Lee and Park Boundary Value Problems (2018) 2018:1 @ BOU nda ry Va I ue PrOblem S
https://doi.org/10.1186/513661-017-0918-2 a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Energy decay of solutions of nonlinear
viscoelastic problem with the dynamic
and acoustic boundary conditions

Mi Jin Lee” and Jong Yeoul Park

"Correspondence:

jin0624@pusan.ac.kr Abstract

Department of Mathematics, Pusan . . .
National University, Busan, 609-735 In this paper, we are concerned with the energy decay rate of the nonlinear
South Korea viscoelastic problem with dynamic and acoustic boundary conditions.

MSC: 35L70; 35B40; 76Exx

Keywords: general decay rate; viscoelastic wave equation; time-varying delay;
acoustic boundary conditions; dynamic boundary

1 Introduction

In this paper, we are concerned with the energy decay rate of the following nonlinear vis-
coelastic problem with a time-varying delay in the boundary feedback and acoustic bound-
ary conditions:

Uy —doAu + /tg(f — ) div(a(x)Vuls)) ds + (81 + b@)|us(6)|" s
0

= ulP2u  in Q x (0, +00), (1.1)
u=0 onIly x (0,00), (1.2)
Uy + 8o BZ‘()t) - / glt-s) (a(x)Vu(s)) ~vds + ik (ut(t)) + ,uzkg(ut(t - r(t)))

0

=h(x)y, onT; x (0,00), (1.3)
ur +f(x)ye + mx)y=0 onT'; x (0,00), (1.4)
u(x,0) = up(x), 1 (x,0) = up(x) in £, (1.5)
¥(x,0) = yo(x) onTh, (1.6)
ut(x, t— ‘L'(t)) :jo(x, t— ‘E(O)) onl; x (0, r(O)), (1.7)

where 2 regular and is a bounded domain of R”, n > 1, Q2 = I'y U I';. Here Iy, I'; are
closed and disjoint with meas(I'y) > 0 and v is the unit outward normal to 9%, § > O,
81 >0,m >2,p> 2, g denotes the memory kernel and 4, b are real valued functions which
satisfy appropriate conditions. The functions f,m,h: 'y — R* are essentially bounded,
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ki,ky : R — R are given functions, t(t) > 0 represents the time-varying delay, 1, i, are
real numbers with 1 > 0, 15 # 0 and the initial data (uo, 41, yo) belongs to a suitable space.
This type of equation usually arises in the theory of viscoelasticity. It is well known that
viscoelastic materials have memory effects, which is due to the mechanical response in-
fluenced by the history of the materials themselves. From the mathematical point of view,
their memory effects are modeled by integrodifferential equations. Hence, equations re-
lated to the behavior of the solutions for the PDE system have attracted considerable at-
tention in recent years. We can refer to recent work in [1-7].

The dynamic boundary conditions are not only important from the theoretical point
of view but also arise in numerous practical problems. Among the early results dealing
with this type of boundary conditions are those of [8, 9] in which the author has made
contributions to this field. Recently, some authors have studied the existence and decay of
solutions for a wave equation with dynamic boundary conditions [10-13].

Moreover, the acoustic boundary conditions was introduced by Morse and Ingard in
[14] and developed by Beale and Rosencrans in [15], where the authors proved the global
existence and regularity of the linear problem. Recently, some authors have studied the
existence and decay of solutions for a viscoelastic wave equation with acoustic boundary
conditions (see [16—19]). Time delay so often arises in many physical, chemical, biological
and economical phenomena because these phenomena depend not only on the present
state but also on the history of the system in a more complicated way.

In recent years, differential equations with time delay effects have become an active area
of research; see for example [20-26] and the references therein. To stabilize a hyperbolic
system involving input delay terms, additional control terms will be necessary. For in-
stance in [22], the authors are proved the boundary stabilization of a nonlinear viscoelas-
tic equation with interior time-varying delay and nonlinear dissipative boundary feedback.
In particular, Wu and Chen [27] consider the nonlinear viscoelastic wave equation with
boundary dissipation

uy (t) — Ko Au(t) + /tg(t —-) div(a(x)Vu(s)) ds+bxX)u, = f(u) in Q x (0,00),
0

u=0 onTIy x (0,00),

K u_ /tg(t—s)(a(x)Vu(s)) cvds+h(u)=0 onT; x (0,00),
Jv 0

u(0) =0, u(0)=u;, x€Q,

where Ky > 0 and Q is a bounded domain in R" (n > 1) with a smooth boundary I" =
"o UT;. The authors studied the uniform decay of solutions for a nonlinear viscoelastic
wave equation with boundary dissipation. In [28], Boukhatem and Benabderrahmane have
proved the existence and decay of solutions for a viscoelastic wave equation with acoustic
boundary conditions as follows:

t
us + Lu —/ gt —s)Lu(s)ds = |ulP>u  in Q x (0,00),
0

u=0 only x (0,00),

9 ‘ 9
o / ot —5) L (s)ds = h(x)z, on T, x (0,00),
81)L 0 BvL
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us + f(x)z; + mx)z=0 on T x (0,00),
u(x,0) = uo(x), us(x,0) = u1(x) in €,

Z(x, O) = Zo(x) on Fl)

. N 3 9 3 N d
where Lu = —div(AVu) = Zid-:l a_x,»(“ii(x)a_;:j) and ﬁ = Zi,j:l a,;(x)a—;vi.

Liu [29] investigated the following viscoelastic wave equation with an interval time-
varying delay term:

U (x, 1) — Au(x, t) + a(t) /tg(t —8)Au(x,s)ds + aogus(x, t) + ar (x, t— 'C(t)) =0
0

in Q x (0, 00),
u(x,t)=0 on a2 x (0,00),
u(x,0) = uo(x), ur(x,0) =u1(x) in Q,

ut(x,t— r(O)) :fo(x,t - ‘L'(O)) on Q x (0,1’(0)),

where  is a bounded domain R” (n > 2) with a boundary 92 of class C?, o and g are
positive non-increasing functions defined on R*, 4 and a; are real number with a, > 0,
7(£) > 0 represents the time-varying delay. He also proved the general decay rate for the
energy of a weak viscoelastic wave equation with an interval time-varying delay term.

Recently, Li and Chai [30] have investigated the energy decay for a nonlinear wave equa-
tion of variable coefficients with acoustic boundary conditions and a time-varying delay
in the boundary feedback form:

Uy — div(A(x)Vu) +@(u;) =0 in Q x (0,00),
u=0 onTI; x (0,00),

us + f(x)zs + k(x)z=0 on Ty x (0,00),

;TM = h(x)z, + 1 B(ue(x,1)) + poug (%, — 7(£)) =0 on Ty x (0,00),
A

u(x,0) = up(x), uy(x,0) = u1(x) in L,
z(x,0) = zo(x) onTy,
(%t —7(0)) =jo(x, £ —7(0)) onTy x (0,7(0)),

where div X denotes the divergence of the vector field X in the Euclidean metric, A(x) =

(a;j(x)) are symmetric and positive definite metrics for all x € R” and a;;(x) are smooth

u n u T 3
Gy = Zi,j:l @iy Vio where v = (v1,19,...,v,)" denotes the outward unit

normal vector of the boundary and v + A = Ap.

functions on R”

Motivated by previous work, in this paper, we study the energy decay rate of the nonlin-
ear viscoelastic problem with a time-varying delay in the boundary conditions. Previously
many authors have considered the uniform decay of solutions for a nonlinear viscoelastic
wave equations with boundary dissipations. However, to our knowledge, there is no en-
ergy decay result of the nonlinear viscoelastic problem with a the dynamic, time-varying
delay and acoustic boundary conditions. Thus this work is significant. The outline of the
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paper is the following. In Section 2, we give some notation and hypotheses for our result.

In Section 3, we prove our main result.

2 Preliminary

In this section, we present some material that we shall use in order to present our results.
We denote by (,v) = fQ u(x)v(x) dx the scalar product in L*(2). We denote by | - ll; the
L1(Q) norm for 1 <g <ooand | - ||,r, for LI(I";). We introduce by

V= {ueHl(Q);u=Oon Fo}

the closed subspace of H!(R2) equipped with the norm equivalent to the usual norm in
HY(R2). The Poincaré inequality holds in V, i.e., there exists a constant C, such that

VueV, lul,<CilVul, 2<p=p, (2.1)
where
W) ifn>3
i) — n-2 "’ -
0, ifn=1,2,

and there exists a constant C, > 0 such that
lullr, < CllVul, VueV. (2.2)

For studying the problem (1.1)-(1.7) we will need the following assumptions:

(H1) The kernel function g: R* — R* is a bounded C! function satisfying
oo
g(0)>0, 80— ||a||oo/ g(s)ds:=1>0, (2.3)
0

and there exists a non-increasing C! positive differentiable function ¢ : R* — R* sat-
isfying

@) < -t ()g@), L L(s)ds =00, Vt=>0. (2.4)

(H2) a:Q — R is a nonnegative function and @ € C(2) such that

a(x) > ag >0, (2.5)

|Va@)|? < a?lal?, (2.6)

for some positive constant a;, b:  — R is a nonnegative functions and b € C'(Q)
such that b(x) > by > 0.

(H3) Similarly to [31] k; : R — R is a nondecreasing C! function such that there exist
&1, C1,Cy > 0 and a convex, increasing function Kj : R* — R*, of the class C}*(R*) N
C?(R") satisfying K1 (0) = 0, K is linear (or (K7(0) = 0) and K{' > 0 on [0, &1]) such that

Cils| < |ki(s)| < Cals|  forall |s| > ey, (2.7)
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s+ kf(s) < Kl_l(skl (s)) for all |s| < &1, (2.8)

ka2 : R — R is an odd nondecreasing C! function such that there exist Cs, Cy, C5 > 0,

K5 (s)] < Cs, (2.9)
Cysko(s) < Ky(s) < Cssky(s) forseR, (2.10)
where

Ky(s) = /s ko(r) dr.
0

(H4) For the time-varying delay, we assume as in [22] that T € W2°°([0, T]) for T > 0 and
there exist positive constants 7y, t; such that

O<to<t(t) <1, VE>O0. (2.11)
Moreover, we assume that there exists d > 0 such that
T'(t)<d<1 fort>0, (2.12)

and that p1, o satisfy

—d
ol < 21 )WL (2.13)

S C(1-Cud

(H5) The functions f,m, h > 0 are essentially bounded such that f(x), m(x), h(x) > 0. Fur-
thermore, there exist positive constants fy, mo and % such that

fx) > fo, m(x) > my, h(x) > hg forallae xeTly.

Remark 2.1 By the mean value theorem for integrals and the monotonicity of k;, we find
that

Ky(s) = /OS ko (r) dr < sky(s).
Then from (2.10), we obtain Cy < 1.
For studying problem (1.1)-(1.7), we introduce a new variable z as in [22],
z(x, p, t) = u,(x,t - ,O'L'(t)), xel,pe(0,1),t>0. (2.14)
Then problem (1.1)-(1.7) is equivalent to

Uy — SoAu + ftg(t —-5) div(a(x)Vu(s)) ds + (81 + b(x)‘ut(t)|m72)ut(t)
0

= ulP2u  in Q x (0,00), (2.15)
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u=0 onTy x (0,00), (2.16)

Uy + 80§—l: —/ g(t—5)(a(x)Vuls)) - vds + wiky (ue(x, 0)) + poko(2(x, 1, 2))
0

= h(x)y, onTy x (0,00), (2.17)
ur +f(x)y: + mx)y=0 onT' x (0,00), (2.18)
t()ze(x, p, 1) + (1= pT'(8))2, (%, 0,8) =0 on T x (0,1) x (0,00), (2.19)
2(%,0,8) = u,(x,£) on Ty x (0,00), (2.20)
u(x,0) = up(x),  w(x,0)=u1(x) in<Q, (2.21)
¥(x,0) = yo(x) onThy, (2.22)
z(x, 0,0) = jo(x,—p7(0)) onT x (0,7(0)). (2.23)

Now we are in a position to state the local existence result of problem (2.15)-(2.23) which

can be established by combining with the argument of [15, 32].

Theorem 2.1 Assume that (H1)-(H5) hold. Then given (ug,u,) € V x L2(Q), yo € L*(I';)
and jo € L*(T'1 x (0,1)), there exist T > 0 and a unique weak solution (u,y,z) of problem
(2.15)-(2.23) such that

ueCO,T;V),  u eC(0,T;L* () NL* I x (0,1)),

W2y eL*(0, T; LX), W'y, € L*(0, T;L*()).

3 Global existence and asymptotic behavior
In order to study the global existence of solution for problem (2.15)-(2.23) given by The-

orem 2.1, we define the functions

J(t) = %(80 - a(x)/0 g(s) ds) || Vu(zf)”2 + %(g o Vu)(t)

1
_énu(t)”§+ % /F m(x)h(x)y2(t)dF+EtT(t) fr /0 Ka(zlr 0, 0)) dpdl’ (3.1)
and

1(t) = <80 - a(x)/(; g(s) ds) ||Vu(t) ||2 +(go Vu)(t)

— a5 + /m (t)dr +&x(¢ /n/ K> (z(x, p,t)) dpdT, (3.2)

where (go Vu)(t) = [, fotg(t —8)|Vu(t) — Vu(s)|? ds dx. Adopting the proof of [33], we still

have the following results.
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Lemma 3.1 Forany u € C1(0,; H(R)), we have

/‘a(x)/tg(t—s)Vu(s)Vut(t) dsdx
Q 0

1

1
-3 /Qa(x)g(,:)’vM(t)|2 dx + E(g' o Vu)(t)

1d

_Eg[govu)(t)_/ga(x)/o g(s)ds|Vu(t)|2dxi|. (3.3)

We define the modified energy functional E(¢) associated with problem (2.15)-(2.23) by

E(t) = lHut(t) H2 + 1 8o —a(x) tg(s) ds ”Vu(t) ”2 + l(go Vu)(t)
2 2 ) 2

1 , 1 ) 1340 !

- = - h ar + —— K ,0,8))dpdl’
]y [ O dr + / | | kaletwp.0)dn »
1

+ 2w,

1 2 1 2
@l 10+ 2ol

where £ is a positive constant such that

|M2|(1_C4)SSSM1_|M2|C5.

Ci(1-d) Cs 3.5)

Lemma 3.2 Let (u,,z) be the solution of (2.15)-(2.23). Then the energy functional defined
by (3.4) is a non-increasing function and for all t > 0, we have

d
B0 < —(m IG5 - %) /F 0T

_ [%(1 - ‘L'/(t)) —|u2l(1 = C4)] /F z(x, 1, )k (z(x, 1, t)) dar

_ﬁ h(x)f (x)y* () dT + %(g’ o Vu)(t)

- Se® | Vu@)|” - & Ju(e)|” - bo )],

<o0. (3.6)

Proof Multiplyingin (2.15) by u,, integrating over €2, using Green’s formula and exploiting
the conditions (2.16) and (2.17), we have

d

1 2 1 2 1 1 2
31O+ Gl w0l + S0l |- [ o oar

=- f / tg(t—s)(a(x)Vu(s))Vut(t)dsdx— / (81 + b)) | 0| dix
QJ0o Q

- m/ k1 (ut(t))ut(t) dr — Mz/ kg(z(x, 1, t))ut(t) dar. (3.7)
I I'1
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On the other hand, from (2.18), we see that

= | hx)y()u(e) dl = /F h(x)f (x)y; (£) dT + /r h(x)m(x)y(t)y(t) dT". (3.8)

I

We also multiply the equation in (2.19) by £k, (z(x, p, t)) and integrate over I'; x (0, 1) to
obtain

(1)
2

1
[ / z(x, p, ko (2(x, p, £)) dp dT
r,Jo

EL (i m
-2 /F | /0 (1= 0) - Kaletw,p, ) dp T (3.9)

and it follows that

d (§(t) !
E( 12 /F1A Kg(z(x,p,t))d,odr‘)

£ Lo :
:_E/rl/o %[(l—pr () K> (2(x, p, 1)) dp dl’

5[ (Ko(ew,0,0) - Ko (e 1, 0)) dT + S
2 Jn 2

(&) | Ka(z(x,1,0))dr. (3.10)
'
Thus from (3.7), (3.8), (3.10) and using (2.10) and (3.3), we deduce

m——)/r key (24(£)) 1 (£) AT + |t A ky (z(x, 1, 8) ) uy(£) dT

_ %(1 - t'(t)) /;1 Kz(z(x, 1, t)) dar - /1"1 h(x)f (x)y? () dT

+ %(g’ o Vu)(t) - %g(t)/ﬂa(x)’Vu(t)‘zdx

- / (81 + b)) |, @) | dx. (3.11)
Q

Let us denote by K the conjugate of the convex function K5, i.e.,

K (s) = sup (st - Kz(t)),

teRt

then
st < K5(s) + Kx(t), Vs, t>0. (3.12)
Moreover, K; is the Legendre transform of K, (thanks to the argument given in [34])
K3 (s) = s(K3) " (s) - Ka ((K3) (s)), Vs =o. (3.13)
Then from the definition of K3 and (3.13), we get

K3 (s) = s(ka) ™ (s) = K2 ((k2)7'(5)), Vs =0. (3.14)



Lee and Park Boundary Value Problems (2018) 2018:1 Page 9 of 26

Let us recall the following relations (Eq. (3.7) in [35]) derived from (3.14):

|M2|,/[‘ kZ(Z(x,l’t))ut(t)dF

< |ua| A (k2 (z(x, 1, t))z(x, 1,t) - K, (z(x, 1, t)) + Ky (ut(t))) dar, (3.15)

K3 (k2 (z(x, 1, t))) =z(x,1, )k, (z(x, 1, t)) -K, (z(x, 1, t))

< (1-Ca)zx, 1,0k (2(x, 1,1)). (3.16)

Using (3.11), (3.15) and (3.16), we obtain

d C
EE(t) < —(M1 - 575) /Fl k1(u¢(t))ut(t) dr

+lpal | [Ka(u®) + K (ka(2(x, 1,8))) | dT

I

1
_ %(1 - f’(t)) /1:1 I(2(Z(x, 1, t)) dr — /1“1 h(x)f(x)yf(t) dar + 3 (g’ o Vu)(t)

_%g(t) /Q a(®)|Vu(t)| dx - /Q (81 + b)) |, 0| dx.

Also using (2.10), (2.19), (3.16), this estimate becomes

%E(t) < —<M1 = 12| Cs — %) /1‘1 ke (4(£)) 1 (£) AT

_ %(1 - T/(t)) /F1 z(x, 1, t)ka(x, 1,2) dT

+1u2l(1-Cy) | z(x, 1,0k (2(x,1,8)) dT
'y

_ /r hx)f ()y2() dT + %(g' S0

—%g(t) /Q a(®)|Vu(t)| dx - fﬂ (81 + b (D)) |ue(8) | .

Consequently, using (3.5), estimate (3.6) follows. Thus the proof of Lemma 3.2 is com-
plete. d

Lemma 3.3 Let (u,y,z) be the solution of (2.15)-(2.23). Assume that 1(0) > 0 and

(r-2)/2
y = C{f( 1 (pzf 2)15(0)) <1, (3.17)

then I(t) > 0 for all t > 0.
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Proof Since 1(0) > 0, by continuity of u(f) there exists T, < T such that I(¢) > 0 for all
t € [0, T,]. From (3.1), (3.2)

=25 o [ 2, (oo
6= [(80 a(x) /0 () ds) |Va@®)|” + (g o Vi) (0)
1
+ /;1 m(x)h(x)y* () dT + & (t) -/1“1 /0 Ky(z(x, p, 1)) dp dFi| + ;I(t)
P2 [(50 —a(x) / t g(s) ds) [Vu@)| + (g o Va)()
2p 0
1
+ | h(x)m(x)y*(t)dT + Ex(¢) / / Ky(z(x, p, 1)) dp dFi|.
I r;Jo
Hence from (2.3), (2.10) and the fact that (g o Vu)(£) > 0, V£ > 0, we can deduce
1
2 2
l||Vu(t) || + /;1 h(x)m(x)y“(£) dT" + & (t) /1“1/0 Kz(z(x,p,t)) dpdl’
< (50 —a(x)/ g(s) ds) ”Vu(t) H2 +/ h(x)m(x)y*(t) dT’
0 I

1
+$r(t)/r / Ky (z(x, p, 1)) dp dT
140

2p

<Ly, vielo,T.), (3.18)
it follows that
[vud)|’ < 2 g0 <2 p5y< P _E0), vieloT.) (3.19)
“lp-2) “lp-2) “lp-2) ’ S ’

Thus from (2.1), (3.17) and (3.19), we arrive at

Ju)|? = cz|vuo| < cz|vuto || vuto|*

22 (3.20)

)
5Cf(z(pl-92)E(0)> |Va@)|* < | Vut)|’, veelo,Ty).

Hence ||u(t)||§ < C||Vu(t)||?, ¥t € [0, T.), which implies that I(¢) > 0, V € [0, T.). Note that

2 r=2

2p N 2p Z
Cf(l(p_z)E(T*)) §Cf(l(p_2)E(0)) <1.

We repeat the procedure with T, extended to T 0

Theorem 3.1 Let (u,y,z) be the solutions of problem (2.15)-(2.23). Suppose that (3.17)
holds and 1(0) > 0, then the solution (u,y,z) is a global time.

Proof 1t suffices to show that

1
|uc)|” + | Vu@)|” + &2 () /r /0 Ks(2(x, p,0)) dpdT + [ h(x)m(x)y*(£) dT

I
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is bounded independent of t. Under the hypotheses in Theorem 3.1, we see from
Lemma 3.3 that I(¢) > 0 on [0, T']. Using Lemma 3.2, from (3.18) it follows that

1 2 p—2 2 1
5||ut(t)|| +$<l||Vu(t)|| +§r(t)/r1/0 I(z(z(x,p,t))dpdl"
h *(t)dl
[ e )

=

|une)|” +7(0) + % |u(®)]}, = E@) < E©).

N =

Thus, there exists a constant C > 0 depending p and [ such that

1
Hut(t) ”2 + HVu(t) ”2 + ér(t)f / K, (z(x, 0, t)) dpdl + f h(x)m(x)y*(t) dT
r;Jo I
< CE(0) < +00.
Thus the proof of Theorem 3.1 is finished. d

4 General energy decay rate

In this section, we shall investigate the asymptotic behavior of the energy function E(t).
For this purpose we construct a Lyapunov function £(¢) equivalent to E(£), which we can
show to lead to the desired result. First, we define some functional and establish several
lemmas. Let

L(t) = ME(t) + eW(t) + O(t) + e A(2), (4.1)

where M and ¢ are positive constants to be chosen later and

W(t) = /Qut(t)u(t)a.’x+/r h(x)u(t)y(t)dl“+%/ h(x)f(x)yz(t)dr

r
+ / u(t)u,(t)dr, (4.2)
r
d(t) = — /Q a(x)ut(t)/o gt - s)(u(t) - u(s)) dsdx
- / a(x)u(t) /tg(t - s)(u(t) — u(s)) dsdrl, (4.3)
I 0
and

1
AW =1(t) f / e " K, (z(x, p, t)) dp dr. (4.4)
r, Jo

The functional L(¢) is equivalent to the energy function E(¢) by the following lemma.

Lemma 4.1 For ¢ > 0 small enough while M is large enough, there exist two positive con-
stants By and By such that

BiE(t) < L(t) < B2E(t), Vt=0. (4.5)
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Proof From Holder’s and Young’s inequality, (2.1), (2.2) and (4.2)-(4.4) we have

1 >
‘\I/(t)| < /Qu(t)ut(t)dx + /1‘1 h(x)u()y(t)dr| + /Fl h(x)f (x)y (t)dFl
t dar
+ /F1 u(t)u;(t) ‘
1 C?
< Lo+ S vutol
/ / 1/2 1/2
+ _”h”tl>02”m”<l>02 (f h(x)m(x)yz(t) dF) ( {u(t)|2dl—‘>
mo Iy Iy

1 1 &
1 R O e kOl

=

1 C? hllo 0
S @[+ S [ vu@] + Pl / 1 h(x)m(x)y*(¢) dT

2
2my

C? 1 llso 1 2
+ |Vu)|” + Zlf—mo /F 1 h(x)m(x)y*(t) dT + 5 ue®) ||§1 + |Vu)|

1 c?
= Sl + (7* ; 7*) [Vu(o)|?

. <|Lf||oo . ||h||oo||m||oo> / Hm()y? () dT + 1||ut(t)||§ , (4.6)
I 2 !

2my 2m;

|d>(t)| < —/Qa(x)ut(t)/o g(t—s)(u(t)—u(s))dsdx

+

_ / a0 f gt - ) (u(®) - u(s) dsdl“‘
I 0

<~ u®|’

t 2
+ %L(a(x)ut(t)/o g(t—s)(u(t)—u(s)) ds) dx

N | =

t 2
+ %”ut(t) H?l + %‘/Fl (a(x)ut(t)/o g(t—s)(u(t) - u(s)) ds) dar

[t t 1
N [ gt [ [ttt asas 2o,

Jal [* t :
A= [eas [ [ ate-olu-uef asar

1 1 8o —1 -
<5l s glm 17, + ER (e o vie, (47)
where we used

8o — IIalloo/ g(s)ds=1>0
0
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and

|A@)| =

// e PO, (2(x, p,t)) dp dT
I
§Cr(t)/r /0 Ky(z(x, p, 1)) dp dT, (4.8)

where C is a positive constant. Combining (4.1) and (4.6)-(4.8), then we arrive at

10~ ME®)] = 5 + D] @] + 5 (C2 + E)|Vut)|

+( 5 l)(C2 C2)(go Vu)(t)

A Ul e § R CL

0

1 1
+ole+ N[0 ||§1 +eCt(t) /n/o Ks(2(x, p,t)) dp dT

< CE(t),

where C is a positive constant. Choosing M > 0 large, we complete the proof of
Lemma 4.1. g

Lemma 4.2 Let (u,y,z) be the solution of (2.15)-(2.23). Then the functional V defined in
(4.2) satisfies

d 5
RO (1 " ﬁ) e 2)]?

8 y 1
|2 -6Cn = nC (1 + py + pal) = —— (1 +1)(So - 1)?
2 280

Ibllon™C™ [ 2p 5 )
- (ip757@) ~ Jivuc

1 1
o (1) 6o Dig o V0 + [uO ] + o),

m

bl e
Do) - [ reomte@yar
I

170l oo llf Nl oo
+ 7g /F ) i) ar
M1 |12l 2
+477 r S (t))dr+ﬂ rlkz(z(x,l,t))dr‘. 49

Proof Taking the derivatives of W(¢) defined in (4.2) and using (2.15)-(2.18) we have

d _ 2 2
S w)= /Q (O)ua(0) dx + /r ) r s /Q lue0) dx + /F ) ar

h®)u,()y()dl + [ hx)u(t)y(6)dT + | h(x)f (x)y(£)y.(£) dT

I ' '
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= —80/ |Vu(t)|2dx+/ Vu(t)/tg(t—s)(a(x)Vu(s)) dsdx
Q Q 0
—81/ u(t)ut(t)dx—/ b(x)|ut(t)|m_2ut(t)u(t)dx
Q Q

'3 2 2
+/Q|u(t)| dx+/g|ut(t)| dx+/rl luy(0)|>dr

h©)u(t)y () dT - | h(x)m(x)y*(t) dT

' I

—m/ kl(ut(t))u(t)df‘—,uZ/ kz(z(x,l,t))u(t)df‘. (4.10)
I rp

Now, by using Holder’s and Young’s inequality, (H1), (2.1) and (2.2) we estimate the right
hand side of (2.10) as follows, for any 7 > 0:

‘fVu(t g(t—s5)(alx)Vuls)) dsdx

s 1
R R RO
2}3( )(50 D)(g o Vu)(b), (4.11)
‘-31 f u(t)us(t) dx| < 59 C2|| Vu(@)|? (4.12)
Q
‘— / b(@) | ()" e (8)ult) dx
Q
16lloc™ (20 L m 1 i "
< m” % (l(p 2)E(O)) \\u(t)||m+||b||oom7n’ Yeu®)|,  (413)
~ h(x)f (x)u(£)y:(2) ’
A h(x)u(t)yt(t)dl"‘—Z /F N dr
< 2| vuto ]« P | A HOT, @1
/kl(ut(x,t))u(t)dr <u1nC2||Vu(t)|| + 77/ k2(ut(t)) (4.15)
Iy
and
sz kg(z(x,l,t))u(t)dF‘§|,u2|né'f||Vu 2 '“2|f x,1,0)dl.  (4.16)
Iy

Thus from (4.10)-(4.16) we conclude that

d 8
T < (1+ ﬁ)”ut(t)”z

5 5 1
- [30 =81C2n = nC2 (1 + 1 + |pal) — —(1 +1)(80 — 1)

Ublecn™C2 [ 2p 5
) o
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v (14 1) 6o - DG o V@) + [u®)| + 0|

280 n 0 p t r

b olm =1 m/m-1 .
+ (1]l 00 ( m Hut(t)”m

m
h o0 o0

—/ h(x)m(x)yz(t)dF+M/ h(x)f(x)y?(t)d[‘

I 'Zf() It

J7e 2 |M2|/ 2
+ — ki (us(2)) dT + —— k5 (z(x,1,¢)) dT.

i H(w0) dr + < . 2 ( )

Thus we finished the proof of Lemma 4.2. d

Lemma 4.3 Let (u,y,z) be the solution of problem (2.15)-(2.23). Then the functional ®(t)
defined in (4.3) satisfies

d t
pradl 5—(&0/0 g(S)ds—Sm—n) e ®)|?

2pE(0) \**
. n[ag + 8202 + 22(8 — ) + 28 - ) + C20D (Ki——(z))> ] [vu)|?

8o -1
+[ (; (1+2C2 +8n + [lallco + 2]l allocC?
n

2 2 2
+ 11llallooCy + [p2lllall oo C2 + llall o Cy)
m=2

(aO—Z)mlc:"( 2 E(O))z](govm(t)

I(p-2)
gOlalloe o oy s, N L 2
- (C?+C?) (g o Vuu)(0) (ao /o gls)ds n)!!ut(t)llrl

20" [1blloo
+

e [ R(u0)dr + sl [ Ret1,0)dr
I r

1

s Ml P20 . (4.17)
SooJr

Proof Taking the derivative of ®(¢) defined in (4.3) and using (2.15)-(2.18), we have

%Cb(t) = —/Qa(x)utt(t)ﬂtg(t—s)(u(t) —uls)) dsdx

_/ a(x)ut(t)/tg’(t—s)(u(t)—u(s)) dsdx

Q 0

- t d 2)d.
<f0 g(s) S)/Qa(x)ut(t) x

—/ a(x)un(t)/tg(t—s)(u(t)—u(s)) dsdx (4.18)
I 0

_/ a(x)u(t) /tg/(t —5) (u(t) - u(s)) dsdx
I 0

- ( / tg(s)ds) / a(x)u; () dT
0 I
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- / Soa(®)Vult) / gt - 9)(Valt) - Vuls)) ds dx
Q 0

+ /Q SoVul(t) - Va(x)/o gt —5)(u(t) — uls)) dsdx

_ / (/tg(t —8)a(x)Vu(s) - Va(x) ds) (/tg(t - s)(u(t) - u(s)) ds) dx
e \Jo 0
- / a(x)</lg(t —8)a(x)Vu(s) ds) </tg(t - S)(Vu(t) - Vu(s)) ds> dx
Q 0 0
+ / a(x) (8 + b(x)|ut(t)|m72)ut(t) ([ gt —5) (u(t) — uls)) ds) dx
Q 0
/ x)|u(t | o u(t) (/ g(t—s)(u(t) - u(s)) ds) dx
/ a x)ut(t)/ g - s) u(t) — u(s)) dsdx
Q
( g(s) ds> x)u (t) dx

+

\,

A a(x)[ ik (e (0)) + paka (2(x, 1,8)) = h(x)y.(8)]

x( gt - s u(t) - u(s)) )dI‘

/a(x)ut(t)(/ (t - S)(u(t) u(s)) )
I

( g(s) ds> xX)u; 2(£)dr. (4.19)

Similarly to (4.9), we estimate each terms in the right hand side of (4.19). Using Holder’s
and Young’s inequality, (H1), (H2), (2.1), (2.2), (2.3), (2.5), (2.6) and (3.19), for any 5 > 0,

we have

’ / Soa(x)Vu(t) /tg(t - s)(Vu(t) - Vu(s)) dsdx

2
<82n||Vu(t)|| +—/(a(x)/ gt- s) Vu(t) - Vu(s)) )

l(g o Vu)(t), (4.20)

< 8(2)77 ||Vu(t)|| + Z;
‘ / SoVu(t) - Va(x) /tg(t —s)(u(t) - u(s)) dsdx

12 , pt 172
< 80011/ |Vu(t)|\/a(x </ (s) ds) (/ g(t—S)(u(t) - u(s))2d8> dx
0

< 82aln| Vu@)|? + (B~ Z)C N (go Vu (4.21)

’ - ( | gl =)@ Vuls) - Va ds) ( / ot = 9)(u®) - u(s)) ds) s
Q 0 0
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¢ 2
Safn/gzaz(x)(/(; g(t—s)|Vu(s)|ds> dx
t 2
+$/;Zﬂ(x)(/0 g(t—S)(u(t)—u(s))ds> dx

G - Z)C )(g Vu)(t) (4.22)

’ - / a(x) </tg(t —8)a(x)Vu(s) ds) (/tg(t - s)(Vu(t) - Vu(s)) ds) dx
Q 0 0
t 2
57]/ az(x)(/ g(t—s)|Vu(s)|ds> dx
2
+ —/ a’(x) </ (t - s) Vu(t) - Vu(s)) ds> dx

@l

<2298 - | Vu@)|? + (mfn(ao -D+

< 2n(80 - 1*|| Vu(e)|* + (Zn + )(50 1)(g o Vau)( (4.23)

’ /Qa(x) (61 + b(x) |ut(t)|m_2)ut(t) (/0 gt - s)(u(t) - u(s)) ds) dx

<&

alx)u,(t) ftg(t — 8)(u(t) — uls)) dsdx
Q 0

a(@)b()|u (0| / &t —5)(ult) — uls)) dsdx
Q 0

8o —1 xC?
< s + %@ Vi) +

-1 m
—— [[blloon” 7 ()],

+ﬂ||b||w(5o_1)m-1c;"/ / &t —5)| V() = Vuls)|*| Vault) - Vauls) " ds dx
m QJo

(8o — DllallC?
4n

-1 m
O+ b o)l + |

+2—||b||oo<ao Iy 1C’"(l(pz‘” 5 (0))2](gow) (4.24)

’ —/ a(x)|u(t) |p_2u(t)/ g(t—s)(u(t) - u(s)) dsdx
Q 0

(50 ~ DllallcC2
Do+ gy €0 VO

< nfu

-2
<ncze(ZED) pvup» o= Dlel=C

’ —/ a(x)ut(t)/tg’(t—s)(u(t) - u(s)) dsdx
Q 0

(g o Vu)(t) (4.25)

g00)llallC?

p (¢ o Vu)(®), (4.26)

<nfuo)|’ -

U1 /n a(x)k, (ut(t)) </0 g(t- s)(u(t) - u(s)) ds> dx

2
< i /r K (u(0) T + W(g Vi) (o), (4.27)
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o / a(x)ks (z(x, 1, t)) (/tg(t —5) (u(t) - u(s)) ds) dx
I 0

+ |M2|(50 _42”61“00C>% (g ° vu)(t), (4-28)

< qulnf k3 (z(x,1,£)) dT
'

‘— [ o) [ gte-9)(ute) - uts) dsa
I 0

(80 = D) [lall o C?

N7l o /l: h(x)f(x)y?(t)dr + T*(goVu)(t), (4.29)

0

’ - / a(x)u(t) </tg/(t - S)(u(t) - u(s)) ds) dl")
I 0

_ 2Ol C2
4n

=

<nfu®]r, (¢ o V) ®). (4.30)

Combining the estimates (4.20)-(4.30), then (4.19) becomes
I

d t
“ a0 E—(ﬂo fo g(S)ds—81n—n) a0

Ly 2PE0) \'
. n[ag + 8207 + 20 (80 — 1) + 26 — ) + C20D (l;—_z)) ] [va)|?

So—1
+[ (142G + 81+ o + 2lalC2

+u1llalloC? + 2l llallC? + llall o C?)

20" 1llso et (2P &2
P2 i (2 E0) e v
— ‘%(Cﬁ +C2) (g o Vu)(t) - (ao /Otg(s) ds - n) [ (2) ||§1

4n

can [ Ru@)dr +lualn [ K(ats 1,0)dr
I r

1
Nlhlls
Jo

Lemma 4.4 Let (u,y,z) be the solution of problem (2.15)-(2.23). Then the functional A(t)
defined in (4.4) satisfies

+

/r h(x)f(x)y%(t) dr. 0

SN =-pA0)+ Cs [ ki) dr

Iy

~ Cy(1-d)e™® / ko(z(x,1,8))z(x, 1,) dT". (4.31)

r
Proof Multiplying (2.19) by e "k, (z(x, p, t)) and integrating over I'; x (0, 1), we obtain

1
w@ [ 7 [ atoprta(ets ) dpdr
r 0

1
=— /F /o (1—pt/(t))e_pr(t)%l(g(z(x, p,t))dpdr. (4.32)
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Differentiating (4.4) with respect to ¢t and using (4.32), we get

d 1
E(f(t) /F 1 /0 e " VK, (z(x, p, t)) d,odF)

1
=7'(®)(1-1(2)) /rl-/(; e"”(t)%l(z(z(x,p, 1) dpdr
' pT(t) d
- - pt'(t))e ™ — ,0,8))dpdr. )
/FI/O (1-pt'®)e 55 feleln e t))dpdl (4.33)

Then, by integration by parts and using (2.12), (4.33) lead to

%A(t) <—(1-pT'@)+7'@)At) + / [K2(2(x,0,2)) — e " PKy (2(x, 1,£)) | AT
Iy

+7'(0)e™® / Ky(z(x,1,8)) dT
rp

=—pAt) + fr K> (2(x,0,8)) dT + (d - 1)e™™? fr Ky (z(x, 1,¢)) dT.

Using (2.10), then (4.31) holds. O
Now we are in a position to state our main result.

Theorem 4.1 Assume that (H1)-(H5) and (3.5) hold. Then, for each ty > 0, there exist
positive constants 6, 01, 0, and &g such that the solution energy of (2.15)-(2.23) satisfies

t
E(t) <607t <01 / C(s)ds + 02) fort >t
to

where

|
o) :/t ons) %

and

01(0) = t if Kj is linear on [0, £1],
ST K (e0t)  ifK(0) = 0 and KU/ (£) > 0 on (0, &1].

Proof Since the function g(t) is positive, there exists £ > 0 such that

t to
/ g(s)ds = / gls)ds:=gy fort>t,.
0 0

Using (3.6), (4.9), (4.17) and (4.31), we arrive at

d C
%ﬁ(t) = —M(,U«l = ualCs ~ %) /1"1 ky (ut(t))ut(t) dr

_M[%(l —7'(1)) = |l (1 - C4)] / ky(2(x,1,))z(x,1,8) dT
'
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~M | h(x)f(x)y> () dr + —(g o Vu)(t) — —g(t) [Vu(z) ||

Iy

M| )] = boM 0] + 8(1 . j_;) @)

8 1
—8[2 = 81CIn = nCH(L+ pr + [ pal) - g(l +1)(80 — 1)

1bllsen™C™ ([ 2p "7 )
B o)

( ><50 ~ g o V(@) + e [u@) | + e [0,

28

, EllPlloolm — 1) et ue)| /h(x)M(x)y (t)dr
m

n % ]l:l h(x)f(x)y%(t) dar + IZ—:: . k%(ut(t)) ar

|2 le
+
4n

/F K2 (2, 1,) T — (a0go — 811 — ) e ®) |

p-2
+ n[52 + 822 + 2% (80 — )? + 2(80 — )* + cfﬁv-l)(f—_((;))) } [Vu(e) ||2

8o—1
+[(Z J(142C2+ 89 + lallo + 20alC?
n

+ pllalloCl + lialllallooC2 + lalleo C?)

20" bllso et (2P i

= nCP(C+ E2) (g 0 Vu)(0) — (aogo — ) | D),

+m/r (ut(t))dmmmfr 2 (2, 1, ) dT

nllhlloo

/ h(x)f (x)y*(t) dl"—epA(t)+sC5/ kl(ut(t))ut(t)dr

'

~eCy(1—-d)e™® / ko(2(x,1,8))z(x, 1,£) dT
't

—|:51M—8<1 + 8—1) +aogo — 181+ 1) ]”ut(t)n
4n

- [% +nCAPD(C2 4 Cﬁ):| (¢ o Vu)(t) + | u(t) ”i

B _allhlloollflloo_nllhlloo> P 2() T
< . (x)f (x)y; (£)

nfo Jo
h(x)m(x)y*(t) dT’
I'1
2
—{Mg(t)w[——&@n nC2(1+ 1 + |pal) - W

m=2

Iblecn™Cr ( 2p RS
T om (l(p—Z)E(O))]
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)
- n[ag b 5202 + 203(80 — D7 4 280 — I + C20°D (%)F ] } [vu|?

1 So—1
N [i(l + —)(50 D+ Q0 )(1 +2C% + 80+ ||l oo + 2]l 00 C2
280 n 4n

+ puillallooC? + |2l lallooC? + llalloC?)

m=2

oL A VAN &
P2 W, C(z(p 2 (o>> ](goVu)(t)

bl "
- (oo = D) )] - angs == 0], — e (0
—[M( |u2|c5—%)—ecs} [ oy ar

I

+ m(% + n) /r K2 (uy(£)) T

{ [524 (1-7(8) = [pal(1 - C4)i| +8Cy(1 —d)e‘f(f)}

X f ko (z(x, 1, t))z(x, 1,t)dI’
Iy

+ |M2|<—n + 77) /Fl k5 (z(x,1,¢)) dT

At this point, we choose ¢ > 0 small enough and we pick 7 > 0 sufficiently small and M

is so large such that

1)
M, =81M—e<1+4—1> +aggo—1n(61+1)>0,
n

M .
M=+ nC2P=2(C? + C%) >0,

Elllloollflloo— nlI72]loo

Mz =M - >0,
nfy Jo
aoM
My == =g(t)

(1+n)(8 - 1)*

do 2 2
— =-5C:n—nC:(1 -
+8[2 1Con = nC(1+ pa + | al) 250

+||b||oon-mc::4< 2 ()>’”22]
m p-2)

2pE(0) \~
—n[8§+6§ + 207 (80 ~ 1)’ +2(30—l)2+C£(P—1)(l(1; (2))> }

>0,

€|[blloo(m — 1)
m

Ms = boM — nt >0,
Me =aogo—n—-¢>0,

£Cs
My =M| u1 - |M2|C5—T -£C5>0.
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Therefore, for all £ > £, we deduce
d
T L) <= u(0) I” = Ma(g o Vas)(2)
~Ms | h@x)f @)y dl —e | hx)m(x)y*(t) dT

I I

= M| Vul)|* - Msue0) |, - M (@) [, - ep 20
£ 2
- M, /Fl ke (1(8)) e (£) AT + (E + n) /1‘1 k3 (u:(2)) dT

_M8/ kg(z(x, l,t))z(x, 1,8)dT + || <:_77 + 77) /; k%(z(x, 1, t)) dar
Iy 1
+ Mo(g o Vu)(t),

where

Ms=M [5—2@‘(1 =7'(0) = lu2l(1 - cu] +eCa(l=d)e™ >0,

1 8o —1
Mo == (14 )60+ © =D (11262 + 8y 4l + 200l C
280 n 477

+ pllallooCs + |palllallooC? + llalloC?)

m=2

2 bl ;s 20\
2 i (2520

>0,

which implies that
d & 9
d—ﬁ(t) < —MioE(t) + My1(go Vu)(t) + 1| — + 1 ki (ut(t)) dar
t 4n I

+ qul(% + n)/ k3 (z(x,1,t)) dT,
I

where My and M;; are some positive constants.
Multiplying the above inequality by ¢ (£), we obtain, for any ¢ > £,

c (L' (£) < —~M1ot (DE(E) + M11£(£)(g o Vau)(2) + m(% + n);(t) fr k3 (1)) dT

3
+ |M2|(4— + n)é(t) k3 (z(x,1,8)) dT".
n I
From (2.9), we obtain
k%(s) <csky(s) forallseR,

where ¢ is some positive constant. Recalling (2.4) and (3.6), we get for any ¢t >

C(OL' () < =MoL (DE®) + Mg (8) | kg (ue(2)) dT — MysE'(2). (4.34)
I



Lee and Park Boundary Value Problems (2018) 2018:1 Page 23 of 26

Now, we define
G(t) = £ () L(t) + My3E(2).

As ¢ is a non-increasing positive function, by using Lemma 4.1, the function G(t) is equiv-
alent to E(¢). Using the fact that ¢'(¢) <0, (4.34) implies that

G'(t) < =My (HE®) + Muc(t)/F ki (ue()) AT for t > to. (4.35)

In the following, we shall estimate the term fl“l k2(u,(t)) dT in (4.35). To do this, let ';; =
xel:lul>er}, Tn={xel:|ul <e&).

Case (I): Ky is linear on [0, &1].

There exist positive constants C; and C; such that

Cils| < !kl(s)‘ < Cls| forseR.
This and (4.35) yield

G'(t) < —Mio¢ (DE(t) - Mi3E'(t)  for t > to,
where M3 is a positive constant. This gives

(G +M135(t))/ < —Mio¢ ()E(t) fort > to.

Employing that G is equivalent to E, we get

ds

t
E(t) < Ceiv'/fo £ for t > t,

where C and v are positive constants. Owing to K (s) = </sk1 (/) = cs,
oy t
E(t) < Ce "o t0% =K </ Z(s) ds> for t > t,.
to

Case (II): K{(0) = 0 and K}'(t) > 0 on [0, &1].
Since K; is convex and increasing, K;! is concave and increasing. By (2.7), (2.8), (3.6)

and the reversed Jensen inequality

{(t)/ kf (ut(t)) dr = ¢(¢) kf(ut(t)) dar + {(t)/ kf (ut(t)) dar
I 12

'

< G (0) /F w0k (1(0)) T + £ /r K7 (ko () dT

<-usE'(t) + ;(t)lruuql( utkl(ut)dr)

[T12]

2

<-usE'(t) + L (O)IT 12l KTH (—paE (1)),
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where 13 and 4 are positive constants. Thus, we get from (4.35)
Gy (£) < =M1o¢ (DE(2) + [T12lM1a (KT (—paE (1)),
where G1(t) = G(t) + usM2E(t). Now, for 0 < gy < €1 and u > 0, we define
H(t) = K{( E ))Gl(t) + WE®), Vt>t. (4.36)
YE(0)
It is easily noted that
yiH(t) < E(t) < yoH(2), (4.37)

where y1, y; are positive constant. Thanks to the similar argument in (3.13) and (3.12), we
have

B[ E® o\ .
Hie)=e E(O)K( "E0 ))Gl“ (E())G() HEG)

< Myt (DE(WK] (80 %)
E®
£0)

+ Mia|T12|C (DK (80 )K_ (—u4E (1)) + WE (2)

< -Mio¢ ()E()K] (%%) + WE' ()

+ M2 |T12|C (DKT {K{ (&)%) } — alT1a|M12g (£)E' ()
E

< Mot (OEOK, (w%) + (1~ Mys)E(0)

+ Mg (K] (%%)80% Miat (DK, (80E(((t)))>

—(M10E(0) —80M14)C(t)%1ﬂ( E(((?)> + (- Mi3)E'(t),

where M3 = |'12|Mi204¢ (0) and Myy = |T'12|Mi,. Taking &g sufficiently small such that
Mi0E(0) — e0M14 > 0 and p > O suitably so that u — Mi3 > 0, we arrive at

, E(t) E(2) E(¢)
H() < M5§(f)% K ( E(O)) 5§(t)OI(E(O)> for t > ¢y, (4.38)

where O (¢) = K] (got) and us is a positive constant. Finally, we define

H(t)

g(t)zl’lm~

Using (4.37), we see that £ is equivalent to E. Therefore,

E'(0) =-610()01(E(t)) for £ > 1,
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for some 6; >0, and
t
Ep <ot (91 f Z(s)ds + 92) for t > to.
to

Thus the proof is completed. O

5 Conclusion
We have investigated the energy decay rate of the nonlinear viscoelastic problem with
dynamic and acoustic boundary conditions.

It is well known that viscoelastic materials have memory effects, which is due to the
mechanical response influenced by the history of the materials themselves. As these ma-
terials have a wide application in the natural sciences, their dynamics is interesting and of
great importance. Also, the dynamic boundary conditions are not only important from the
theoretical point of view but also arise in numerous practical problems and the acoustic
boundary conditions are related to noise control and suppression in practical applications.
Moreover, time delay so often arises in many physical, chemical, biological and economi-
cal phenomena because these phenomena depend not only on the present state but also on
the history of the system in a more complicated way. We established a decay rate estimate
for the energy by introducing suitable Lyapunov functionals.
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