Wu and Wang [9] and so on. In-
spired by [9], we shall reformulate the Riccati equations in a general form.
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Denote by S” the space of n x n symmetric matrices, and denote by S” the space of
nonnegative matrices in §”. Now we introduce a dynamic system consisting of an S”-

valued ODE and two algebraic equations on some interval [T}, T5] € [0, T]:

—K(£) = K()(Hx + HyK(t) + HysM(2) + Haa L(2))
+ Hyy + HipK(8) + HyisM(8) + HiaL(2),
M(t) = K(t)(H31 + H32K(2) + H33M(2)),
L(t) = K(t)(Ha + HyaK(¢) + Hya L(2)), (14)
(K(-), M(-),L())
€ CY([Ty, T1); 8™) x L>([Ty, To[;R™") x L2([Ty, T, R™"),
K(T,)=K'eS8".

This system is called a generalized Riccati equation system. Note that the two algebraic

equations in (14) are equivalent to

[1. — K (t)H33 |M(2) = K (t)(Hs1 + H32K(2)),

(I, = K(6)Haa |L(2) = K(£)(Ha + HioK(2)).
Suppose that (14) admits a unique solution (K(-), M(-), L(-)), then we have

det(1, — K(t)Hs3) #0, det(l, — K(t)Haa) #0, Vi€ [Ty, T»). (15)
Hence, (I, — K(-)H33)™! and (I,, - K(-)Hy4) ™! exist and are both uniformly bounded because

of the continuity of det(Z,, — K(-)Hs3) and det(l, — K(-)Haa). In this situation, M(-) and L(-)
can be represented by K(-):

M) = (I, - 1<(t)H33)’11<(t) (Hs1 + H3K(2)) = Fo(K(2)) (Hs1 + H32K(2)),

L(£) = (I, - K(t)Hya) " K(2)(Hay + HipK(2)) = Fy (K (©)) (Ha + HiK (0)).
Here, Fy(-) and F(-) are respectively defined as

Fo(K) = (I, - KH33) 'K, and Fi(K) = (I, — KHy) K.
Thus, (14) can be rewritten as

—K(t) = K(t)Hn + H121<(t) + Hy; + Hi3Fy (I((t))Hgl + Hiu Fy (I((t))H41
+ [1<(t)H23F0 (K(t))Hgl + Hy3Fy ([((t))ng[((t)]
+ [K(0)HaaFy (K(2))Hay + HiaFy (K(2))Hao K (2) ]

+ K (£)[Haz + HosFo (K(2))Hsy + HaaFy (K (£))Haz | K (2), (16)
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or equivalently,

—I((t) = I((t)HZI + H121<(t) + Hu + 1<(t)H221<(f)
+ (ng + 1<(t)H23)F() (I((t)) (ng[((t) + Hgl)

+ (H14 + I((t)H24)F1 (K(t)) (H42[<(t) + H4,1). (17)

Remark 4.2 Similar to the discussion in Remark 4 and Remark 5 of [10], the following
facts hold:
(i) For any given constant y <land K € Dk ={K € S": K > yH3] V yH 4},
(I, — KH33)™ and (I, — KHy4)™! exist and are both uniformly bounded in D};
(ii) Forany K € 87, Fy(K) and F;(K) are both bounded and monotone. More precisely,
we have

0 <Fy(K)<-Hi;, O0<F(K)<-Hy, VK=>0,
and
Fo(K1) = Fo(Ks), Fi(K) > Fi(Ky), VK1 =K;>0.

The following lemma shows the relationship between generalized Riccati equation sys-
tem (14) and linear stochastic Hamiltonian system (12).

Lemma 4.3 Suppose that (14) admits a solution (K(-),M(-),L(-)) on some interval [T},
T,] € [0, T]. Then (12) with the boundary condition

X1y, =%,  y1, =K'xr, (18)
admits a solution

(e, 91, 200 Ke) = (x(8), K(8)x(8), M(£)x(t=), L(t)x(t=)), ¢ € [Ty, Tol, (19)
where {x(t)} satisfies

dx(t) = [Hy + Hy K (£) + HysM(t) + Hog L(8)]x(t) dt
+ [H31 + H3, K (t) + H33M(t)]x(t) dB;
+ [Hay + HipK(t) + Hya L(2))x(t-) AN,
x(T1) = x9.

(20)

Moreover, if we assume that for (I, — KHss) and (I,, - KHaa), condition (15), or the following
weaker condition holds:

(I, — K(8)Hs3)" (I, — K(£)Hs3) > c(His + K(8)Has)" (Hyz + K(£)Has), o1
(I - K(t)H44)T(1n — K(t)Has) > c(Ha + I<(t)H24)T(H14 + K(t)Haa),

where c is a positive constant, then (12) with boundary condition (18) admits a unique
solution.
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Proof It can be easily verified that (19) is a solution of linear stochastic Hamiltonian system
(12) with boundary condition (18) by applying Itd’s formula to K(£)x;.

As for the uniqueness, we first consider the case where condition (15) holds. Sup-
pose that (x;, ¥, 2;, k;) is another solution of (12) with boundary condition (18) and define
(7S k;) = (K ()%, M(8)x;_, L(£)x;_). Applying It6’s formula to K(¢)x,, we have

—dy, = =K ()%, dt — K(t)dx,

= [K(2)(Ha1 + HyaK(£) + HysM(t) + HosL(2))
+ Hyy + HipK(2) + HisM(8) + HiaL(2) |, dt
- K(t)[(Hzlxt + Hoypyy + Hyzzy + Houky) dt
+ (Hs1%; + H3py; + H33z;) dB;
+ (Huxe- + Huoy, + Haaky) dNy |

= [K(6)(Hyo¥, + HasZe + Hoaky) + Huxe + Hioy, + HisZ, + Hiak, | dt
— K()[(H229: + Hasze + Hoske) dt + (Hax, + Hzoy, + Hssz,) dB,

+ (Hyxe- + Haoye— + Haake) de}
Denote (J;, 21, /AQ) = (s — Yo 2 — 21k, — k). Thus we get

~dy, = [K()(Hyfy + Haz% + Haaks) + Huy + Hioy, + HisZ, + Hiak,] dt
— [K(0)Hs1x; + K(£)(H32y; + Hs32:) | dB,

— [K(©Huxe- + K(t)(Ha2ye- + Haake) | dN.

It follows from

M(t) = K(t)(Hs; + H3,K(2) + H3sM(2)),

L(t) = K(t)(Ha1 + HiaK(¢) + Haa L(2))

that

K(t)Hzx- =2, — K(t)(ngj_/t, + Hss3z),

K(t)Hux, =k, — K(£)(Hasy,— + Haaky).
So we can obtain

~dj, = [(Hiz + K(6)Hp)j: + (Hys + K(8)Hp3)2, + (Fha + K(O)Haa)ke) dt
— [-K()H32): + (I, — K(t)H33)z;] dB,
~ [-K(O)Hude + (I, - K(©)Haa)ki) AN,

yr=0.
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Since condition (15) leads to the uniform boundedness of (I, — K(-)Hs3)™! and (I, —
K(-)H44)7}, the above equation can be rewritten as

—dy, = [(Hiz + K(¢)H22)y:
+ (His + K(t)Ha3) (I, — K(¢)H33) ™ (z, + K(¢)H325:)
+ (Hya + K(£)H4) (I, — K(£)Haa) 2 (k] + K (¢£)Haz7,)] dt (22)
- Z,dB; - k,dN,,

yr = Oy
where we define

Z; = —[((I)ngj\/t_ + (In - [((t)HSB)ét’
K, = =K ()Has9r- + (I, — K(t)Haa) k.

According to Theorem 2.1 of [4], (22) admits a unique solution (J,, z;, k;) = (0,0, 0). Hence
(120, k) = (0,0,0), which implies that

¥e = K(t)x, zr = M(t)x:_, ke = L()%;—.

On the other hand, under the weaker condition (21) instead of (15), again by the simi-
lar arguments for proving Theorem 2.1 of [4], we can still show that (J, 2}, k;) = (0,0,0).
Thus, it follows from the forward SDE in (12) that {x;} is the solution of (20). So we have
(e, ¥er 26, ki) = (x(2), K(£)x(2), M(£)x(t—), L(£)x(t—)). The proof is completed. O

Remark 4.4 Similarly, the dual linear stochastic Hamiltonian system (13) is associated
with the following generalized Riccati equation system:

— 4 R(t) = K(t)(Ho1 + HyoK(t) + FogM(2) + Flps L(2))
+ Hyy + HypK(¢) + HisM(t) + FhaL(2),
M(t) = K(£)(Flsy + H3o K () + HssM(2)),
L(t) = K(t)(Ha + HinK(2) + HuaL(2)),
(K (), M(),L(-))
€ C([T1, To; 8") x LX([T1, Tol; R™™) x L2([Ty, Tol; R™").

If det(I,, — K(-)Hs3) # 0 and det(I,, — K(-)Ha4) # 0, then it can be rewritten as

d - -~ ~ o~ ~ I - ~ - -
—%1<(t) = 1<(t)H21 + Hm[((t) + Hu + H13Fo (I((t))Hgl + H14F1 (I((t))H41

+ [i((t)ﬁzsfjo (f((t))lem + Hy3Fo (f((t))leszk(t)]
+ [f((t)ffzzfl (f((t))lzlzu + HuFy (f((t))l:[@f((t)]
+ K(t)[ Haa + HasFo(K(8)) s + HoaFy (K(£)) Ha |K (2), (24)

where

Eo(K) = (I, - KH33) 'K, and E/(K)=(, - KH) K.
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At the end of this section, we present a kind of comparison theorem for Riccati equations
in the form of (17), which will be used repeatedly later. Consider the following S”-valued
ODEs: fori=1,2,

—Ki(t) = K()A(t) + AT (£)Ki(2)
+ CT(OK(£)C(t) + Ri(t) + Ki(t)N;(£)Ki(t)
+ [B(t) + Ki(1)D(8)|F(Ki(2)) [B(¢) + Ki(£)D(t)]" (25)
+ [E() + Ki(0) GO Fi(Ki () [E(t) + Ki())G ()],

Ki(T)=Q;

where the mappings A(-), B(-), C(:),D(-), E(-), G(-) : [0, T] = R™", R;(-), N;(-) : [0, T] = S”
are all continuous in [0, T, and F;(-), F;(-) : " > S" are both locally Lipschitz.

Lemma 4.5 For (25), suppose that

Ql > QZJ Rl(t) = RZ(t)) Nl(t) = NZ(t)) Vt e [0) T]r
Fi(K) > F(K), Fi(K)> F(K), VKeS",
F(K)>FR(K), FEK)>=F(K), K=K.

Then we have
Ki(t) = Ky(t), Vtel0,T].
The proof of Lemma 4.5 is very similar to that of Lemma 8.2 in [10]. So we just omit it.

5 Proof of main results

We shall complete the proofs of Theorems 3.1 and 3.2 in this section. It will be seen that the
features of eigenvalues and corresponding eigenfunctions are dominated by the blow-up
times of solutions to related Riccati equation systems of the linear stochastic Hamiltonian
systems (8) and (9).

5.1 Proof of Theorem 3.1
For notational simplicity, let p =1 — A. Then, for the linear Hamiltonian system (8), the
corresponding Riccati equation system is

—K(8) = K()(Hx + pHK(8) + pHasM(0) + pHaa L(2))
+ Hi + HpK(8) + pHisM(t) + pHia L(2),
M(t) = K(t)(pHz1 + pH3K(2) + H33M(2)),
L(t) = K(t)(pHa1 + pHy2K(2) + Has L(2)),
(K(-),M(-),L(-)) € C([0, T];8™) x L®([0, T;R™™) x L>([0, T];R™"),
K(T) =0.

(26)

If we consider the solutions of (26) among K(-) > yHs; V v H,; for some given y € (0,1),
it follows from Remark 4.2 that (I, — K(-)Hs3) ™, (I, = K(-)Ha4) ™ and Fo(K(-)), F;(K(-)) are
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all well defined. So we can rewrite (26) as

—K(t) = K(¢)Hy + HoK(¢) + Hyy
+ p*Hi3Fo(K(t))H31 + p*HiaF1 (K (£))Ha
+ p*[K(t)Ha3Fo (K (¢))Hs1 + Hi3Fo(K(£))H3:K (2)]

(27)
+ p? [K(£)HoaF1 (K (£))Ha + HiaF1 (K (£))Hao K (2)]
+ K(t)[pHx + p*HasFo(K(£))Hsy + p*HaaFy (K (£))Ha 1K (£),
K(T)=0,
or equivalently,
—I((t) = I((t)Hzl + lel((t) + Hll + ,oK(t)szK(t)
+ p?(Hz + K () Ha3)Fo (K (2))(H32K (£) + H3) (28)

+ p*(Hia + K(t)H24) F1 (K (2))(Hao K (¢) + Han),
K(T) = 0.

Since Fy(K) and F;(K) are both analytic, by the classic theory of ODEs, (28) admits a
unique solution K(t) = K(¢; p) on some sufficiently small interval (¢,, T']. It follows from
Lemma 4.5 that K(¢; p) > 0, and thus Fy(K(-)) and F;(K(-)) are always well defined. Here
t, is the so-called ‘blow-up time’ of Riccati equation (28), and its properties are shown in
the following lemma.

Lemma 5.1 For Riccati equation (28), when p € [0,1], there is no explosion occurring, i.e.,
t, = —00. When p € (—00,0), the blow-up time t, is finite: t, € (—00, T). Moreover, t, is
continuous and strictly decreasing with respect to p. We also have

lim t,=T, and limt,=-oo0.
pP—>—00 p—0
Proof For p € [0,1], it is sufficient to verify that the quadratic term of (27) is nonpositive.
That is to say,

K[Psz + p*Hy3 Fo(K)Hzy + 02H24F1(1()H42]K <o0.

This can be obtained immediately from Hy, — Ho3Hjy Hsy + HaaHyjHyp < 0 and Fo(K) <

~H33, Fi(K) < —Hj} for any K > 0.
As for the case where p € (-00,0), thanks to Lemma 4.5, we can prove all conclusions
by the very similar method introduced in Lemmas 5.1 and 5.2 of [10]. So we just omit it.
O

With the results above in hand, now we can give the proof of Theorem 3.1 as follows.

Proof of Theorem 3.1 According to Lemma 5.1, there exists a unique p! < 0 such that the
blow-up time of the corresponding Riccati equation (28) is £, = 0. Then, by the very simi-
lar arguments for the proof of Theorem 3.1 in [10], we can prove that Al =1 — p! is the
smallest eigenvalue of linear stochastic Hamiltonian system (8), and the dimension of

Page 14 of 20
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the eigenfunction subspace corresponding to A; is no more than #n. This completes the

proof. O

5.2 Proof of Theorem 3.2
For the one-dimensional case, since Hy3 = —H33Hj3 and Hyy = —HyqH)a, the Riccati equa-

tion corresponding to linear stochastic Hamiltonian system (9) is
: 2 2 2 2\ 72
—K(t) = (2Ha1 + Hiy + Hyy)K(2) + Hy + (pHao — H3sHyy — HaaHyy ) K(2), (29)
and the related dual Riccati equation is
d - ~ -
—EK(L‘) = —(2Hy + Hiy + Hiy)K(¢) - (pHoo — HysHpy — HusHp,) — HuK*(t).  (30)

It can be seen from the quadratic term of (29) that the critical point for blow-up time ¢,
of (29) with the terminal condition K(7) = 0 is pg = Hyj H33Hz + Hy s HyaHZ, > 0. Analo-

gously to Lemma 5.1, we can obtain the properties of ¢, as follows.

Lemma 5.2 For Riccati equation (29), when p € (—00, po), the blow-up time t, is finite:
t, € (—00, T). Moreover, t, is continuous and strictly decreasing with respect to p. We also

have

lim t,=T and lim t,=-00.
p—>—-00 0= P0
This lemma can be proved by the same arguments as Lemma 5.1. So we just omit it. Very

similarly, we can get the following properties of blow-up time Z, of (30) with the terminal
condition K(T) = 0.

Lemma 5.3 When p € (00, po), the blow-up time t, is finite: t, € (oo, T). Moreover, ,

is continuous and strictly decreasing with respect to p. We also have

lim ,=7 and lim f, = —oo.
p—>=00 = p0
Thus, just by the same arguments as the proof of Theorem 3.2 in [10], we can find a
sequence of eigenvalues A; < A < A3 < - - - and construct corresponding eigenfunctions, of
which the dimension with respect to each A, is 1. So we omit the details for the proof of
Theorem 3.2.

6 Statistic periodicity
It follows from the proof of Theorem 3.2 that the eigenfunctions of linear stochastic
Hamiltonian system (9) own the ‘statistic periodicity’ property. Now, we observe this prop-
erty for stochastic Hamiltonian systems from another viewpoint.

For any p < py, according to Lemmas 5.2 and 5.3, the Riccati equations (29) and (30)
with terminal conditions K(7T') = 0 and K(T) = 0 admit unique finite blow-up times ¢, and

fp, respectively. Again, by the proof of Theorem 3.2, there exists a quadruple (x;, y:, z;, k;) €
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MA(R) x M*(R) x F&(R) x F(R) satisfying

dx; = (Houx; + pHagy: + Hyzzy + Hasky) dit

+ (Haix; + Hoy, + H3sz,) dB,

. (31)
+ (Hux— + Haoy— + Huaky) ANy,
—d}/t = (Huxt + HlZyt + ngzt + H14/(,¢) dt — Zt dBt — kt df\]t
such that
xt[z),' =0, Vi =0, i=0,1,2,....
Here,
2 =i(T-t,)+iT -%,),
’ ’ ’ (32)

2 =i+ 1)(T —t,) +i(T - 1)
So we have the following.
Proposition 6.1 Forn =1, let (4) hold, and assume Ho3 = —Hs3Hy3, Hayg = —HyaHyy. Then,

for any A > 1, there exists a family of stochastic Hamiltonian systems whose dynamics are
in the form of (31) with the boundary condition

x0 =0, yt%nl:O, i=0,1,2,...,

such that they take ) as one of their eigenvalues. Moreover, the eigenfunctions corresponding
¢ .. . e e, . 4 .
to A have the tatistic periodicity’ property with t ,-period.

In order to demonstrate Proposition 6.1 vividly, we consider a specific numerical exam-
ple. Suppose T'=1 and

5 2 1 o0 0 0 0 O
2 - _ -

He 5 3 0 , - 0 -5 0 O
1 3 -3 0 0 0 0 O
o 0 0 -3 0O 0 0 O

Then, for A = 3, the related Riccati equation and the dual Riccati equation are

—K(£) = 5K(¢) + 5 + 13K2(¢),

(33)
K(1) =0,

and

—4 R (t) = -5K(¢) — 13 - 5K%(t),

(34)
K(1)=0.
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Figure 1 The solution of (33).
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Figure 2 The solution of (34).

Since it is very difficult to obtain analytic solutions of (33) and (34), we give numerical
solutions of them by Figure 1 and Figure 2. It can be seen from them that the solutions of
(33) and (34) explode at blow-up times ¢_, and £_,, respectively. Moreover, according to
the numerical computation, we have

t,~0.832, t o~ 0.752.

Thus, by Proposition 6.1, there exists a family of stochastic Hamiltonian systems whose
eigenvalue systems contain A = 3. More specifically, these stochastic Hamiltonian systems

are

dx, = (2x; — 5(1 — M)y, + 3z;) dt + (%, + 3y, — 32z;) dB; — 3k, dN,,
_dyt = (5xt + 2yt + Zt) dt — Zs dBt - kt dNt, (35)

%0 =0, YTy =05

where T5;,; is approximately equal to (1 — 0.832)(i + 1) + (1 — 0.752)i = 0.416i + 0.168, i =
0,1,.... By Lemma 4.3 and solutions to (33) and (34), we can construct the corresponding
eigenfunctions explicitly on [0, T5;;1]. For i = 2, Figures 3 and 4 show one approximate
path of {x;} and {y,}, respectively.

We can also see from Figure 3 that x, reaches zero only at £°, = 0, £, = 0.416, ¢, = 0.832.
It keeps positive on (0,0.416) and negative on (0.416,0.832). Similarly, it can be seen from
Figure 4 that y, reaches zero only at £}, = 0.168, £3; = 0.584, £>; = 1. It keeps positive on
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Figure 3 {x;} when A =3.

Figure 4 {y:;} when A =3.

1.000,0)

Figure 5 {x;} when A =2.

0 0.2 0.4 0.6 0.8 1 1.2

(0,0.168) U (0.584,1) and negative on (0.168,0.584). Moreover, we have
%0832 =0, Yo.832 > 0.

It means that (x;, y;) returns to the situation where xo = 0 and y, > 0. That is to say, a peri-
odicity is complete on [0,0.832]. This just verifies the theoretical results given in Propo-
sition 6.1.

Let us consider another A = 2. By the same method introduced above, we obtain the
blow-up time ¢_; and _; of the related Riccati equation and the dual Riccati equation are
0.796 and 0.657, respectively. Thus, the stochastic Hamiltonian systems whose eigenvalue
systems contain A = 2 are in the form of (35), where T5;,; is approximately equal to (1 —
0.796)(i +1) + (1-0.657)i = 0.547i + 0.204, i = 0,1,.... For i = 2, Figures 5 and 6 show one
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Figure 6 {y:} when A =2.

approximate path of {x,} and {y;}, respectively. Moreover, (x;,y;) completes a periodicity
on [0,1.094].

Remark 6.2
(i) Comparing Figures 5 and 6 with Figures 3 and 4, we can see that the period of
eigenfunctions corresponding to A = 3 is shorter than that corresponding to A = 2.
In fact, it follows from Lemma 4.5 that the blow-up times ¢, and £, of (33) and (34)
will rise when A becomes larger. Thus, the period of eigenfunctions will decrease
indeed as A increases.

(i) In the numerical example above, the eigenfunctions {x;} and {y,} are both
continuous since Hy, and Hsg4 are assumed to be 0 and thus k; = 0 for ¢ € [0, T5].
We demonstrate this continuous case for simplicity and convenience to see the
statistic periodicity of eigenfunctions visually. The general situation can be dealt
with by the same method, and the corresponding eigenfunctions are with jumps. So
we omit the details.

7 Conclusions

To our best knowledge, it is the first time to consider the eigenvalue problem for stochastic
Hamiltonian systems driven by Poisson process with boundary conditions. Under certain
conditions, we obtain the existence of eigenvalues and corresponding eigenfunctions by
means of the dual transformation and generalized Riccati equation systems. From another
viewpoint, for any real number A > 1, we can establish a family of linear stochastic Hamil-
tonian systems whose eigenvalue systems contain A and give the corresponding eigen-
functions explicitly. Moreover, a specific numerical example is studied to illustrate our
theoretical results above and show the ‘statistic periodicity’ vividly for the eigenfunctions
of stochastic Hamiltonian systems. Besides, the main results of this paper can help us to
construct some examples of multi-solutions for FBSDEP.

On the other hand, as is shown in [10], our problem can also be formulated as an eigen-
value problem for a bounded and self-adjoint operator in a Hilbert space, and then in-
vestigated in a standard way by the theory of functional analysis. We leave the details to
interested readers.
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