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Abstract
We study a two-dimensional boundary value problem described by a tensorial
equation in a bounded domain. Once its more general definition is given, we
conclude that its analysis is linked to the resolution of an overdetermined hyperbolic
problem and hence present some discussions and considerations. Secondly, for a
simplified version of the original formulation, which leads to a degenerate problem
on a rectangle, we prove the existence and uniqueness of a solution under proper
assumptions on the data.
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1 Introduction, motivation, and structure of the paper
It is well known that the Dirichlet problem associated to a hyperbolic equation is often
employed as an example of an ill posed problem in the theory of hyperbolic partial dif-
ferential equations (see [1]). Nevertheless, a wide range of real problems arising in nature
(gas dynamics, torsion theory of shells with alternating sign curvature, mechanical behav-
iors of bending structures, etc.) are in fact mathematically described through hyperbolic
equations; thereafter, a deserving undertaking is developing a casuistry for which such
problems are, indeed, well posed.

In this sense, the subject matter of this investigation is the existence and uniqueness of
a solution to a tensorial boundary value problem whose analysis requires the study of a
hyperbolic equation. Precisely, the corresponding formulation models the equilibrium of
membrane structures used in civil engineering applications. It is worth underlining that
these equilibrium equations are not new, but linked to those dealing with shell structures
(see the fundamental monograph [2] and also [3])a and are given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σxx,x + σxy,y = 0 in �,

σxy,x + σyy,y = 0 in �,

z,xxσxx + 2z,xyσxy + z,yyσyy = 0 in �,

boundary conditions on � = ∂�.

(1)

In system (1), z = z(x, y) is a regular function defined in a bounded domain � ⊂ R
2 with

piecewise smooth boundary � = ∂�, and its graph represents the shape of the shell; simi-
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larly,

σ = σ (x, y) =

(
σxx(x, y) σxy(x, y)
σyx(x, y) σyy(x, y)

)

is a symmetric second-order stress tensor, which determines the state (compression or
tension) of the same shell.

The main difference between the equilibrium approach for shell structures and that for
membrane ones are discussed, for instance, in [4–6] and references therein. Even though
this paper goes beyond the technical and physical aspects addressed in the previous three
references, it must be specified that, from the mathematical point of view, although on the
one hand no assumption on the function z nor the tensor σ appearing in system (1) is re-
quired for the analysis of the equilibrium of shell structures, on the other hand considering
membrane elements implies the following restrictions:

(H1) the graph of z represents an almost everywhere (a.e.) negative Gaussian curvature
(alternating sign curvature) surface,b that is,

z,xxz,yy – z2
,xy < 0 a.e. in �̄;

(H2) the tensor σ is almost everywhere positive definite,c that is,

σxxξ
2
1 + 2σxyξ1ξ2 + σyyξ

2
2 > 0 ∀(ξ1, ξ2) �= (0, 0) and a.e. in �̄.

In other words, any pair (z,σ ) satisfying system (1) models the equilibrium of a shell whose
shape has not necessarily a constant sign curvature and has very general stress state (com-
pression, tension, or both). Of course, for a given z with a.e. positive Gaussian curvature,
an a.e. negative, a.e. positive, or alternating sign definite σ balancing z might be derived;
nevertheless, no one of these cases would represent the equilibrium of a membrane struc-
ture. Indeed, a balanced pair (z,σ ) for a fixed z with a.e. negative Gaussian curvature and
a.e. negative, a.e. positive, or alternating sign definite σ idealizes the equilibrium of a mem-
brane structure in only one case.

Coming back to the framework of the equilibrium for membrane structures (which, as
already commented, justifies this investigation), the discussion presented before naturally
allows us to define two complementary approaches resulting from system (1):

(HP) a problem of hyperbolic type where the tensor σ is the unknown: given a function z
with a.e. negative Gaussian curvature, find an a.e. positive definite tensor σ fulfilling
(1);

(EP) a problem of elliptic type where the function z is the unknown: given an a.e. posi-
tive definite tensor σ satisfying the first two PDEs of (1), find a function z with a.e.
negative Gaussian curvature fulfilling (1).

In this work, we mainly consider problem (HP): furthermore, due to the high comple-
mentarity between (HP) and (EP), we might make mention to this latter approach, for
which partial results are available in the literature.

The remaining structure of the paper is drawn as follows. In Section 2, we formulate
the so-called General Problem associated with (HP), which is a very broad (tensorial)
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boundary value problem modeling an optimal mechanical scenario appearing in mem-
brane structures. As detailed in [4, 5, 7], the boundary of the domain is split into two
parts; on a portion, mechanically corresponding to the boundary of the membrane ten-
sioned by rigid elements (which admit any geometrical shape), a Dirichlet boundary con-
dition is assumed, whereas on the remaining part, associated with the complementary
boundary of the membrane tensioned by cables (which can be neither straight lines nor
changing curvature curves), an unusual boundary relation is given. We discuss the main
mathematical properties of this formulation, also in terms of other well-known results,
and we conclude that this is an overdetermined, generally ill-posed, problem, for which
the part of the domain with the singular boundary condition (free boundary) plays the
role of a further unknown. In addition, Section 3 deals with the analytical resolution of
the Reduced Problem, a simplified version of the General Problem, linked to a more re-
strictive physical situation, where the membrane is only tensioned by rigid elements: we
examine a specific case in a rectangle, for which the resulting Dirichlet boundary prob-
lem admits an explicit unique solution. Specifically, once a polynomial for the function z
is fixed in such a way that its graph identifies a surface with a.e. negative Gaussian curva-
ture, by manipulating the tensorial expressions of the problem the main equation reads
cy2(n–1)σyy,xx – σyy,yy = 0 in (0, a) × (–b, 0) with some a, b, c > 0 and n an integer greater
than 1, exactly degenerating for y = 0. Connected to the last partial differential equation
(PDE), the question of well posedness of boundary value problems for linear second-order
PDEs of the form ψ(y)u,xx – u,yy = 0, where ψ is a sufficiently regular function with spe-
cific properties, has been studied in several works: contributions as [8–11] (and references
therein) include discussions concerning the notorious special case of the mixed elliptic-
hyperbolic Tricomi equation, obtained for ψ(y) = y, and provide a general comprehensive
picture of the whole analysis. Also in line with these works, we cite paper [12], employed in
this present investigation to prove the main result asserted in Theorem 3.1 of Section 3.2
and, in particular, to construct the claimed explicit solution σ to system (1). Finally, to
mathematically point out the different physical behaviors between shells and membranes,
in Section 3.3, we also solve the same Reduced Problem presented in Section 3.1 but in
the case where no restriction on the sign of σ is required (Theorem 3.2); besides (in Sec-
tion 3.4), we give a graphical representation of the derived solutions corresponding to the
two mechanical situations. The closing Section 4 provides some final considerations.

2 The general problem
The following section includes some necessary tools used to our main purposes.

2.1 Definition of the domain and the boundary data
To formulate the General Problem associated with system (1), we need to properly define
its domain and boundary data. The items below address these questions and are graphi-
cally represented in the left side of Figure 1.

Assumptions 2.1 We consider a function z = z(x, y) with a.e. negative Gaussian curva-
ture in �̄, in the sense of (H1), � being a bounded subset of R2 with piecewise smooth
boundary ∂�, obtained by the union of two portions, � = ∂� = �r ∪ �c, and having the
following properties:d
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Figure 1 The General Problem. (Left) Representation of the domain and the boundary data. (Right) The
Reduced Problem. Representation of the characteristic curves for the equation (–y)2(n–1)U,XX – U,yy = 0 in the
rectangle (0, 1)× (–b, 0).

(i) �c is represented by a regular curve in R
2 with no vanishing curvature whose

parameterization is given by γ (t) = (x(t), y(t)), t ∈ [t0, t1], and obtained by solving
the ordinary differential equation

z,xx
(
x′)2 + 2z,xyx′y′ + z,yy

(
y′)2 = 0. (2)

(ii) �r is arbitrarily fixed but such that �r ∩ �c = {P0, P1}, where P0 = γ (t0) and
P1 = γ (t1).

(iii) n is the outward unit vector to �.
(iv) fr = (f r

1 , f r
2 ) and fc = (f c

1 , f c
2 ) are two regular vectorial fields, per unit length, defined

on �r and �c, respectively; in addition, the continuity conditions fr(P0) = fc(P0) and
fr(P1) = fc(P1) have to be satisfied.

2.2 Mathematical formulation of the general problem
Let us now describe the details of the General Problem we are interested in.

General Problem 1 Under the hypothesis of Assumptions 2.1, find a symmetric and a.e.
positive definite second-order tensor σ = σ (x, y) in �̄ and a real function g defined in �c

such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx,x + σxy,y = 0 in �, (3a)

σxy,x + σyy,y = 0 in �, (3b)

z,xxσxx + 2z,xyσxy + z,yyσyy = 0 in �̄, (3c)

σ · n = fr on �r , (3d)

σ · n = fc on �c, (3e)

and

⎧
⎪⎪⎨

⎪⎪⎩

(gx′)′ = f c
1 on �c (t ∈ [t0, t1]),

(gy′)′ = f c
2 on �c (t ∈ [t0, t1]),

g(t0) = g0,

(4)

where g0 is a given real number.
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2.3 Analysis and discussion of the general problem
Since the vectorial field fc has to satisfy both expressions (3e) and (4), it cannot be uniquely
and arbitrarily assigned (see Counterexample 1). Essentially, this singularity is tied to the
fact that the unknowns σ and g are coupled through fc and that, even more, they are
especially linked to the domain �c; subsequently, the General Problem 1 represents an
overdetermined system that commonly admits no solutions.

Moreover, so far we did not manage to derive a nontrivial analytical solution to the
same problem; indeed, the question how to fix (z,σ ,γ , fc, fr , g, g0) such that all relations
(2), (1), and (4) hold seems rather challenging. In line with this, the case where z is a
linear function has no mathematical interest (and even less physical), since relation (3c)
is automatically satisfied and, in addition, any γ (t) = (x(t), y(t)) is compatible with con-
dition (2); hence the problem merely loses its intrinsic nature. The same mathematical
and physical reasons make that functions behaving as z(x, y) = α2x2 – β2y2 with α,β ∈ R0

do not lead to stimulating issues, since (2) would infer straight lines parameterized as
γ (t) = (t,∓(α/β)t + constant) for �c, and essentially the General Problem would ‘degener-
ate’ to the forthcoming Reduced Problem (see p. 6).

Returning to overdetermined boundary value problems, there exists a large amount of
literature dealing with the subject; in general, these problems are prescribed by a classical
partial differential equation where both Dirichlet and Neumann boundary conditions are
imposed on the boundary of the domain. Some meriting questions about the analysis are
the proof of the existence of solutions, possibly uniqueness, and the study of their prop-
erties. The main characteristic of the overdetermined problems is that such an overde-
termination makes the domain itself unknown (free boundary problems), or in general it
cannot be arbitrarily assigned, resulting solvability only in precise domains; beyond the
landmark result by Serrin [13], we refer also to [14–17] for contributions regarding both
elliptic and hyperbolic equations.

Remark 1 As to the specific problem we are focusing on here, let us quote that the el-
liptic version of the General Problem 1, herein indicated with (EP) and briefly defined
in Section 1, represents the well-known form-finding problem of tensegrity structures.
In line with this, there is a large literature concerning the analysis and the design of self-
supporting membrane structures, and they are essentially based on appropriate discrete
numerical methods (see, for instance, [18–20] and references therein).

On the other hand, as far as the continuous approach of problem (EP) is concerned,
this has been deeply discussed by one of the authors of this paper in recent investigations.
We mention that the complete formulation of problem (EP) corresponds to a boundary
value problem, in the unknown z, described by an elliptic differential equation in �. The
portion �c of � is indeed constructed by means of σ (which in this case is fixed) and fc.
Finally, the whole � is endowed with Dirichlet boundary conditions, but, in accordance
to overdetermined problems, on �c another relation involving z,y and replacing expres-
sion (2) has to be satisfied as well. The technical aspects for the construction of �c and
the definition of the complete boundary value problem are available in [21] and [7]; in
particular, as for the General Problem, the questions of the existence and derivation of an
explicit solution are still open. Conversely, in the last two aforementioned contributions
an equivalent number of numerical procedures exactly tied to free boundary approaches
are proposed and employed as resolution methods.
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Counter example 1 (Ill posedness of the General Problem) Let us fix z(x, y) = –A2x4 +
6B2y2 (with A, B ∈R0). By equation (2) we can choose as �c the curve γ (t) = (t, At2/(2B)),
t ∈ [t0, t1]. In addition, σxx = 1, σxy = σyx = 0, and σyy = A2x2/B2 is a symmetric and positive
definite tensor a.e. in R

2 that solves equations (3a), (3b), and (3c). As to the expression of
fc, since n = (–At/B, 1)/‖γ ′(t)‖, relation (3e) infers fc = (–At/B, A2t2/B2) on �c; thereafter
from the first and last conditions of (4) we arrive at g(t) = –At2/(2B) + g0 + At2

0/(2B), which,
in view of the second relation of (4), leads to the incongruence –3A2t2/(2B2) + g0A/B +
A2t2

0/(2B2) = A2t2/B2 for all t ∈ [t0, t1].

3 The reduced problem
3.1 Mathematical formulation of the reduced problem
Let us now introduce the Reduced Problem; essentially, its definition corresponds to set-
ting �c = ∅ in Assumptions 2.1. Therefore, �c, fc, and g do not take part in the formulation,
and, subsequently, we have � = �r = ∂�; moreover, for convenience, we avoid the super-
script r for fr , and we directly consider f as a given vectorial field, per unit length, on
� = ∂�.

Reduced Problem 1 Under the hypothesis of Assumptions 2.1, let us set �c = ∅. Find a
symmetric and a.e. positive definite second-order tensor σ = σ (x, y) in �̄ such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σxx,x + σxy,y = 0 in �, (5a)

σxy,x + σyy,y = 0 in �, (5b)

z,xxσxx + 2z,xyσxy + z,yyσyy = 0 in �̄, (5c)

σ · n = f on �. (5d)

In the rest of this section, we show the existence and uniqueness of a solution to the Re-
duced Problem 1 defined in a rectangle.

3.2 A case of explicit resolution in a rectangle
For any a, c1 > 0 and n ∈N with n > 1, let us consider the rectangle � = (0, a) × (–b, 0) with
b = n1/n and the function z(x, y) = c1x2 – c2y2n, where c2 = a2c1/(n(2n – 1)), which satisfies
z,xxz,yy –z2

,xy < 0 a.e. in �̄. Differentiating (5a) with respect to x and (5b) to y and subtracting
the results from each other give

σxx,xx – σyy,yy = 0 in �. (6)

On the other hand, in view of the expression of z, relation (5c) infers

σxx =
c2n(2n – 1)

c1
y2(n–1)σyy in �̄. (7)

Hence, (6) and (7) lead to

c2n(2n – 1)
c1

y2(n–1)σyy,xx – σyy,yy = 0 in �, (8)
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which degenerates for y = 0. To endow this equation with the desired Dirichlet conditions
for the unknown σyy, let us treat the vectorial field f on �, and let us write

f =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(γ1(y),γ2(y)) on x = a,

(–γ1(y),γ3(y)) on x = 0,

(θ1(x), θ2(x)) on y = 0,

(θ3(x), –θ2(x)) on y = –b.

In the previous definition, γi(y) and θi(x) (for i = 1, 2, 3) are continuous functions for –b ≤
y ≤ 0 and 0 ≤ x ≤ a, respectively, which will be chosen later on; subsequently, taking n =
(∓1, 0) respectively on x = 0 and x = a and n = (0,∓1) respectively on y = –b and y = 0, the
boundary conditions (5d) read

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σxx(a, y) = σxx(0, y) = γ1(y),

σxy(a, y) = γ2(y) and σxy(0, y) = –γ3(y),

σxy(x, 0) = θ1(x) and σxy(x, –b) = –θ3(x),

σyy(x, 0) = σyy(x, –b) = θ2(x).

(9)

Additionally, if γ1 = γ1(y) is such that the function

γ (y) =
γ1(y)c1

c2n(2n – 1)y2(n–1)

is itself continuous in –b ≤ y ≤ 0, then in light of (7), (8), and (9) we arrive at the boundary
value problem

⎧
⎪⎪⎨

⎪⎪⎩

c2n(2n–1)
c1

y2(n–1)σyy,xx – σyy,yy = 0 in �,

σyy(x, 0) = σyy(x, –b) = θ2(x),

σyy(0, y) = σyy(a, y) = γ (y),

(10)

for which we fix the following proper assumptions:

γ (0) = γ (–b) = θ2(0) = θ2(a) = K ∈R and γ2(0) = H ∈R. (11)

Hence, let us translate the unknown σyy through

u(x, y) = σyy(x, y) –
[
γ (y) + θ2(x) – K

]
, (12)

and successively let us rescale x by the homogeneous dilation mapping (0, 1) onto (0, a)
by x(X) = aX; the new variable U(X, y) = u(aX, y) and data �(X) = θ2(ax) are so obtained.
These two transformations, in conjunction with the relation c2 = a2c1/(n(2n – 1)), reduce
(10) to

⎧
⎪⎪⎨

⎪⎪⎩

y2(n–1)U,XX – U,yy + �′′(X)y2(n–1) – γ ′′(y) = 0 in (0, 1) × (–b, 0),

U(X, 0) = U(X, –b) = 0,

U(0, y) = U(1, y) = 0.

(13)
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Now, let us impose �′′(X)y2(n–1) – γ ′′(y) = 0, that is, �′′(X) = γ ′′(y)/y2(n–1) = λ for some
λ ∈ R. This provides, thanks to the first continuity conditions (11), which for –b ≤ y ≤ 0
and 0 ≤ x ≤ 1 are γ (0) = γ (–b) = �(0) = �(1) = K ,

�(X) =
λ

2
X2 –

λ

2
X + K and γ (y) =

λ

2n(2n – 1)
y2n +

λb2n–1

2n(2n – 1)
y + K ; (14)

as a consequence, problem (13) is equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

(–y)2(n–1)U,XX – U,yy = 0 in (0, 1) × (–b, 0),

U(X, 0) = U(X, –b) = 0,

U(0, y) = U(1, y) = 0.

(15)

According to the theory of second-order linear PDE’s, and since b = n1/n, the characteristic
curves associated with the equation (–y)2(n–1)U,XX – U,yy = 0 and exactly passing through
the vertexes of the rectangle (0, 1) × (–b, 0) are (see the right side of Figure 1)

X =
1
n

(–y)n and 1 – X =
1
n

(–y)n.

Thereafter we can rely on the main statement given in [12] and apply its result to the
boundary value problem (15); hence we conclude that it admits a unique solution in
(0, 1)× (–b, 0) that is continuously differentiable everywhere in its closure, possibly except
along the mentioned characteristics. As to our specific case, in view of the homogeneous
boundary conditions, U(X, y) ≡ 0 (and hence also u(x, y) ≡ 0) is the unique function with
such properties solving problem (15).

Coming back to the tensorial unknown σ in �̄, expression (14) produces through the
relations X = x/a, (12), and (7)

⎧
⎨

⎩

σyy(x, y) = λ

2a2 x2 – λ
2a x + λ

2n(2n–1) y2n + λb2n–1

2n(2n–1) y + K in �̄,

σxx(x, y) = a2y2(n–1)σyy(x, y) in �̄.
(16)

As to σxy = σyx, from (5b) we deduce

σxy(x, y) = –
∫

σyy,y dx = –
2nλy2n–1 + λb2n–1

2n(2n – 1)
x + h(y),

so that imposing (5a), we get

h′(y) =
a
2
λy2(n–1) ⇔ h(y) =

aλy2n–1

2(2n – 1)
+ h0, h0 ∈R.

Now, taking into account the second position in (11) and the boundary conditions (9), the
last two expressions yield

σxy(x, y) = σyx(x, y)

= –
2nλy2n–1 + λb2n–1

2n(2n – 1)
x +

aλy2n–1

2(2n – 1)
+ H +

aλb2n–1

2n(2n – 1)
in �̄. (17)
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Lately, to guarantee the positive definiteness of σ a.e. in �̄ in the sense of (H2), we have
to impose, inter alia, that σxxσyy – (σxy)2 > 0 a.e. in �̄. From (16) and (17) we obtain that
σxx(x, 0) = 0 for x ∈ [0, a], whereas σxy(x, 0) = –λb2n–1x/(2n(2n – 1)) + H + aλb2n–1/(2n(2n –
1)) for x ∈ [0, a]; therefore, without specific assumptions and relations on a, b, n,λ, and
H , generally, σxx(x, 0)σyy(x, 0) – (σxy(x, 0))2 < 0 in [0, a]. Under these conditions, since for
continuity arguments, there would exist a constant ε > 0 such that σxxσyy – (σxy)2 < 0 in
(0, a) × (–ε, 0), in (17) we have to impose H = λ = 0 obtaining σxy(x, y) = σyx(x, y) ≡ 0 in �̄.
In addition, to avoid the nil solution σ ≡ 0, we choose a strictly positive value for K , and
from (16) we explicitly write σyy(x, y) = K and σxx(x, y) = Ka2y2(n–1) in �̄ and also obtain
the following formulas for the functions γi(y) and θi(x) defining the boundary conditions
(9):

γ1(y) = a2Ky2(n–1), θ2(x) = K , θ1(x) = θ3(x) = γ2(y) = γ3(y) = 0.

So we have proved our main result.

Theorem 3.1 Let a, c1 > 0 and n ∈ N with n > 1. Moreover, for b = n1/n and c2 =
a2c1/(n(2n – 1)), the rectangle � = (0, a) × (–b, 0) and the function z(x, y) = c1x2 – c2y2n

are given. Then, for any fixed K > 0 and vectorial field (per unit length) on � = ∂�

f =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a2Ky2(n–1), 0) on x = a,

(–a2Ky2(n–1), 0) on x = 0,

(0, K) on y = 0,

(0, –K) on y = –b,

the symmetric and a.e. positive definite tensor

σ (x, y) =

(
a2Ky2(n–1) 0

0 K

)

in �̄ (18)

is the unique classical solution of the Reduced Problem 1.

3.3 The case of no restriction on the sign definiteness of σ

By retracing the proof of Theorem 3.1 we observe that, behind other technical reasons, the
final expression of the solution σ derived in (18) is deeply tied to the requirement of the
a.e. positivity definiteness of such a tensor; conversely, as announced in the introductory
comments of Section 1, if this restriction is omitted, then for the same function z(x, y) =
c1x2 – c2y2n, the unique solution in �̄ exhibits a more general representation, precisely
given by (16) and (17). Subsequently, we have this further result, which we state without
further comments.

Theorem 3.2 Let a, c1 > 0 and n ∈ N with n > 1. Moreover, for b = n1/n and c2 =
a2c1/(n(2n – 1)), the rectangle � = (0, a) × (–b, 0) and the function z(x, y) = c1x2 – c2y2n
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are given. Then for any fixed H , K ,λ ∈R and vectorial field (per unit length) on � = ∂�

f =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(γ1(y),γ2(y)) on x = a,

(–γ1(y),γ3(y)) on x = 0,

(θ1(x), θ2(x)) on y = 0,

(θ3(x), –θ2(x)) on y = –b,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1(y) = a2y2(n–1)( λ
2n(2n–1) y2n + λb2n–1

2n(2n–1) y + K),

γ2(y) = H + aλ
ny2n–1–b2n–1(n–1)

2n(2n–1) ,

γ3(y) = –H – aλ
b2n–1+y2n–1

2(2n–1) ,

θ1(x) = λb2n–1

2n(2n–1) (an – x) + H ,

θ2(x) = λ

2a2 x2 – λ
2a x + K ,

θ3(x) = – λb2n–1

2n x – H ,

the symmetric tensor

⎧
⎪⎪⎨

⎪⎪⎩

σyy(x, y) = λ

2a2 x2 – λ
2a x + λ

2n(2n–1) y2n + λb2n–1

2n(2n–1) y + K in �̄,

σxx(x, y) = a2y2(n–1)σyy(x, y) in �̄,

σxy(x, y) = σyx(x, y) = λy2n–1

2n–1 ( a
2 – x) + λb2n–1

2n(2n–1) (an – x) + H in �̄

(19)

is the unique classical solution of the Reduced Problem 1.

3.4 Two specific examples: representation of the solution
To give an explicit example to each one of the results claimed in Theorems 3.1 and 3.2,
we analyze Figures 2 and 3. They graphically show the behavior of the tensor σ , which
solves the Reduced Problem 1, once in the hypothesis of such theorems the same surface
z = c1x2 – c2y2n and the rectangle � = (0, a) × (–b, 0) are fixed by means of the values n = 3,
c1 = 4, and a = 5 (the surface and the domain are shown at the top-left corners of Figures 2
and 3).

More precisely, for K = 5 in expression (18), Figure 2 represents the case of the equi-
librium between the stress and shape of a membrane structure. We can realize that the
component σxx is positive a.e. in � and increases as y → –b and constant values of x (see
the below part of the top-right corner of Figure 2); in the limit, it exactly corresponds to a
zone on the membrane with major tension, along the x-direction, with respect to others
(Figure 2, above part, top-right). As to σyy, it is constant and positive in �, so that the cor-
responding tension along the y-direction is uniformly distributed on the surface (see the
lower-left corner of Figure 2); finally, the lower-right corner of Figure 2 highlights the nil
contribution of σyx = 0 in �, that is, the absence of shear stress on the membrane.

Conversely, if in (19) we set λ = 4, K = 0.5, and H = 2, the features of the solution σ

are summarized in Figure 3, which models the balance between the stress and shape for a
shell structure. Relaxing the assumption on the sign definiteness of σ , we obtain not only
positive expressions for the components σxx and σyy on the whole �, but also regions of
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Figure 2 Membrane structure: the case of positive definiteness and graphical representation of the
solution σ . (Top-Left) Graph of the function z in �. (Top-Right) Above: distribution of the component σxx

on the surface z. Below: representation of the component σxx in the rectangle �. (Lower-Left) Above:
distribution of the component σyy on the surface z. Below: representation of the component σyy in the
rectangle �. (Lower-Right) Above: distribution of the component σxy on the surface z. Below:
representation of the component σxy in the rectangle �.

Figure 3 Shell structure: the case of no restriction on the sign definiteness and graphical
representation of the solution σ . (Top-Left) Graph of the function z in �. (Top-Right) Above: distribution
of the component σxx on the surface z. Below: representation of the component σxx in the rectangle �.
(Lower-Left) Above: distribution of the component σyy on the surface z. Below: representation of the
component σyy in the rectangle �. (Lower-Right) Above: distribution of the component σxy on the surface
z. Below: representation of the component σxy in the rectangle �.

the rectangle where they are negative (see the below part of the top-right and lower-left
corner of Figure 3, respectively); this aspect identifies zones of the shell where tensions
or compressions are present along both the x- and y-directions (same corners of Figure 3,
but the above part).

By the above we stress again that the general solution for the tensor σ given by relation
(18) represents a very particular and simplified case of solution (19). Such a leap has not to
appear surprising since, indeed, it is intimately linked to the different natures of the prob-
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lems: in particular, when a membrane is considered, a strong limitation on the state of its
stress tensor that exactly balances its shape is naturally expected and absolutely consistent
with the mechanical problem.

4 Conclusions
This paper is devoted to a two-dimensional boundary value system described by a tenso-
rial equation in a bounded domain. Its more general definition leads to the resolution of
an overdetermined hyperbolic problem, whose analysis is complex and represents a chal-
lenging open question in the field. Indeed, for a simplified version, whose formulation is
given by a degenerate problem on a rectangle, the existence and uniqueness of a solution
under proper assumptions on the data can be proven. Behind its pure mathematical inter-
est, this research is motivated by natural applications to real mechanic problems, linked
to the equilibrium of membrane and shell structures. In this sense, the derived solutions
achieved throughout the paper are totally consistent with the expected results.
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Endnotes
a In this paper the partial derivative of a function f with respect to a certain variable w is indicated with f,w ; similar

symbols concerning higher-order derivatives (double or mixed) are introduced in a natural way.
b With some abuse of language, we also use sentences as z has an a.e. negative Gaussian curvature or z is a function

with a.e. negative Gaussian curvature or similar; in any case, no misunderstanding will be possible from the context.
c Obviously, if σxxξ

2
1 + 2σxyξ1ξ2 + σyyξ

2
2 < 0 ∀(ξ1,ξ2) �= (0, 0) and a.e. in �̄, we say that the tensor σ is almost

everywhere negative definite. We say that the tensor is indefinite (or alternating sign definite) a.e. in �̄ if it is a.e.
negative definite for some values of �̄ and a.e. positive definite for the others.

d Let us remark that, as indicated in the paragraphs of Section 1 dealing with the General Problem, the superscripts r
and c stand for rigid and cable.
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