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Abstract
In this paper, we introduce and study a class of new Picard-Mann iterative methods
with mixed errors for common fixed points of two different nonexpansive and
contraction operators. We also give convergence and stability analysis of the new
Picard-Mann iterative approximation and propose numerical examples to show that
the new Picard-Mann iteration converges more effectively than the Picard iterative
process, Mann iterative process, Picard-Mann iterative process due to Khan and other
related iterative processes. Furthermore, as an application, we explore iterative
approximation of solutions for an elliptic boundary value problem in Hilbert spaces
by using the new Picard-Mann iterative methods with mixed errors for contraction
operators.
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1 Introduction
In order to find a weak solution of the following elliptic boundary value problem (so-called
Dirichlet problem):

⎧
⎨

⎩

–�u = f (x, u), x ∈ �,

u(x) = 0, x ∈ ∂�,
(1.1)

where � ⊂ R
n is a bounded domain, f : � ×R → R is a Carathéodory function, Ayadi et

al. [1] proved a new global minimization theorem in Hilbert spaces by using the notion
of a nonexpansive potential operator. As we all know, multidimensional dynamical sys-
tems are frequently formulated by partial differential equations, which generally depend
on space and time, i.e., parabolic or evolutionary type equations, and are treated with em-
phasis on various real-world applications in (thermo)mechanics of solids and fluids, elec-
trical devices, engineering, chemistry, biology, etc. (see [2, 3]). But under some suitable
conditions, the time-dependent form of partial differential equations can be rewritten as a
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time-independent form (see [4, Example 4, p. 161]), and some special cases of the Dirichlet
problem (1.1) represent elliptic variational forms of second order physician, physicist and
anatomist equation (see [2, 5]). Thus, the nonlinear elliptic problem (1.1) has been stud-
ied via fixed point index theory, critical point theory, Morse theory, variational inequality
theory and so on. See, for example, [4, 5] and the references therein. The boundary value
problem is widely used in physics. In 1997, Marin [6] established necessary and sufficient
conditions for the existence and uniqueness of the weak solution to the mixed bound-
ary value problem in the domain of dipolar bodies with voids. Later, Marin and Vlase [7]
showed that the existence of internal state variables has no effect on the uniqueness of
the solution associated with the mixed initial boundary value problem in thermoelasticity
of microstretch bodies (see [7, Theorems 1-3, p. 248]), the proof of the uniqueness of the
solution and some useful estimations are also contained.

In particular, many problems in physics and other applications cannot be formulated as
equations but have some more complicated structure, and usually the so-called comple-
mentarity problem, which is equivalent to a variational inequality. Further, the applicabil-
ity of variational inequality theory, which was initially developed to cope with equilibrium
problems (e.g., the Signorini problem, which was first posed by Antonio Signorini in 1959),
has been extended to involve problems in economics, finance, electrodynamics, mechan-
ics, engineering science, optimization and game theory. Hence, the variational method
is very important in optimal control theory, and such generalization is often needed in
optimal-control theory of elliptic problems. In fact, optimal control problems in control
theory are searching for a kind of control mode which can transform the initial state of the
control object to the terminal state and make sure that the objective function can reach
the maximum or minimum. For more details on variational inequalities in the context of
their optimal control, one can refer to [2–5] and the references therein, and the following
examples.

Example 1.1 ([8]) Consider the following optimal boundary control problem of elliptic
equation constraints:

min J(u), (1.2)

where state variable y(u) ∈ V = H1(�), state space, and control variable u ∈ U = L2(∂�),
control space, satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�y = f , x ∈ �,
∂y
∂
−→n = u + g, x ∈ �N ,

y = yd, x ∈ �D,

(1.3)

where � ⊂ R
2 is a bounded convex region with smooth boundary ∂�, �N and �D are

respectively Neumann boundary and Dirichlet boundary, ∂� = �N ∪ �D, �N ∩ �D = ∅, −→n
is the unit normal vector of ∂�, f , g and yd are given functions.

Define the objective function in (1.2) by

J(u) =
1
2

{∫

�

γ
∣
∣y(x) – y0(x)

∣
∣2 dx +

∫

�N

α
∣
∣u(x)

∣
∣2 ds

}

, (1.4)
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where y0(x) is a given target state variable, γ ,α > 0 are two constants, which play a role
of balance to the state variable y and the control variable u. By optimal control theory [9]
and the definition of directional derivative for functional, now we know that solving the
optimal problem (1.2) on a convex set U is equivalent to finding the control variable u ∈ U
such that the following variational inequality holds:

〈
J ′(u), v – u

〉
=

∫

�N

(αu + p)(v – u) ds ≥ 0, ∀v ∈ U , (1.5)

where p is the dual state variable of y and satisfies the following state equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�p = γ (y – y0), x ∈ �,
∂p
∂
−→n = 0, x ∈ �N ,

p = 0, x ∈ �D,

(1.6)

which is the dual problem of (1.3). Inequality (1.5) is called optimality condition for the
optimal control problems (1.2) and (1.3), which is equivalent to the equation system com-
posed of (1.3), (1.5) and (1.6).

Based on the above analysis of dualization and optimality condition for the optimal con-
trol problems (1.2) and (1.3), Liu and Sun [8] introduced and studied an iterative non-
overlapping domain decomposition method for (1.3)-(1.6) and proved convergence of the
sequence generated by the iterative method. Furthermore, by using an iterative algorithm
due to the penalized gradient projection method, adaptive finite element method, edge
stabilization Galerkin method, variational iteration method, etc., such kind of problems
as (1.2) or (1.3) were considered by many authors and researchers. See, for example, [9–16]
and the references therein. Especially noteworthy, Zhou and Li [17] pointed out ‘though
much achievement has been achieved, application of the variational iteration method to
Cauchy problems has not yet been dealt with’.

On the other hand, in order to compare to Picard, Mann and Ishikawa iterations for ap-
proximating fixed points and to solve equation systems, Khan [18] introduced and studied
a Picard-Mann hybrid iterative process and showed that the Picard-Mann hybrid itera-
tive process converges faster than all of Picard, Mann and Ishikawa iterative processes for
contractions. Following on the works of Khan [18], by using an up-to-date method for ap-
proximating common fixed points of countable families of nonlinear operators, Deng [19]
introduced a modified Picard-Mann hybrid iterative algorithm for a sequence of nonex-
pansive mappings and established strong convergence and weak convergence of the itera-
tive sequence generated by the modified hybrid iterative algorithm in a convex Banach
space. Okeke and Abbas [20] introduced and studied Picard-Krasnoselskii hybrid iter-
ations, which converge faster than Picard, and gave an application to delay differential
equations Mann, Krasnoselskii and Ishikawa iterative processes for contractive nonlin-
ear operators. However, one can know that the Picard-Krasnoselskii hybrid iteration is a
special case of the Picard-Mann hybrid iterative process due to Khan [18], it is because
αn ∈ (0, 1) of (1.4) in [18] includes λ ∈ (0, 1) in (1.7) of [20] (see [20, Example 2.2, p. 25]).
Jiang et al. [21] proved convergence of Mann iterative sequences for approximating so-
lutions of a higher order nonlinear neutral delay differential equation and proposed ad-
vantages of the presented results through three extraordinary examples. However, how to
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establish the error estimates between the approximate solutions and the exact solutions
for partial differential equations is not reported in the literature.

Moreover, Roussel [22] pointed out that equilibria are not always stable. Since stable
and unstable equilibria play quite different roles in the dynamics of a system, it is use-
ful to be able to classify equilibrium points based on their stability. Thus, there are many
scholars and researchers who have discussed stability of the iterative sequence generated
by the algorithm for solving the investigated problems. See, for example, [23–27] and the
references therein. Especially, stimulated by the work of Bosede and Rhoades [28], Akewe
and Okeke [27] obtained stability results for the Picard-Mann hybrid iterative scheme due
to Khan [18] for a general class of contractive-like operators introduced by Bosede and
Rhoades [28]. However, how does one obtain stability analysis when the Picard-Mann hy-
brid iterative scheme due to Khan [18] is generalized for two different nonexpansive and
contraction operators and one involves errors or mixed errors? This is a significant and
challenging research work.

Motivated and inspired by the above works, we aim in this paper to introduce and study
a class of new Picard-Mann iterative methods with mixed errors for common fixed points
of two different nonexpansive and contraction operators. Then convergence and stability
analysis of the new Picard-Mann iterative approximation are given. Finally, two numerical
examples to verify effectiveness of the new Picard-Mann iteration are presented, and a
new iterative approximation of solutions for an elliptic boundary value problem in Hilbert
spaces is investigated by using the new Picard-Mann iterative methods with mixed errors
for nonexpansive operators, which are different from the method proposed in [1].

2 New Picard-Mann approximation methods
In this section, we shall introduce and study a class of new Picard-Mann iterative methods
with mixed errors for common fixed points of two different nonexpansive and contraction
operators and prove convergence and stability of the new Picard-Mann iterative approxi-
mation.

We need the following definitions and lemmas for our main results.

Definition 2.1 Let X be a normed space and K ⊂ X be a nonempty subset. Then an op-
erator T : K → K is said to be

(i) nonexpansive if

‖Tu – Tv‖ ≤ ‖u – v‖, ∀u, v ∈ K ; (2.1)

(ii) contraction if there exists a constant k ∈ [0, 1) such that

‖Tu – Tv‖ ≤ k‖u – v‖, ∀u, v ∈ K . (2.2)

Remark 2.1 The constant k in Definition 2.1(ii) is called the Lipschitz constant of T . Con-
tractive operators are sometimes called Lipschitzian operators. If the above condition is
instead satisfied for k ≤ 1, then the operator T is said to be nonexpansive.

Definition 2.2 Let S be a selfmap of the normed space X, x0 ∈ X, and let xn+1 = h(S, xn)
define an iteration procedure which yields a sequence of points {xn} ⊂ X. Suppose that
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{x ∈ X : Sx = x} 
= ∅ and {xn} converges to a fixed point x∗ of S. Let {wn} ⊂ X and let εn =
‖wn+1 – h(S, wn)‖. If lim εn = 0 implies that wn → x∗, then the iteration procedure defined
by xn+1 = h(S, xn) is said to be S-stable or stable with respect to S.

Lemma 2.1 ([29]) Let X be a normed space and C be a nonempty closed convex bounded
subset of X. Then each nonexpansive operator T : C → C has a fixed point in C.

Lemma 2.2 ([30]) Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying

an+1 ≤ (1 – tn)an + tnbn + cn, (2.3)

where tn ∈ [0, 1],
∑∞

n=0 tn = ∞, limn→∞ bn = 0,
∑∞

n=0 cn < ∞. Then an → 0 (n → ∞).

Now, we establish a class of new Picard-Mann iterations with mixed errors for common
fixed points of two different nonlinear operators (in short, (PMMD)) as follows.

Algorithm 2.1 Step 1. Choose x0 in a normed space X.
Step 2. Let

⎧
⎨

⎩

xn+1 = T1yn + hn,

yn = (1 – αn)xn + αnT2xn + αndn + en,
(2.4)

where T1, T2 : X → X are two nonlinear operators, and hn, dn, en ∈ X are errors to take into
account a possible inexact computation of the operator points.

Step 3. Choose sequences {αn}, {hn}, {dn} and {en} such that for n ≥ 0, {αn} ⊂ [0, 1] and
{hn}, {dn}, {en} are three sequences in X satisfying the following conditions P :

(i) dn = d′
n + d′′

n ;
(ii) limn→∞ ‖d′

n‖ = 0;
(iii)

∑∞
n=0 ‖hn‖ < ∞,

∑∞
n=0 ‖d′′

n‖ < ∞,
∑∞

n=0 ‖en‖ < ∞.
Step 4. If xn+1, yn, αn, hn, dn and en satisfy (2.4) to sufficient accuracy, go to Step 5; oth-

erwise, set n := n + 1 and return to Step 2.
Step 5. Let {wn} be any sequence in X and define {εn} by

⎧
⎨

⎩

εn = ‖wn+1 – (T1ξn + hn)‖,

ξn = (1 – αn)wn + αnT2wn + αndn + en.
(2.5)

Step 6. If εn, wn+1, ξn, αn, hn, dn and en satisfy (2.5) to sufficient accuracy, stop; otherwise,
set n := n + 1 and return to Step 3.

Remark 2.2 For special choices of the operators T1 and T2, the space X, and the errors hn,
dn and en in (2.4), one can obtain a large number of Picard iterative process, Mann iterative
process, Picard-Mann iterative process due to Khan [18] and other related iterations. Now
we list some special cases of iteration (2.4) as follows.

Special Case I If hn = dn = en = 0, the iterative process (2.4) becomes the following
Picard-Mann iteration for two different operators (in short, (PMD)): For any given
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x0 ∈ X ,
⎧
⎨

⎩

xn+1 = T1yn,

yn = (1 – αn)xn + αnT2xn.
(2.6)

Special Case II When T1 = T2 = T , for any given x0 ∈ X , iteration (2.4) reduces to the
sequence {xn} defined by

⎧
⎨

⎩

xn+1 = Tyn + hn,

yn = (1 – αn)xn + αnTxn + αndn + en.
(2.7)

We note that the iterative processes (PMD) and the Picard-Mann iteration with mixed
errors (2.7) (in short, (PMM)) are new and not studied in the literature.
Special Case III If T1 = T2 = T , then (2.6) reduces to

⎧
⎨

⎩

xn+1 = Tyn,

yn = (1 – αn)xn + αnTxn,
(2.8)

which was the Picard-Mann iterative process (in short, (PM)) studied by Khan [18]
when αn ∈ (0, 1). We note that (PM) can be obtained from (2.7) if hn = dn = en = 0 for
all n ≥ 0. Further, the iterative process (2.8) reduces to the Picard-Krasnoselskii hybrid
iterations studied by Okeke and Abbas [20] when αn = λ ∈ (0, 1). As Khan [18] pointed
out, the iteration (2.8) is independent of all Picard and Mann iterative processes if
{αn} ⊂ (0, 1). But one can easily see that the iterative process (2.8) will reduce to Picard
and a special case of Ishikawa iterative process when αn = 0 and αn = 1, respectively.
Special Case IV When T1 = I , the identity operator, for any given x0 ∈ X , the iteration
(PMD) defined by (2.6) can be written as

xn+1 = (1 – αn)xn + αnT2xn, (2.9)

which is the Mann iterative process (in short, (MI)) for αn ∈ [0, 1].

Based on Lemma 2.1 and the existence of fixed point for a contraction operator, in the
sequel, we will prove convergence and stability of the new Picard-Mann iterative processes
with mixed errors generated by Algorithm 2.1.

Theorem 2.1 Let X be a normed space and C ⊂ X be a nonempty closed convex bounded
subset. Let T1 : C → C be nonexpansive and T2 : C → C be a contraction operator with
constant θ ∈ [0, 1). Suppose that F(T1 ∩ T2) := {x ∈ C : Tix = x, i = 1, 2} 
= ∅ and

∑∞
n=0 αn =

∞. Then
(i) the iterative sequence {xn} generated by (PMMD) in Algorithm 2.1 converges to

x∗ ∈ F(T1 ∩ T2) with convergence rate

ϑ = 1 – α̂(1 – θ ) < 1, (2.10)

where α̂ = lim supn→∞ αn ∈ (0, 1];
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(ii) if, in addition, for any sequence {zn} ⊂ X , there exists α > 0 such that αn ≥ α for all
n ≥ 0, then

lim
n→∞ wn = x∗ if and only if lim

n→∞ εn = 0, (2.11)

where εn is defined by (2.5).

Proof It follows from (2.4) that

∥
∥xn+1 – x∗∥∥

≤ ∥
∥yn – x∗∥∥ + ‖hn‖

≤ (1 – αn)
∥
∥xn – x∗∥∥ + αn

∥
∥T2xn – x∗∥∥

+ αn
(∥
∥d′

n
∥
∥ +

∥
∥d′′

n
∥
∥
)

+ ‖en‖ + ‖hn‖
≤ (1 – αn)

∥
∥xn – x∗∥∥ + αnθ

∥
∥xn – x∗∥∥

+ αn
∥
∥d′

n
∥
∥ +

(∥
∥d′′

n
∥
∥ + ‖en‖ + ‖hn‖

)

= ϑn
∥
∥xn – x∗∥∥ + (1 – θ )αn · 1

1 – θ

∥
∥d′

n
∥
∥

+
(∥
∥d′′

n
∥
∥ + ‖en‖ + ‖hn‖

)
, (2.12)

where ϑn = 1 – (1 – θ )αn. Since
∑∞

n=0 αn = ∞, by Lemma 2.2 and (2.12), now we know that
‖xn – x∗‖ → 0 (n → ∞). Thus, the sequence {xn} converges to x∗ for ϑn.

Further, by (2.12), we have

lim sup
n→∞

ϑn = 1 – α̂(1 – θ ), (2.13)

where α̂ = lim supn→∞ αn.
Next, we prove the conclusion (ii). Since 0 < α ≤ αn, it follows from the proof of inequal-

ity (2.12) and (2.5) that

∥
∥T1ξn + hn – x∗∥∥

≤ [
1 – (1 – θ )αn

]∥
∥wn – x∗∥∥ + αn

∥
∥d′

n
∥
∥ +

(∥
∥d′′

n
∥
∥ + ‖en‖ + ‖hn‖

)
, (2.14)

and

∥
∥wn+1 – x∗∥∥

≤ ∥
∥T1ξn + hn – x∗∥∥ + εn

≤ [
1 – (1 – θ )αn

]∥
∥wn – x∗∥∥ + αn

∥
∥d′

n
∥
∥ + εn

+
(∥
∥d′′

n
∥
∥ + ‖en‖ + ‖hn‖

)

≤ [
1 – (1 – θ )αn

]∥
∥wn – x∗∥∥ + (1 – θ )αn · 1

1 – θ

(
∥
∥d′

n
∥
∥ +

εn

α

)

+
(∥
∥d′′

n
∥
∥ + ‖en‖ + ‖hn‖

)
. (2.15)
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Let limn→∞ εn = 0. Then, by
∑∞

n=0 αn = ∞, Lemma 2.2 and (2.15), we know that
limn→∞ wn = x∗.

Conversely, if limn→∞ wn = x∗, then it follows from (2.14) and αn ≤ 1 that, for all n ≥ 0,

εn =
∥
∥wn+1 – (T1ξn + hn)

∥
∥

≤ ∥
∥wn+1 – x∗∥∥ +

∥
∥T1ξn + hn – x∗∥∥

≤ ∥
∥wn+1 – x∗∥∥ +

[
1 – (1 – θ )αn

]∥
∥wn – x∗∥∥

+ αn
∥
∥d′

n
∥
∥ +

(∥
∥d′′

n
∥
∥ + ‖en‖ + ‖hn‖

)

≤ ∥
∥wn+1 – x∗∥∥ +

∥
∥wn – x∗∥∥ +

(∥
∥d′

n
∥
∥ +

∥
∥d′′

n
∥
∥ + ‖en‖ + ‖hn‖

)
, (2.16)

this implies that εn → 0 as n → ∞. This completes the proof. �

Remark 2.3 (i) Since the errors in Algorithm 2.1 exist objectively when the inexact calcu-
lation of operator points is considered, the iterative process (2.4) (i.e., (PMMD)) is more
truthful than the Picard iteration, Mann iteration, Picard-Mann iteration due to Khan [18]
and so on. One can easily observe in the next numerical simulations visually.

(ii) We note that the stability analysis in Theorem 2.1 is little discussed in the literature.
Akewe and Okeke [27] gave the stability theorems for the Picard-Mann hybrid iterative
scheme for a general class of contractive-like operators. However, comparing with the
stability analysis in [27], we use a different method to analyze the stability and also extend
the application of stability for iterations.

(iii) According to inequality (2.12), one can obtain

∥
∥xn+1 – x∗∥∥

≤ ϑn
∥
∥xn – x∗∥∥ +

(‖dn‖ + ‖en‖ + ‖hn‖
)

≤ ϑnϑn–1
∥
∥xn–1 – x∗∥∥ + ϑn

(‖dn–1‖ + ‖en–1‖ + ‖hn–1‖
)

+
(‖dn‖ + ‖en‖ + ‖hn‖

)

≤ · · ·

≤
n∏

i=1

ϑi
∥
∥x1 – x∗∥∥ +

n–1∑

k=1

n∏

i=k+1

ϑi
(‖dk‖ + ‖ek‖ + ‖hk‖

)

+
(‖dn‖ + ‖en‖ + ‖hn‖

)
, (2.17)

where
∏n

i=1 ϑi = ϑ1 · ϑ2 · · · · · ϑn and ϑi is the same as in (2.12) for all i = 1, 2, . . . , n. As a
matter of fact,

∑n–1
k=1

∏n
i=k+1 ϑi(‖dk‖ + ‖ek‖ + ‖hk‖) + (‖dn‖ + ‖en‖ + ‖hn‖) = o(‖dn‖ + ‖en‖ +

‖hn‖). Hence, these errors in (2.4) can help to adjust the iteration results to improve the
algorithms by using this infinitesimal of a higher order sequence.

From Theorem 2.1 and Remark 2.1, we have the following result.

Theorem 2.2 Let C ⊂ X be a nonempty closed convex bounded subset of a normed space
X, and let T : C → C be a contraction operator with constant θ ∈ [0, 1). If {αn} ⊂ [0, 1] and
∑∞

n=0 αn = ∞ and {hn}, {dn}, {en} are three sequences in X satisfying the conditions P , then
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(i) the iterative sequence {xn} generated by (2.7) (that is, (PMM)) converges to
p ∈ F(T) := {x ∈ C : Tx = x} with convergence rate ϑ = 1 – α̂(1 – θ ) < 1, where
α̂ = lim supn→∞ αn ∈ (0, 1];

(ii) if, in addition, for any sequence {zn} ⊂ X , there exists α > 0 such that αn ≥ α for all
n ≥ 0, then

lim
n→∞ zn = p ⇐⇒ lim

n→∞ εn = 0, (2.18)

where εn is defined by

⎧
⎨

⎩

εn = ‖zn+1 – (Tsn + hn)‖,

sn = (1 – αn)zn + αnTzn + αndn + en.
(2.19)

3 Numerical simulations and an application
In order to verify our main results presented in the above section, in this section, we give
some numerical simulations and consider approximation of the elliptic boundary value
problem (1.1) by using the new Picard-Mann iterative methods with mixed errors for con-
tractive operators.

3.1 Numerical examples
We first give the following examples and their numerical simulations to show verification
of Theorem 2.1 and Remark 2.3(iii) and to display effectiveness of the new Picard-Mann
iterative methods with mixed errors.

Example 3.1 Let X = R, 1 < k ≤ 86
49 , C = [–1, 5

2 + 1
2

√
135
k–1 ], T1x = 1

π
sin(πx) + 8 and T2x =√

x2 – 5x + 40 for all x ∈ C, and hn = – 5
407n , αn = 1

n , dn = 1
n2 + 1

n3 and en = – 14
n7 for n ≥ 1. It

is easy to see that T1 is nonexpansive and T2 is a contraction operator with constant 1√
k

.
In fact, for all x, y ∈ C, we have

‖T1x – T1y‖ =
1
π

∥
∥sin(πx) – sin(πy)

∥
∥

≤ 1
π

‖πx – πy‖ = ‖x – y‖ (3.1)

and

‖T2x – T2y‖ =
∥
∥
∥
∥

(x – 2.5)2 – (y – 2.5)2
√

(x – 2.5)2 + 33.75 +
√

(y – 2.5)2 + 33.75

∥
∥
∥
∥

=
∥
∥
∥
∥

(x – y)[(x – 2.5) + (y – 2.5)]
‖x – 2.5‖ + ‖y – 2.5‖

∥
∥
∥
∥

· ‖x – 2.5‖ + ‖y – 2.5‖
√

(x – 2.5)2 + 33.75 +
√

(y – 2.5)2 + 33.75

≤ 1√
k
‖x – y‖. (3.2)

Further, one can see that T1 is nonexpansive but not a contraction, and F(T1 ∩ T2) =
{8} 
= ∅. Hence, the conditions in Theorem 2.1 and Algorithm 2.1 hold and the sequence
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{xn} generated by (PMMD) can be rewritten as follows:

(PMMD)

⎧
⎨

⎩

xn+1 = 1
π

sin(πy) + 8 – 5
407n ,

yn = (1 – 1
n )xn + 1

n

√
x2

n – 5xn + 40 + 1
n ( 1

n2 + 1
n3 ) – 14

n7 .

Moreover, the corresponding two special cases are listed as well.

(PMD)

⎧
⎨

⎩

xn+1 = 1
π

sin(πy) + 8,

yn = (1 – 1
n )xn + 1

n

√
x2

n – 5xn + 40,

(MI) xn+1 =
(

1 –
1
n

)

xn +
1
n

√

x2
n – 5xn + 40.

By Theorem 2.1, now we know that {xn} generated by (PMMD) converges to x∗ = 8.
Further, in order to show the availability of the New Picard-Mann iterative methods with
mixed errors, by using software Matlab 7.0, the numerical simulation results for the se-
quences {xn} generated by (PMMD), (PMD) and (MI) are given with 70, more than 200
and more than 200 iterations in Figure 1 and Table 1, respectively.

Remark 3.1 If these mixed errors can be used properly, the property of (2.4) will be better
than the other algorithms. From Figure 1 and Table 1, it is easy to see that the iterative
process (PMMD) is effective and the sequence {xn} generated by (PMMD) converges much
faster.

Figure 1 Iterative solutions of (PMMD), (PMD) and (MI).

Table 1 A comparison of the iterative processes (PMMD), (PMD) and (MI)

Iteration number (PMMD) (PMD) (MI)

0 25.0000 25.0000 25.0000
5 7.9781 7.8794 21.0937
10 7.9944 7.9102 20.0644
15 7.9975 7.9249 19.4604
20 7.9987 7.9340 19.0346
25 7.9992 7.9403 18.7069
30 7.9995 7.9451 18.4413
35 7.9996 7.9489 18.2183
40 7.9997 7.9519 18.0264
45 7.9998 7.9545 17.8583
50 7.9999 7.9567 17.7088

Iteration number (PMMD) (PMD) (MI)

55 7.9999 7.9585 17.5743
60 7.9999 7.9602 17.4521
65 7.9999 7.9617 17.3403
70 8.0000 7.9630 17.2373
75 8.0000 7.9642 17.1418
80 8.0000 7.9652 17.0529
85 8.0000 7.9662 16.9697
90 8.0000 7.9671 16.8915
95 8.0000 7.9679 16.8179
100 8.0000 7.9687 16.7483
105 8.0000 7.9694 16.6823
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Next, we verify Theorem 2.2 by the following numerical example.

Example 3.2 Let X = R, constant 1 < l ≤ 49
25 , C = [–1, 4 + 2

√
6

l–1 ], Tx =
√

x2 – 8x + 40 for
all x ∈ C, and hn = 1

10n , αn = 1
2n , dn = 1

n + 1
n2 and en = – 16

n5 for n ≥ 1. Then, for all x, y ∈ C,
we have

‖Tx – Ty‖ =
∥
∥
∥
∥

(x – 4)2 – (y – 4)2
√

(x – 4)2 + 24 +
√

(y – 4)2 + 24

∥
∥
∥
∥

=
∥
∥
∥
∥

(x – y)[(x – 4) + (y – 4)]
‖x – 4‖ + ‖y – 4‖

∥
∥
∥
∥

· ‖x – 4‖ + ‖y – 4‖
√

(x – 4)2 + 24 +
√

(y – 4)2 + 24

≤ 1√
l
‖x – y‖, (3.3)

and so T is a contraction operator. Thus, we obtain the following iterative processes as
two special cases of (PMMD):

(PMM)

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 =
√

y2
n – 8yn + 40 + 1

10n ,

yn = (1 – 1
2n )xn + 1

2n
√

x2
n – 8xn + 40

+ 1
2n ( 1

n + 1
n2 ) – 16

n5 ,

(PM)

⎧
⎨

⎩

xn+1 =
√

y2
n – 8yn + 40,

yn = (1 – 1
2n )xn + 1

2n
√

x2
n – 8xn + 40.

It follows from Theorem 2.2 that xn generated by (PMM) converges to p = 5, which is
the unique fixed point of T . Similarly, in order to compare (PMM) to (PM), the numerical
simulations are displayed with 9 and 13 iterations in Figure 2 and Table 2, respectively.
One can clearly see that the acceleration efficiency is 44.44%.

Remark 3.2 Figure 2 and Table 2 show that the iterative process (PMM) is effective and
the sequence {xn} generated by (PMM) converges faster than that produced by (PM).

3.2 An application to the elliptic boundary value problem
In 2013, by using the notion of a nonexpansive potential operator, Ayadi et al. [1] proved a
new global minimization theorem in Hilbert spaces to find a weak solution of the following

Figure 2 Iterative solutions of (PMM) and (PM).
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Table 2 A comparison of the iterative processes (PMM) and (PM)

Iteration number (PMM) (PM)

0 25.0000 25.0000
1 6.6065 19.8945
2 5.3218 15.8549
3 5.0625 12.4783
4 5.0131 9.6469
5 5.0031 7.4247
6 5.0008 5.9644

Iteration number (PMM) (PM)

7 5.0002 5.2762
8 5.0001 5.0623
9 5.0000 5.0128
10 5.0000 5.0026
11 5.0000 5.0005
12 5.0000 5.0001
13 5.0000 5.0000

elliptic boundary value problem:

⎧
⎨

⎩

–�u = f (x, u), x ∈ �,

u(x) = 0, x ∈ ∂�,
(3.4)

where � ⊂R
n is a bounded domain in an n-dimensional real space. f , f ′ : � ×R →R are

Carathéodory functions, here f ′ is the derivative of f with respect to its second variable.
One can know that a weak solution of (3.4) is a solution of the following variational

problem:

⎧
⎨

⎩

∫

�
∇u · ∇v dx –

∫

�
f (x, u) · v dx = 0, ∀v ∈ H1

0 (�),

u(x) ∈ H1
0 (�).

(3.5)

Let φ : H1
0 (�) → R be a nonlinear operator such that

φ(u) =
1
2
‖u‖2 –

∫

�

F(x, u) dx, F(x, u) =
∫ u

0
f (x, ζ ) dζ . (3.6)

From Theorem 2.2, we have the following existence results of solutions for problem (3.4).

Theorem 3.1 Let Rn be an n-dimensional real space and � ⊂ R
n be a nonempty bounded

domain. Define T : C → C by T = I – φ′, where φ is determined by (3.6), C = [ν,ω] = {u ∈
H1

0 (�) : ν(x) ≤ u(x) ≤ ω(x),∀x ∈ �}, here ν,ω ∈ H1
0 (�) are a subsolution and a supersolu-

tion of problem (3.5), respectively. If F(T) := {u ∈ C : Tu = u} 
= ∅ and
∑∞

n=0 αn = ∞, then
(i) the iterative sequence {un} generated by (2.7) converges to a weak solution u∗ ∈ F(T)

of problem (3.4) with convergence rate ϑ = 1 – α̂(1 – θ ) < 1, where
α̂ = lim supn→∞ αn ∈ (0, 1] and θ = supu∈C ‖(I ′ – φ′′)u‖;

(ii) if, in addition, there exists α > 0 such that αn ≥ α for all n ≥ 0, then

lim
n→∞ zn = u∗ ⇐⇒ lim

n→∞ εn = 0, (3.7)

where εn is defined by (2.19) and {zn} is any sequence.

Proof From the proof of [1, Theorem 6], it follows that C ⊂ H1
0 (�) is a closed convex and

bounded subset, and ‖(I ′ – φ′′)u‖ < 1 for some u ∈ C. By the proof of Theorem 4 in [1], we
know that T is a contraction operator. Since a contraction operator has fixed points, the
results hold from Theorem 2.2. This completes the proof. �
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Remark 3.3 In the proof of Theorem 3.1, we employ the new Picard-Mann iterative ap-
proximation with mixed errors for contraction operators, which differs from the method
proposed in Ayadi et al. [1] for showing that problem (3.4) has a weak solution.

4 Concluding remarks
In this paper, we introduced a class of new Picard-Mann iterative methods with mixed
errors for two different nonlinear operators as follows:

⎧
⎨

⎩

xn+1 = T1yn + hn,

yn = (1 – αn)xn + αnT2xn + αndn + en,
(4.1)

where T1, T2 : X → X are respectively nonexpansive and contraction operators, αn ∈ [0, 1]
and hn, dn, en ∈ X are errors to take into account a possible inexact computation of the
operator points. Iteration (4.1) includes the Picard-Mann iterative process due to Khan
[18], Picard iterative process, Mann iterative process and other related iterative processes
as special cases.

Then we gave convergence and stability analysis of the new Picard-Mann iterative ap-
proximation and proposed two numerical examples to show that the new Picard-Mann
iteration converges more effectively than the Picard iterative process, Mann iterative pro-
cess, Picard-Mann iterative process due to Khan and other related iterative processes. Fur-
thermore, as an application of the new Picard-Mann iterative methods with mixed errors
for contractive operators, which are different from the method proposed in [1], we explore
iterative approximation of solutions for the following elliptic boundary value problem:

⎧
⎨

⎩

–�u = f (x, u), x ∈ �,

u(x) = 0, x ∈ ∂�,
(4.2)

where � ⊂R
n is a bounded domain, f : � ×R→R is a Carathéodory function.

However, can our results be obtained when T is only nonexpansive in Theorem 2.2 or T2

is also nonexpansive in Theorem 2.1? These are still open questions that are worth further
studying.
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