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Abstract
The goal of this paper is two-fold. Firstly, by using the Fourier restriction normmethod
and the fixed point theorem, we prove that the Cauchy problem for a generalized
Ostrovsky equation

∂x

(
ut – β∂3

x u +
1
3
∂x(u

3)
)
– γ u = 0, β > 0,γ > 0,

is locally well-posed in Hs(R) with s≥ 1
4 . Secondly, we prove that the Cauchy problem

for a generalized Ostrovsky equation is not well-posed in Hs(R) with s < 1
4 in the sense

that the solution map is C3.
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1 Introduction
In this paper, we are concerned with the Cauchy problem for a generalized Ostrovsky
equation with positive dispersion,

∂x

(
ut – β∂3

x u +
1
3
∂x

(
u3)

)
– γ u = 0, γ > 0,β ∈ R. (1.1)

Here u(x, t) represents the free surface of the liquid and the parameter γ > 0 measures the
effect of rotation. (1.1) describes the propagation of internal waves of even modes in the
ocean; for instance, see the work of Galkin and Stepanyants [1], Leonov [2], and Shrira [3,
4]. The parameter β determines the type of dispersion, more precisely, when β < 0, (1.1)
denotes the generalized Ostrovsky equation with negative dispersion; when β > 0, (1.1)
denotes the generalized Ostrovsky equation with positive dispersion.

When γ = 0, (1.1) reduces to the modified Korteweg-de Vries equation which has been
investigated by many authors; for instance, see [5–11]. Kenig et al. [9] proved that the
Cauchy problem for the modified KdV equation is locally well-posed in Hs(R) with s ≥ 1

4 .
Kenig et al. [10] proved that the Cauchy problem for the modified KdV equation is ill-
posed in Hs(R) with s < 1

4 . Colliander et al. [6] proved that the Cauchy problem for the
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modified KdV equation is globally well-posed in Hs(R) with s > 1
4 and globally well-posed

in Hs(T) with s ≥ 1
2 . Guo [7] and Kishimoto [11] proved that the modified KdV equation

is globally well-posed in H 1
4 (R) with the aid of the I method and some new spaces.

Now we give a brief review of the Ostrovsky equation,

ut – β∂3
x u +

1
3
∂x

(
u2) – γ ∂–1

x u = 0, γ > 0. (1.2)

Equation (1.2) was proposed by Ostrovsky in [12] as a model for weakly nonlinear long
waves in a rotating liquid, by taking into account the Coriolis force, to describe the prop-
agation of surface waves in the ocean in a rotating frame of reference. The parameter β

determines the type of dispersion, more precisely, β < 0 (negative dispersion) for surface
and internal waves in the ocean or surface waves in a shallow channel with an uneven
bottom and β > 0 (positive dispersion) for capillary waves on the surface of liquid or for
oblique magneto-acoustic waves in plasma [1, 13–15]. Some authors have investigated the
stability of the solitary waves or soliton solutions of (1.2); for instance, see [16–18].

Many people have studied the Cauchy problem for (1.2), for instance, see [17, 19–30].
The result of [23, 25, 31] showed that s = – 3

4 is the critical regularity index for (1.2). Co-
clite and di Ruvo [32, 33] have investigated the convergence of the Ostrovsky equation to
the Ostrovsky-Hunter one and the dispersive and diffusive limits for Ostrovsky-Hunter
type equation. Recently, Li et al. [34] proved that the Cauchy problem for the Ostrovsky
equation with negative dispersion is locally well-posed in H– 3

4 (R).
Levandosky and Liu [16] studied the stability of solitary waves of the generalized Ostro-

vsky equation,

[
ut – βuxxx +

(
f (u)

)
x

]
x = γ u, x ∈ R, (1.3)

where f is a C2 function which is homogeneous of degree p ≥ 2 in the sense that it satisfies
sf ′(s) = pf (s). Levandosky [18] studied the stability of ground state solitary waves of (1.4)
with homogeneous nonlinearities of the form f (u) = c1|u|p + c2|u|p–1u, c1, c2 ∈ R, p ≥ 2.

Equation (1.1) can be written in the following form:

ut – β∂3
x u +

1
3
∂x

(
u3) – γ ∂–1

x u = 0. (1.4)

Let w(x, t) = β– 1
2 u(x,β–1t), then w(x, t) is the solution to

wt – wxxx +
1
3
∂x

(
w3) – γβ–1w = 0.

Without loss of generality, we can assume that β = γ = 1.
Motivated by [35], firstly, by using the Xs,b spaces introduced by [36–40] and developed

in [8, 41, 42] and the Strichartz estimates established in [19, 43], we prove that (1.3) with
initial data

u(x, 0) = u0(x) (1.5)

is locally well-posed in Hs(R) with s ≥ 1
4 , β > 0, γ > 0; secondly, we prove that the problems

(1.3), (1.5) are not quantitatively well-posed in Hs(R) with s < 1
4 , β �= 0, γ > 0. Thus, our

result is sharp.
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We introduce some notations before giving the main result. Throughout this paper, we
assume that C is a positive constant which may vary from line to line and 0 < ε < 10–4.
A ∼ B means that |B| ≤ |A| ≤ 4|B|. A � B means that |A| > 4|B|. ψ(t) is a smooth function
supported in [–1, 2] and equals 1 in [–1, 1]. We assume that F u is the Fourier transforma-
tion of u with respect to both space and time variables and F –1u is the inverse transfor-
mation of u with respect to both space and time variables, while Fxu denotes the Fourier
transformation of u with respect to the space variable and F –1

x u denotes the inverse trans-
formation of u with respect to the space variable. Let I ⊂ R, χI(x) = 1 if x ∈ I ; χI(x) = 0 if x
does not belong to I . Let

〈·〉 = 1 + | · |, φ(ξ ) = ξ 3 +
1
ξ

, σ = τ + φ(ξ ), σj = τj + φ(ξj) (j = 1, 2, 3).

The space Xs,b is defined by

Xs,b =
{

u ∈ S′(R2) : ‖u‖Xs,b =
∥∥〈ξ 〉s〈τ + φ(ξ )

〉b
F u(ξ , τ )

∥∥
L2
τξ (R2) < ∞}

.

The space XT
s,b denotes the restriction of Xs,b onto the finite time interval [–T , T] and is

equipped with the norm

‖u‖XT
s,b

= inf
{‖w‖Xs,b : w ∈ Xs,b, u(t) = w(t) for –T ≤ t ≤ T

}
.

The main results of this paper are as follows.

Theorem 1.1 Let s ≥ 1
4 and β > 0 and γ > 0. Then the problems (1.4), (1.5) are locally well-

posed in Hs(R). More precisely, for u0 ∈ Hs(R), there exist a T > 0 and a unique solution
u ∈ C([–T , T]; Hs(R)).

Remark 1 The result of Theorem 1.1 is optimal in the sense of Theorem 1.2.

Theorem 1.2 Let s < 1
4 and β > 0 and γ > 0. Then the problems (1.4), (1.5) are not well-

posed in Hs(R) in the sense that the solution map is C3.

The rest of the paper is arranged as follows. In Section 2, we give some preliminaries.
In Section 3, we establish a trilinear estimate. In Section 4, we prove Theorem 1.1. In
Section 5, we prove Theorem 1.2.

2 Preliminaries
In this section, we give Lemmas 2.1-2.4.

Lemma 2.1 Let 0 < ε < 1
108 and F (Paf )(ξ ) = χ{|ξ |≥a}(ξ )F f (ξ ) with a ≥ 2 and F (Db

xf )(ξ ) =
|ξ |bF f (ξ ) with b ∈ R. Then we have

‖u‖L6
xt

≤ C‖u‖X0, 1
2 +ε

, (2.1)

∥∥D
1
6
x Pau

∥∥
L6

xt
≤ C‖u‖X0, 1

2 +ε
, (2.2)

‖u‖L4
xt

≤ C‖u‖X0, 3
4 ( 1

2 +ε)
. (2.3)
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For the proof of Lemma 2.1, we refer the reader to (2.27) and (2.21) of [19].

Lemma 2.2 Let φ(ξ ) = ξ 3 + 1
ξ

and

F
(
Is(u, v)

)
(ξ , τ ) =

∫

ξ=ξ1+ξ2
τ=τ1+τ2

∣∣φ′(ξ1) – φ′(ξ2)
∣∣s
F u1(ξ1, τ1)F u2(ξ2, τ2) dξ1 dτ1.

Then we have

∥∥I
1
2 (u1, u2)

∥∥
L2

xt
≤ C

2∏
j=1

‖uj‖X0, 1
2 +ε

. (2.4)

For the proof of Lemma 2.2, we refer the reader to Lemma 2.5 of [43].

Lemma 2.3 Let T ∈ (0, 1) and b ∈ ( 1
2 , 3

2 ). Then, for s ∈ R and θ ∈ [0, 3
2 – b), we have

∥∥ηT (t)S(t)φ
∥∥

Xs,b(R2) ≤ CT
1
2 –b‖φ‖Hs(R),

∥∥∥∥ηT (t)
∫ t

0
S(t – τ )F(τ ) dτ

∥∥∥∥
Xs,b(R2)

≤ CTθ‖F‖Xs,b–1+θ (R2).

For the proof of Lemma 2.3, we refer the reader to [8, 39, 44].

Lemma 2.4 Let aj ∈ R (j = 1, 2, 3) and
∏3

j=1 aj �= 0. Then we have

( 3∑
j=1

aj

)3

+
1∑3

j=1 aj
–

3∑
j=1

(
a3

j +
1
aj

)

= 3(a1 + a2)(a1 + a3)(a2 + a3)
[

1 –
1

3
∏3

j=1 aj(
∑3

j=1 aj)

]
. (2.5)

Proof By using the following two identities:

( 3∑
j=1

aj

)3

–

( 3∑
j=1

a3
j

)
= 3(a1 + a2)(a1 + a3)(a2 + a3),

( 3∑
j=1

aj

)
(a1a2 + a1a3 + a2a3) –

3∏
j=1

aj = (a1 + a2)(a1 + a3)(a2 + a3),
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which can be found in [6], we have

( 3∑
j=1

aj

)3

+
1∑3

j=1 aj
–

3∑
j=1

(
a3

j +
1
aj

)

=

( 3∑
j=1

aj

)3

–
3∑

j=1

a3
j –

[ 3∑
j=1

1
aj

–
1∑3

j=1 aj

]

= 3(a1 + a2)(a1 + a3)(a2 + a3) –
[ (

∑3
j=1 aj)(a1a2 + a1a3 + a2a3) +

∏3
j=1 aj∏3

j=1 aj(
∑3

j=1 aj)

]

= 3(a1 + a2)(a1 + a3)(a2 + a3) –
[

(a1 + a2)(a1 + a3)(a2 + a3)∏3
j=1 aj(

∑3
j=1 aj)

]

= 3(a1 + a2)(a1 + a3)(a2 + a3)
[

1 –
1

3
∏3

j=1 aj(
∑3

j=1 aj)

]
.

Thus, (2.5) is valid.
This ends the proof of Lemma 2.4. �

3 The trilinear estimate
In this section, by using Lemmas 2.1-2.2, we give the proof of Lemma 3.1.

Lemma 3.1 Let uj ∈ Xs, 1
2 +ε with s ≥ 1

4 and j = 1, 2, 3. Then we have

∥∥∥∥∥∂x

( 3∏
j=1

uj

)∥∥∥∥∥
Xs,– 1

2 +2ε

≤ C
3∏

j=1

‖uj‖Xs, 1
2 +ε

. (3.1)

Proof To prove (3.1), by duality, it suffices to prove that

∫

R2
ū(x, t)∂x

( 3∏
j=1

uj

)
dx dt ≤ C

[ 3∏
j=1

‖uj‖Xs, 1
2 +ε

]
‖u‖X–s, 1

2 –2ε
. (3.2)

Let

F(ξ , τ ) = 〈ξ 〉–s〈σ 〉 1
2 –2εF u(ξ , τ ),

Fj(ξj, τj) = 〈ξj〉s〈σj〉 1
2 +εF uj(ξj, τj) (j = 1, 2, 3).

(3.3)

To obtain (3.2), from (3.3), it suffices to prove that

∫

R2

∫

ξ=ξ1+ξ2+ξ3
τ=τ1+τ2+τ3

|ξ |〈ξ 〉sF(ξ , τ )
∏3

j=1 Fj(ξj, τj)

〈σ 〉 1
2 –2ε

∏3
j=1〈ξj〉s〈σj〉 1

2 +ε
dξ1 dτ1 dξ2 dτ2 dξ dτ

≤ C‖F‖L2
ξτ

( 3∏
j=1

‖Fj‖L2
ξτ

)
. (3.4)
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Without loss of generality, by using the symmetry, we assume that |ξ1| ≥ |ξ2| ≥ |ξ3| and
F(ξ , τ ) ≥ 0, Fj(ξj, τj) ≥ 0 (j = 1, 2). We define

�1 =

{
(ξ1, τ1, ξ2, τ2, ξ , τ ) ∈ R6, ξ =

3∑
j=1

ξj, τ =
3∑

j=1

τj, |ξ3| ≤ |ξ2| ≤ |ξ1| ≤ 64

}
,

�2 =

{
(ξ1, τ1, ξ2, τ2, ξ , τ ) ∈ R6, ξ =

3∑
j=1

ξj, τ =
3∑

j=1

τj, |ξ1| ≥ 64, |ξ1| ≥ 4|ξ2|
}

,

�3 =

{
(ξ1, τ1, ξ2, τ2, ξ , τ ) ∈ R6, ξ =

3∑
j=1

ξj, τ =
3∑

j=1

τj, |ξ1| ≥ 64, |ξ1| ∼ |ξ2|, |ξ2| � |ξ3|
}

,

�4 =

{
(ξ1, τ1, ξ2, τ2, ξ , τ ) ∈ R6, ξ =

3∑
j=1

ξj, τ =
3∑

j=1

τj, |ξ1| ≥ 64, |ξ1| ∼ |ξ2| ∼ |ξ3|
}

.

Obviously, {(ξ1, τ1, ξ2, τ2, ξ , τ ) ∈ R6, ξ =
∑3

j=1 ξj, τ =
∑3

j=1 τj, |ξ3| ≤ |ξ2| ≤ |ξ1|} ⊂ ⋃4
j=1 �j. Let

K(ξ1, τ1, ξ2, τ2, ξ , τ ) =
|ξ |〈ξ 〉s

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
(3.5)

and

I =
∫

R2

∫

ξ=
∑3

j=1 ξj

τ=
∑3

j=1 τj

K(ξ1, τ1, ξ2, τ2, ξ , τ )F(ξ , τ )
3∏

j=1

Fj(ξj, τj) dξ1 dτ1 dξ2 dτ2 dξ dτ .

(1) �1. In this subregion, we have

K(ξ1, τ1, ξ2, τ2, ξ , τ ) ≤ C
〈σ 〉 1

2 –2ε
∏3

j=1〈σj〉 1
2 +ε

. (3.6)

By using (3.6) and the Cauchy-Schwartz inequality and the Plancherel identity and the
Hölder inequality as well as (2.1), we have

I ≤ C
∫

R2

∫

ξ=
∑3

j=1 ξj

τ=
∑3

j=1 τj

F(ξ , τ )
∏3

j=1 Fj(ξj, τj)

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
dξ1 dτ1 dξ2 dτ2 dξ dτ

≤ C
∥∥∥∥

F(ξ , τ )
〈σ 〉 1

2 –2ε

∥∥∥∥
L2
ξτ

∥∥∥∥
∫

ξ=
∑3

j=1 ξj

τ=
∑3

j=1 τj

∏3
j=1 Fj(ξj, τj)

∏3
j=1〈σj〉 1

2 +ε
dξ1 dτ1 dξ2 dτ2

∥∥∥∥
L2
ξτ

≤ C‖F‖L2
ξτ

( 3∏
j=1

∥∥∥∥F –1
(

Fj

〈σj〉 1
2 +ε

)∥∥∥∥
L6

xt

)

≤ C‖F‖L2
ξτ

( 3∏
j=1

‖Fj‖L2
ξτ

)
.
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(2) �2. In this subregion, since |φ′(ξ1) –φ′(ξ2)| = 3|ξ 2
1 – ξ 2

2 ||1 + 1
3ξ2

1 ξ2
2
| ≥ 3|ξ 2

1 – ξ 2
2 | ≥ C|ξ |2

and |ξ | ∼ |ξ1|, we have

K(ξ1, τ1, ξ2, τ2, ξ , τ ) ≤ C|ξ |
〈σ 〉 1

2 –2ε
∏3

j=1〈σj〉 1
2 +ε

≤ C
C|ξ 2

1 – ξ 2
2 | 1

2 |1 + 1
3ξ2

1 ξ2
2
| 1

2

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
=

C|φ′(ξ1) – φ′(ξ2)| 1
2

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
. (3.7)

By using (3.7) and the Cauchy-Schwartz inequality and the Plancherel identity and the
Hölder inequality as well as (2.3)-(2.4), since 3

4 ( 1
2 + ε) < 1

2 – 2ε, we have

I ≤ C
∫

R2

∫

ξ=
∑3

j=1 ξj

τ=
∑3

j=1 τj

|φ′(ξ1) – φ′(ξ2)| 1
2 F(ξ , τ )

∏3
j=1 Fj(ξj, τj)

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
dξ1 dτ1 dξ2 dτ2 dξ dτ

≤ C
∥∥∥∥F –1

(
F

〈σ 〉 1
2 –2ε

)∥∥∥∥
L4

xt

∥∥∥∥I
1
2

(
F –1

(
F1

〈σ1〉 1
2 +ε

)
,F –1

(
F1

〈σ2〉 1
2 +ε

))∥∥∥∥
L2

xt

×
∥∥∥∥F –1

(
F3

〈σ3〉 1
2 +ε

)∥∥∥∥
L4

xt

≤ C‖F‖L2
ξτ

( 3∏
j=1

‖Fj‖L2
ξτ

)
.

(3) �3. In this subregion, since |φ′(ξ2)–φ′(ξ3)| = 3|ξ 2
2 –ξ 2

3 ||1+ 1
3ξ2

2 ξ2
3
| ≥ 3|ξ 2

2 –ξ 2
3 | ≥ C|ξ1|2,

we have

K(ξ1, τ1, ξ2, τ2, ξ , τ ) ≤ C|ξ1|
〈σ 〉 1

2 –2ε
∏3

j=1〈σj〉 1
2 +ε

≤ CC
C|ξ 2

2 – ξ 2
3 | 1

2 |1 + 1
3ξ2

2 ξ2
3
| 1

2

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
≤ C|φ′(ξ2) – φ′(ξ3)| 1

2

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
. (3.8)

By using (3.8) and the Cauchy-Schwartz inequality and the Plancherel identity and the
Hölder inequality as well as (2.3)-(2.4), since 3

4 ( 1
2 + ε) < 1

2 – 2ε, we have

I ≤ C
∫

R2

∫

ξ=
∑3

j=1 ξj

τ=
∑3

j=1 τj

|φ′(ξ2) – φ′(ξ3)| 1
2 F(ξ , τ )

∏3
j=1 Fj(ξj, τj)

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
dξ1 dτ1 dξ2 dτ2 dξ dτ

≤ C
∥∥∥∥F –1

(
F

〈σ 〉 1
2 –2ε

)∥∥∥∥
L4

xt

∥∥∥∥I
1
2

(
F –1

(
F2

〈σ2〉 1
2 +ε

)
,F –1

(
F3

〈σ3〉 1
2 +ε

))∥∥∥∥
L2

xt

×
∥∥∥∥F –1

(
F1

〈σ1〉 1
2 +ε

)∥∥∥∥
L4

xt

≤ C‖F‖L2
ξτ

( 3∏
j=1

‖Fj‖L2
ξτ

)
.



Wang and Wang Boundary Value Problems  (2017) 2017:186 Page 8 of 12

(4) �4. In this subregion, since s ≥ 1
4 and |ξ1| ∼ |ξ2| ∼ |ξ3|, we have

K(ξ1, τ1, ξ2, τ2, ξ , τ ) ≤ C|ξ1|1–2s

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
≤ C

∏3
j=1 |ξj| 1

6

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
. (3.9)

By using (3.9) and the Cauchy-Schwartz inequality and the Plancherel identity and the
Hölder inequality as well as (2.2), since 3

4 ( 1
2 + ε) < 1

2 – 2ε, we have

I ≤ C
∫

R2

∫

ξ=
∑3

j=1 ξj

τ=
∑3

j=1 τj

F(ξ , τ )
∏3

j=1 |ξj| 1
6 Fj(ξj, τj)

〈σ 〉 1
2 –2ε

∏3
j=1〈σj〉 1

2 +ε
dξ1 dτ1 dξ2 dτ2 dξ dτ

≤ C
∥∥∥∥

F
〈σ 〉 1

2 –2ε

∥∥∥∥
L2
ξτ

( 3∏
j=1

∥∥∥∥D
1
6
x P2F –1

(
Fj

〈σj〉 1
2 +ε

)∥∥∥∥
L6

xt

)

≤ C‖F‖L2
ξτ

( 3∏
j=1

‖Fj‖L2
ξτ

)
.

This completes the proof of Lemma 3.1. �

4 Proof of Theorem 1.1
In this section, we use Lemmas 2.3, 3.1 to prove Theorem 1.1.

The solution to (1.3), (1.5) can be formally rewritten as follows:

u(t) = e–t(–∂3
x –∂–1

x )u0 +
1
3

∫ t

0
e–(t–s)(–∂3

x –∂–1
x )∂x

(
u3)ds. (4.1)

We define

�(u) = ψ(t)e–t(–∂3
x –∂–1

x )u0 +
1
3
ψ

(
t
T

)∫ t

0
e–(t–s)(–∂3

x –∂–1
x )∂x

(
u3)ds. (4.2)

By taking advantaging of Lemmas 2.3, 3.1, we derive that

∥∥�(u)
∥∥

Xs, 1
2 +ε

≤ C‖u0‖Hs(R) + C
∥∥∥∥ψ

(
t
T

)∫ t

0
e–(t–s)(–∂3

x –∂–1
x )∂x

(
u3)ds

∥∥∥∥
Xs, 1

2 +ε

≤ C‖u0‖Hs(R) + CTε
∥∥∂x

(
u3)ds

∥∥
Xs,– 1

2 +2ε

≤ C‖u0‖Hs(R) + CTε‖u‖3
Xs, 1

2 +ε
. (4.3)

We define B = {u ∈ Xs, 1
2 +ε : ‖u‖Xs, 1

2 +ε
≤ 2C‖u0‖Hs(R)}. By using (4.3), by choosing T suffi-

ciently small such that 24C3Tε‖u0‖2
Hs < 1, we have

∥∥�(u)
∥∥

Xs, 1
2 +ε

≤ C‖u0‖Hs(R) + CTε
(
2C‖u0‖Hs(R)

)3 ≤ 2C‖u0‖Hs(R), (4.4)
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thus, �(u) is a mapping on B. By using a proof similar to (4.4), by choosing T sufficiently
small such that 24C3Tε‖u0‖2

Hs < 1, we obtain

∥∥�(u1) – �(u2)
∥∥

Xs, 1
2 +ε

≤ CTε
[‖u1‖2

Xs, 1
2 +ε

+ ‖u1‖Xs, 1
2 +ε

‖u2‖Xs, 1
2 +ε

+ ‖u2‖2
Xs, 1

2 +ε

]‖u1 – u2‖Xs, 1
2 +ε

≤ 1
2
‖u1 – u2‖Xs, 1

2 +ε
, (4.5)

thus, �(u) is a contraction mapping on the closed ball B. Consequently, � have a fixed
point u and the Cauchy problem for (1.1) possesses a local solution on [–T , T]. The
uniqueness of the solution is obvious.

This completes the proof of Theorem 1.1.

5 Proof of Theorem 1.2
In this section, inspired by [5, 35, 45], we present the proof of Theorem 1.2. We will prove
Theorem 1.2 by contradiction.

We assume that the solution map of (1.4), (1.5) is C3 in Hs(R) with s < 1
4 . Then, from

Theorem 3 of [35], we have

sup
t∈[0,T]

∥∥B3(u0)
∥∥

Hs ≤ C‖u0‖3
Hs (5.1)

for u0 ∈ Hs(R). Here

B1(u0) = e–t(–∂3
x –∂–1

x )u0, (5.2)

B3(u0) =
1
3

∫ t

0
e–(t–τ )(–∂3

x –∂–1
x )∂x

((
B1(u0)

)3)dτ . (5.3)

We consider the initial data

u0(x) = r– 1
2 N–s

{
eiNx

∫ r

0
eixξ dξ + e–iNx

∫ 2r

r
eixξ dξ

}
, r2N = O(1), N ≥ 2. (5.4)

By using a direct computation, we have

Fxu0(ξ ) = Cr– 1
2 N–s{χ[–N ,–N+r](ξ ) + χ[N+r,N+2r](ξ )

}
.

Here χI denotes the characteristic function of a set I ⊂ R. Obviously,

‖u0‖Hs(R) ∼ 1. (5.5)

We define I1 := [–N , –N + r] and I2 := [N + r, N + 2r] and �1 := I1 ∪ I2. By using a direct
computation, we have

FxB1u0(ξ ) = Ceitφ(ξ )Fxu0(ξ ). (5.6)
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Combining (5.6) with the definition of B3(u0), we have

B3(u0)(x, t) = Cg. (5.7)

Here

g = Cr– 3
2 N–3s

∫

ξ1∈�1

∫

ξ2∈�1

∫

ξ3∈�1

( 3∑
j=1

ξj

)
eix

∑3
j=1 ξj H(ξ1, ξ2, ξ3) dξ1 dξ2 dξ3, (5.8)

where

H(ξ1, ξ2, ξ3) =
eit(φ(ξ1)+φ(ξ2)+φ(ξ3)) – eitφ(

∑3
j=1 ξj)

φ(ξ1) + φ(ξ2) + φ(ξ3) – φ(
∑3

j=1 ξj)
. (5.9)

We define

θ1 := φ(ξ1) + φ(ξ2) + φ(ξ3) – φ

( 3∑
j=1

ξj

)
. (5.10)

From Lemma 2.4, we have

θ1 = –3
[
(ξ1 + ξ2)(ξ1 + ξ3)(ξ2 + ξ3)

][
1 –

1
3
∏3

j=1 ξj(
∑3

j=1 ξj)

]
. (5.11)

To estimate ‖g‖Hs(R), we need to consider the following three cases:

Case 1: ξj ∈ I1 (j = 1, 2, 3),

Case 2: ξj ∈ I1 (j = 1, 2, 3),

Case 3: ξj ∈ I1 (j = 1, 2), ξ3 ∈ I2 or ξ1 ∈ I1, ξj ∈ I2 (j = 2, 3)

or ξj ∈ I2 (j = 1, 2), ξ3 ∈ I1 or ξ1 ∈ I2, ξj ∈ I1 (j = 2, 3).

We assume that ‖g‖Hs(R) corresponding to cases 1, 2, 3 are denoted by L1, L2, L3, respec-
tively.

Case 1. In this case, we have |θ1| ∼ N3 and |ξ1 + ξ2 + ξ3| ∼ N . Since r2N = O(1), we have

L1 ≤ Cr– 3
2 N–3sNsr

5
2 N–2 ≤ CN–2s– 5

2 . (5.12)

Case 2. In this case, we have |θ1| ∼ N3 and |ξ1 + ξ2 + ξ3| ∼ N . Since r2N = O(1), we have

L2 ≤ Cr– 3
2 N–3sNsr

5
2 N–2 ≤ CN–2s– 5

2 . (5.13)

Case 3. In this case, we have |θ1| ∼ r2N and |ξ1 + ξ2 + ξ3| ∼ N as well as H ≤ |t|. Since
r2N = O(1), we have

L3 ≥ C|t|r– 3
2 N–3sNsr

5
2 N ≥ C|t|N–2s+ 1

2 . (5.14)
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Combining (5.1), (5.5) with (5.12)-(5.14), we have

|t|N–2s+ 1
2 ≤ L3 – L1 – L2 ≤ sup

t∈[0,T]

∥∥B3(u0)
∥∥

Hs ≤ C‖u0‖3
Hs ∼ C. (5.15)

For fixed t > 0, when s < 1
4 , let N −→ ∞, we have |t|N–2s+ 1

2 −→ +∞, and this contradicts
(5.15).

This ends the proof of Theorem 1.2.
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