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Abstract
In this paper, we studied the following fractional Kirchhoff-type equation:

(
a + b

∫

RN

∣∣(–�)
α
2 u

∣∣2 dx
)
(–�)αu + V(x)u = f (x,u), x ∈R

N ,

where a, b are positive constants, α ∈ (0, 1), N ∈ (2α, 4α), (–�)α is the fractional
Laplacian operator, V(x) and f (x,u) are periodic or asymptotically periodic in x. Under
some weaker conditions on the nonlinearity, we obtain the existence of ground state
solutions for the above problem in periodic case and asymptotically periodic case,
respectively. In particular, our results unify both asymptotically cubic and super-cubic
nonlinearities, which are new even for α = 1.
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1 Introduction
In this paper, we studied the following fractional Kirchhoff-type problem:

(
a + b

∫

RN

∣∣(–�)
α
2 u

∣∣2 dx
)

(–�)αu + V (x)u = f (x, u), x ∈ R
N , (1.1)

where α ∈ (0, 1], a, b are positive constants. The fractional Laplacian operator (–�)α is
defined as:

(–�)αu(x) =
1

C(α)

∫

RN

u(x) – u(y)
|x – y|N+2α

dx, x ∈R
N ,

which can be viewed as the infinitesimal generators of a Lévy stable diffusion processes [1].
In order to reduce our statements, we first assume that the potential V and nonlinearity
f satisfy the following basic assumptions:

(V) V ∈ C(RN ) ∩ L∞(RN ) and infRN V (x) > 0;
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(F1) f ∈ C(RN ×R,R) and there exist constants C > 0 and 2 < p < 2∗
α := 2N

N–2α
such that

∣∣f (x, t)
∣∣ ≤ C

(
1 + |t|p–1), ∀(x, t) ∈R

N ×R;

(F2) f (x, t) = o(|t|) as t → 0 uniformly in x ∈R
N ;

(F3) lim|t|→∞
∫ t

0 f (x,s) ds
|t|4+N–4α = ∞ uniformly in x ∈R

N ;
(F4) there exists a constant θ0 ∈ (0, 1) such that for any x ∈R

N , t > 0 and τ 
= 0

[
f (x, τ )

τ 3 –
f (x, tτ )
(tτ )3

]
sign(1 – t) + θ0V (x)

|1 – t2|
(tτ )2 ≥ 0.

In the recent years, fractional and nonlocal operators arise in the description of vari-
ous phenomena in the pure mathematical research and concrete real-world applications,
such as fractional quantum mechanics [2, 3], physics and chemistry [4], obstacle prob-
lems [5], optimization and finance [6], conformal geometry and minimal surfaces [7] and
so on.

If α = 1, Problem (1.1) formally reduces to the well-known Kirchhoff Dirichlet equation:

–
(

a + b
∫

�

|∇u|2 dx
)

�u + V (x)u = f (x, u), x ∈R
N , (1.2)

which is related to the stationary analog of the equations

utt –
(

a + b
∫

�

|∇u|2 dx
)

�u = f (x, u). (1.3)

Equations of this type were first proposed by Kirchhoff [8] to describe the transversal os-
cillations of a stretched string. For more details in physical aspects, we refer the reader to
[7, 9, 10]. Particularly, after Lions [11] introduced an abstract functional analysis frame-
work to (1.2), the Kirchhoff-type problems received increasingly more attention by various
authors. There are many existence and multiplicity results for (1.2), for example, Zhang
and Zhang [12] proved the existence of Nehari-type ground state solutions for asymptot-
ically periodic Kirchhoff-type problem when f satisfies (F1), (F2) and the following con-
ditions:

(F3′) lim|t|→∞
∫ t

0 f (x,s) ds
|t|4 = ∞ uniformly in x ∈ �;

(F4′) f (x,t)
|t|3 is nondecreasing in t on R \ {0} for every x ∈R

N .

For more recent results concerning Kirchhoff-type problems, see e.g. [13–22].
When a = 1 and b = 0, then (1.1) reduces to the following fractional Schrödinger prob-

lem:

(–�)αu + V (x)u = f (x, u), x ∈ R
N . (1.4)

Since (–�)α is a nonlocal operator, the usual analysis tools for elliptic PDEs are invalid for
(1.4). This causes some mathematical difficulties which make the study of such a problem
particularly interesting. After Caffarelli and Silvestrein transformed the nonlocal problem
into a local problem by the extension theorem in [23], there have been a large number
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of works focused on the study of fractional Schrödinger equations. Recently, Secchi [24]
obtained the existence of positive solutions by using the Nehari manifold method. Chang
[25] proved the existence of a positive ground state solution of (1.4) when f (x, t) is asymp-
totically linear with respect to t at infinity. Zhang, Zhang and Mi [26] established the exis-
tence of solutions for (1.4) in periodic case and asymptotically periodic case via variational
methods. We refer the reader to [27–32] and the references therein.

Although the fractional Schrödinger equations have been widely studied, to the best of
our knowledge, there are few papers concerning on the fractional Kirchhoff-type problems
like (1.1) in the literature. Recently, under decay assumptions on V , Liu, Marco and Zhang
[33] considered (1.1) where N = 2 with α ∈ ( 1

2 , 1) or N = 3 with α ∈ ( 3
4 , 1) and f (x, t) = f (t)

satisfies:

(H1) f ∈ C1(R+,R) and limt→0
f (t)

t = 0;
(H2) there are D > 0 and 2 < q < 2∗

α such that f (t) ≥ tt2∗
α –1 + Dtq–1 for any t ≥ 0.

We point out that they obtained the existence of ground state solutions for (1.1) when D
large enough in (H2). Note that 2∗

α > 4 when N = 2 with α ∈ ( 1
2 , 1) or N = 3 with α ∈ ( 3

4 , 1),
which means f satisfies super-cubic condition (F3′). In fact, under (F1) and (F3′), it is easy
to verify the Mountain Pass geometry for energy functional. Different from their work,
we assume that f is non-autonomous and satisfies (F3) which implies (F3′). Evidently, (F1)
and (F3) suggest that N ∈ (2α, 4α) with α ∈ (0, 1) and that is what we are concerned about
in this paper. Our results can be regarded as the complementary work of [33]. We also cite
[34–41] for related results.

In this paper, we are concerned with the existence of ground state solutions for the
asymptotically periodic fractional Kirchhoff-type problems (1.1) involving asymptotically
cubic or super-cubic nonlinearities. To this end, we must overcome three main difficulties:
(I) when f is asymptotically cubic (i.e. lim|t|→∞ |f (x,t)|

|t|3 = V∞ ≥ (
≡) 0), there is no Mountain-
Pass structure for (1.1) and the standard variational methods cannot be used on Nehari
manifold; (II) when V (x) and f (x, u) are asymptotically periodic in x, many effective meth-
ods for periodic problems are invalid for asymptotically periodic ones; (III) when f is not
differentiable, Nehari manifold may not be a C1 manifold, so it is difficult to prove the min-
imizer of the variational functional over Nehari manifold is a critical point. To overcome
these difficulties, we will introduce some new methods and analytical techniques in this
paper.

In order to precisely state our result we denote byH the class of functions h ∈ C(RN ,R)∩
L∞(RN ,R) such that, for every ε > 0, the set {x ∈R

N : |h(x)| ≥ ε} has finite Lebesgue mea-
sure. Moreover, for the potential V and the nonlinear term f , we suppose that:

(V0) V ∈ C(RN , (0,∞)) and V (x) is 1-periodic in x;
(F0) f (x, t) is 1-periodic in x;
(V0′) V (x) = V0(x) + V1(x), V0, V1 ∈ C(RN ,RN ), and V0(x) is 1-periodic in x, V1(x) ≤ 0 for

x ∈R
N , and V1 ∈H;

(F0′) f (x, t) = f0(x, t) + f1(x, t), f0 ∈ C(RN × R
N ,R), f0(x, t) is 1-periodic in x, and for any

x ∈R
N , t > 0 and τ 
= 0,

[
f0(x, τ )

τ 3 –
f0(x, tτ )

(tτ )3

]
sign(1 – t) + V0(x)

|1 – t2|
(tτ )2 ≥ 0; (1.5)
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f1 ∈ C(RN ×R,R), satisfies

∣∣f1(x, t)
∣∣ ≤ h(x)

(|t| + |t|q–1), f1(x, t)t ≥ 0, (1.6)

where F1(x, t) =
∫ t

0 f1(x, s) ds, q ∈ (2, 2∗
α) and h ∈H.

Inspired by the previously mentioned work, especially [21, 42, 43], we seek definite an-
swers to overcome the above three difficulties. Firstly, we use a new trick to show the
following set:

E =
{

u ∈ E : b
∥∥(–�)

α
2 u

∥∥4
2 +

∫

RN

[
V (x)u2 – f (x, u)u

]
dx < 0

}
,

is not empty (see Lemma 2.4), and construct a new minimax characterization (see
Lemma 2.6) under (F3). Secondly, for the asymptotically periodic case, we adopt a tech-
nique introducing in [21] by combining the quantitative deformation lemma and degree
theory, to overcome the difficulties caused by the dropping of periodicity of V (x) and
f (x, u) in x (see Section 4). Thirdly, because the argument based on Nehari manifold ap-
proach (see Szulkin and Weth [44]) becomes invalid under condition (F4) instead of (F4′),
we will use the non-Nehari manifold approach developed in [42, 43]. It relies on finding
a minimizing Cerami sequence for variational functional related to (1.1) outside the Ne-
hari manifold by using the diagonal method (see Lemma 2.8). Note that (F3) implies (F3′),
which covers the asymptotically cubic and super-cubic nonlinearities due to N ∈ (2α, 4α).

Now, we state the main results of this paper. In the periodic case, we establish the fol-
lowing theorem.

Theorem 1.1 Assume that V and f satisfy (V0) and (F0)-(F4). Then Problem (1.1) has a
ground state solution u0 ∈ E such that �(u0) = infN � > 0. Moreover,

b
∥∥(–�)

α
2 u0

∥∥4
2 +

∫

RN

[
V (x)u2

0 – f (x, u0)u0
]

dx < 0.

In the asymptotically periodic case, we establish the following theorem.

Theorem 1.2 Assume that V and f satisfy (V0′), (F0′) and (F1)-(F4). Then Problem (1.1)
has a ground state solution u0 ∈ E such that �(u0) = infN � > 0. Moreover,

b
∥∥(–�)

α
2 u0

∥∥4
2 +

∫

RN

[
V (x)u2

0 – f (x, u0)u0
]

dx < 0.

Remark 1.3 Since the term ‖(–�) α
2 u‖4

2 is homogeneous of degree 4, the greatest part
of the literature focuses on the study of (1.1) with f satisfying the super-cubic condition
(F3′). However, there are few papers consider f satisfies asymptotically cubic. In order to
treat asymptotically cubic or super-cubic nonlinearities in a unified way, we use a weaker
condition (F3) instead of (F3′) where N ∈ (2α, 4α) with α ∈ (0, 1). Our results strongly
improve the previous results on the existence of ground state solutions for (1.1), which are
new even for α = 1. Furthermore, we reduce the usual Nehari-type monotonic condition
to a weaker condition (F4). In fact, there are many functions satisfying (F1)-(F4), but not
satisfying (F3′) and (F4′), and some typical examples are introduced in [21].
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Throughout this paper, we denote the norm of Ls(RN ) by ‖u‖s for s ≥ 2, Br(x) = {y ∈R
N :

|y – x| < r}, and C are various positive constants.

2 Preliminaries
First, we give some notations. A complete introduction to fractional Sobolev spaces can
be found in [45]; we offer in the succeeding discussion a short review. We define the ho-
mogeneous fractional Sobolev space Dα,2(RN ) as follows:

Dα,2(
R

N)
=

{
u ∈ L2∗

α
(
R

N)
:
|u(x) – u(y)|
|x – y| N

2 +α
∈ L2(

R
N ×R

N)}
,

which is the completion of C∞
0 (RN ) under the norm

‖u‖Dα,2(RN ) =
(∫

RN

∣∣(–�)
α
2 u

∣∣2 dx
)1/2

=
(∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2α

dx dy
)1/2

.

Moreover, the embedding Dα,2(RN ) ↪→ L2∗
α (RN ) is continuous and for any α ∈ (0, 1), there

exists a best constant Sα such that

Sα = inf
u∈Dα,2(RN )

∫
RN |(–�) α

2 u|2 dx

(
∫
RN |u2∗

α |dx)
2

2∗
α

.

The fractional Sobolev space Hα(RN ) can be described by

Hα
(
R

N)
=

{
u ∈ L2(

R
N)

:
|u(x) – u(y)|
|x – y| N

2 +α
∈ L2(

R
N ×R

N)}
,

endowed with the natural norm

‖u‖Hα (RN ) =
(∫

RN
|u|2 dx +

∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2α

dx dy
)1/2

.

It is well known that Hα(RN ) is continuously embedded into Lq(RN ), and compactly em-
bedded into Lq

loc(RN ) for 2 ≤ q ≤ 2∗
α := 2N

N–2α
.

Under assumption (V), we see that

E =
{

u ∈ Hα
(
R

N)
:
∫

RN

(
a
∣∣(–�)

α
2 u

∣∣2 + V (x)u2)dx < +∞
}

is a Hilbert space equipped with the norm

‖u‖ =
(∫

RN

(
a
∣∣(–�)

α
2 u

∣∣2 + V (x)u2)dx
)1/2

.

Let

�(u) =
1
2

∫

RN

(
a
∣∣(–�)

α
2 u

∣∣2 + V (x)u2)dx

+
b
4

(∫

RN

∣∣(–�)
α
2 u

∣∣2 dx
)2

–
∫

RN
F(x, u) dx, ∀u ∈ E. (2.1)
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From (F1) and (F2), it is easy to see that � ∈ C1(E,R) as a functional, and that

〈
�′(u), v

〉
=

∫

RN

(
a(–�)

α
2 u(–�)

α
2 v + V (x)uv

)
dx

+ b
∫

RN

∣∣(–�)
α
2 u

∣∣2 dx
∫

RN
(–�)

α
2 u(–�)

α
2 v dx

–
∫

RN
f (x, u)v dx, ∀u, v ∈ E. (2.2)

Clearly, any critical point of � is a weak solution of (1.1). Set

N :=
{

u ∈ E :
〈
�′(u), u

〉
= 0, u 
= 0

}
. (2.3)

Lemma 2.1 Assume that (V), (F1), (F2) and (F4) hold. Then

�(u) ≥ �(tu) +
1 – t4

4
〈
�

′
(u), u

〉
+

(1 – θ0)(1 – t2)2

4
‖u‖2, ∀u ∈ E, t ≥ 0. (2.4)

Proof For any x ∈ R
N , t ≥ 0, τ ∈R \ {0}, (F4) yields

1 – t4

4
τ f (x, τ ) + F(x, tτ ) – F(x, τ ) +

θ0V (x)
4

(
1 – t2)2

τ 2

=
∫ 1

t

[
f (x, τ )

τ 3 –
f (x, ξτ )
(ξτ )3 + θ0V (x)

1 – ξ 2

(ξτ )2

]
ξ 3τ 4 dξ ≥ 0. (2.5)

By (2.1), (2.2) and (2.5), we have

�(u) – �(tu) =
1 – t2

2
‖u‖2 +

1 – t4

4
b
∥∥(–�)

α
2
∥∥4

2 +
∫

RN

[
F(x, tu) – F(x, u)

]
dx

=
1 – t4

4
〈
�

′ (u), u
〉
+

(1 – t2)2

2
‖u‖2

+
∫

RN

[
1 – t4

4
f (x, u)u + F(x, tu) – F(x, u)

]
dx

≥ 1 – t4

4
〈
�

′
(u), u

〉
+

(1 – θ0)(1 – t2)2

4
‖u‖2

+
∫

RN

[
1 – t4

4
f (x, u)u + F(x, tu) – F(x, u) +

θ0V (x)
4

(
1 – t2)2u2

]
dx

≥ 1 – t4

4
〈
�

′
(u), u

〉
+

(1 – θ0)(1 – t2)2

4
‖u‖2.

This shows that (2.4) holds. �

Corollary 2.2 Assume that (V), (F1), (F2) and (F4) hold. Then, for an u ∈N ,

�(u) ≥ �(tu) +
(1 – θ0)(1 – t2)2

4
‖u‖2, ∀t ≥ 0. (2.6)

Corollary 2.3 Assume that (V), (F1), (F2) and (F4) hold. Then, for any u ∈N ,

�(u) = max
t≥0

�(tu). (2.7)
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Under (F3), to show N 
= ∅ in our situation, we have to overcome the competing effect
of

∫
RN |(–�) α

2 u|2 dx. To this end, we define a set E as follows:

E =
{

u ∈ E : b
∥∥(–�)

α
2 u

∥∥4
2 +

∫

RN

[
V (x)u2 – f (x, u)u

]
dx < 0

}
. (2.8)

Lemma 2.4 Assume that (V) and (F1)-(F4) hold. Then E 
= ∅. Moreover, N ⊂ E .

Proof For any fixed u ∈ E with u 
= 0, set ut(x) = tu(t–1x) for t > 0. By (V), one has

b
∥∥(–�)

α
2 ut

∥∥4
2 +

∫

RN

[
V (x)u2

t – f (x, ut)ut
]

dx

= t4+2N–4αb
∥∥(–�)

α
2 u

∥∥4
2 + t2+N

∫

RN
V (tx)u2 dx – tN

∫

RN
f (tx, tu)tu dx

≤ t2+N
[

t2+N–4αb
∥∥(–�)

α
2 u

∥∥4
2 + ‖V‖∞‖u‖2

2 –
∫

RN

f (tx, tu)tu
t2 dx

]

= t2+N
{

t2+N–4α

[
b
∥∥(–�)

α
2 u

∥∥4
2 –

∫

RN

f (tx, tu)tu
t4+N–4α

dx
]

+ ‖V‖∞‖u‖2
2

}
. (2.9)

Note that, for u 
= 0, F(tx, tu)/|tu|4+N–4α → +∞ as t → +∞ by (F3), where F(x, t) =∫ t
0 f (x, s) ds. From (2.5) with t = 0, one has

1
4
τ f (x, τ ) – F(x, τ ) +

θ0V (x)
4

τ 2 ≥ 0, ∀x ∈R
N , τ ∈R, (2.10)

then we have

f (tx, tu)tu
|tu|4+N–4α

→ +∞, as t → +∞ uniformly in x ∈R
N . (2.11)

For N ∈ (2α, 4α), thus from (2.9) and (2.11), one has

b
∥∥(–�)

α
2 ut

∥∥4
2 +

∫

R3

[
V (x)u2

t – f (x, ut)ut
]

dx → –∞, as t → +∞.

Thus, taking v = uT for T large, we have v ∈ E . From (2.2), it is easy to see that and
N ⊂ E . �

Lemma 2.5 Assume that (V) and (F1)-(F4) hold. If u ∈ E , then there exists a unique t(u) >
0 such that t(u) ∈N .

Proof First, we prove the existence of t(u). In view of Lemma 2.4, let u ∈ E be fixed and
define a function g(t) = 〈�′(tu), tu〉 on [0, +∞). By (F4), one has

θ0V (x)(tτ )2 – f (x, tτ )tτ ≤ [
θ0V (x)τ 2 – f (x, τ )τ

]
t4, ∀x ∈R

N , t ≥ 1, τ ∈R, (2.12)

Since u ∈ E , (2.12) yields

bt4∥∥(–�)
α
2 u

∥∥4
2 +

∫

RN

[
θ0V (x)(tu)2 – f (x, tu)tu

]
dx

≤ t4
(

b
∥∥(–�)

α
2 u

∥∥4
2 +

∫

RN

[
θ0V (x)u2 – f (x, u)u

]
dx

)
< 0, ∀t ≥ 1. (2.13)
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It follows from (2.1) and (2.13) that

g(t) = t2
[

a
∥∥(–�)

α
2 u

∥∥2
2 + (1 – θ0)

∫

RN
V (x)u2 dx

]
+ bt4∥∥(–�)

α
2 u

∥∥4
2

+
∫

RN

[
θ0V (x)(tu)2 – f (x, tu)tu

]
dx

≤ t2
[

a
∥∥(–�)

α
2 u

∥∥2
2 + (1 – θ0)

∫

RN
V (x)u2 dx

]

+ t4
(

b
∥∥(–�)

α
2 u

∥∥4
2 +

∫

RN

[
θ0V (x)u2 – f (x, u)u

]
dx

)
. (2.14)

For (F1), (F2) and (2.14), it is easy to verify that g(0) = 0, g(t) > 0 for t > 0 small and g(t) <
0 for t large because of u ∈ E . Therefore, there exists t0 = t(u) > 0 so that g(t0) = 0 and
t(u)u ∈N .

Next, we prove the uniqueness. For any given u ∈ E , let t1, t2 > 0 such that g(t1) =
g(t2) = 0. Jointly with (2.6), one has

�(t1u) ≥ �(t2u) +
(1 – θ0)(t2

1 – t2
2)2

4t2
1

‖u‖2 (2.15)

and

�(t2u) ≥ �(t1u) +
(1 – θ0)(t2

2 – t2
1)2

4t2
2

‖u‖2. (2.16)

Both (2.15) and (2.16) imply t1 = t2. Hence, t(u) > 0 is unique for any u ∈ E . �

Lemma 2.6 Assume that (V) and (F1)-(F4) hold. Then

inf
u∈N

�(u) = c = inf
u∈E ,u
=0

max
t≥0

�(tu) > 0.

Proof Corollary 2.3 and Lemma 2.5 imply that c = infu∈E ,u
=0 maxt≥0 �(tu). From
Lemma 2.1, it is easy to see that c > 0. �

Lemma 2.7 Assume that (V) and (F1)-(F4) hold. Then there exist a constant c∗ ∈ (0, c]
and a sequence un ⊂ E satisfying

�(un) → c∗,
∥∥�′(un)

∥∥(
1 + ‖un‖

) → 0. (2.17)

Proof We use the non-Nehari manifold approach developed in [42, 43] to show (2.17).
From (F1), (F2) and (2.1), we know that there exist δ0 > 0 and ρ0 > 0 such that

�(u) ≥ ρ0, ‖u‖ = δ0. (2.18)

Choose vk ∈N ⊂ E such that

c ≤ �(vk) < c +
1
k

, k ∈N. (2.19)



Peng et al. Boundary Value Problems  (2018) 2018:3 Page 9 of 17

For Lemma 2.1, it is easy to see that �(tvk) < 0 for large t > 0. In fact, if �(tvk) ≥ 0 for large
t > 0. By (2.4) and vk ∈N , we have

�(vk) ≥ �(tvk) +
(1 – θ0)(1 – t2)2

4
‖vk‖2, (2.20)

which contradicts (2.19). From the mountain pass lemma, there exists a sequence
{uk,n}n∈N ⊂ E satisfying

�(uk,n) → ck ,
∥∥�′(uk,n)

∥∥(
1 + ‖uk,n‖

) → 0, k ∈N, (2.21)

where ck ∈ [ρ0, supt≥0 �(tvk)]. By (2.7) and (2.19), one has

ρ0 ≤ ck ≤ sup
t≥0

�(tvk) = �(vk) < c +
1
k

, k ∈N. (2.22)

Therefore, by (2.21) and (2.22), for k ∈ N, one has

�(uk,n) → ck ∈
[
ρ0, c +

1
k

)
,

∥∥�′(uk,n)
∥∥(

1 + ‖uk,n‖
) → 0, as n → ∞. (2.23)

In view of (2.23), for k = 1, there exists n1 > 0 large enough such that

ρ0 ≤ �(u1,n1 ) < c1 + 1,
∥∥�′(u1,n1 )

∥∥(
1 + ‖u1,n1‖

)
< 1; (2.24)

for k = 2, there exists n2 > n1 > 0 large enough such that

ρ0 ≤ �(u2,n2 ) < c2 + 1/2,
∥∥�′(u2,n2 )

∥∥(
1 + ‖u2,n2‖

)
< 1/2. (2.25)

In this way, we can choose a sequence {nk} ⊂N with nk → ∞ as k → ∞ such that

�(uk,nk ) ∈
[
ρ0, c +

1
k

)
,

∥∥�′(uk,nk )
∥∥(

1 + ‖uk,nk ‖
)

<
1
k

, k ∈N. (2.26)

Let uk = uk,nk , k ∈ N. Then, going if necessary to a subsequence, we conclude from (2.26)
that

�(un) → c∗,
∥∥�′(un)

∥∥(
1 + ‖un‖

) → 0. (2.27)
�

Lemma 2.8 Assume that (V) and (F1)-(F4) hold. Then any sequence {un} ⊂ E satisfying
(2.17) is bounded in E.

Proof By (2.2), (2.10) and (2.17), one has

c∗ + o(1) = �(un) –
1
4
〈
�′(un), un

〉

≥ 1 – θ0

4
‖un‖2 +

∫

RN

(
1
4

f (x, u)u – F(x, u) +
θ0V (x)

4
u2

)
dx

≥ 1 – θ0

4
‖un‖2. (2.28)

This shows that the sequence {un} is bounded in E. �
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Next, we prove the minimizer of the constrained problem is a critical point, which plays
a crucial role in the asymptotically periodic case.

Lemma 2.9 Assume that (V) and (F1)-(F4) hold. If u0 ∈ N and �(u0) = c, then u0 is a
critical point of �.

Proof Analogous to the proof of [21], it is easy to show this lemma by combining the
quantitative deformation lemma and degree theory. �

3 The periodic case

Proof of Theorem 1.1 Lemma 2.7 implies the existence of a sequence {un} ⊂ E satisfying
(2.17), then

�(un) → c∗,
∥∥�′(un)

∥∥(
1 + ‖un‖

) → 0. (3.1)

By Lemma 2.8, {un} is bounded in E. Thus, there exists C > 0 such that ‖un‖2 ≤ C. If

δ := lim sup
n→∞

sup
y∈RN

∫

B1(y)
|un|2 dx = 0, (3.2)

then by Lion’s concentration compactness principle [46], we have un → 0 in Lq(RN ) for
2 < q < 2∗

α . By (F1) and (F2), for ε = c∗/2C2, there exists Cε > 0 such that

lim sup
n→∞

∫

RN

∣∣∣∣
1
2

f (x, un)un – F(x, un)
∣∣∣∣dx ≤ 3

2
εC2 + Cε lim

n→∞‖un‖p
p =

3c∗
4

. (3.3)

From (2.1), (2.2), (3.1) and (3.3), one has

c∗ = �(un) –
1
2
〈
�′(un), un

〉
+ o(1)

= –
b
4
∥∥(–�)

α
2 un

∥∥ +
∫

RN

[
1
2

f (x, un)un – F(x, un)
]

dx

≤ 3c∗
4

.

This contradiction shows δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z

N such that

∫

B2(kn)
|un|2 dx >

δ

2
. (3.4)

Let vn(x) = un(x + kn), then

∫

B2(0)
|vn|2 dx >

δ

2
. (3.5)

Since V (x) and f (x, u) are periodic on x, we have

�(vn) → c∗,
∥∥�′(vn)

∥∥(
1 + ‖vn‖

) → 0. (3.6)
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Passing to a subsequence, we have vn ⇀ v̄ in E, vn → v̄ in Lq
loc(RN ) for 2 < q < 2∗

α and
vn → v̄ a.e. on R

N . Thus, (3.5) implies that v̄ 
= 0. Let l := limn→∞ ‖(–�) α
2 v̄n‖2, then the

weakly lower semi-continuous of the norm implies that ‖(–�) α
2 v̄‖2 ≤ l. It is easy to check

that

〈
�′(v̄),ϕ

〉
+

(
l2 –

∥∥(–�)
α
2 v̄

∥∥2
2

)∫

RN
(–�)

α
2 v̄(–�)

α
2 ϕ dx

= lim
n→∞

〈
�′(v̄n),ϕ

〉
= 0, ∀ϕ ∈ C∞

0
(
R

N)
. (3.7)

Since C∞
0 (RN ) is dense in E, (3.7) implies 〈�′(v̄),ϕ〉 ≤ 0. We claim that 〈�′(v̄), v̄〉 = 0. In fact,

if 〈�′(v̄), v̄〉 < 0, together with 〈�′(tv̄), tv̄〉 > 0 for small t > 0, then there exists t1 ∈ (0, 1) such
that 〈�′(t1v̄), t1v̄〉 = 0 and �(t1v) ≥ c. Using (F4), we have

f (x, tτ )tτ ≤ f (x, τ )τ t4 + θ0V (x)
(
1 – t2)(tτ )2, ∀x ∈R

N , 0 ≤ t ≤ 1, τ ∈R. (3.8)

Note that (2.5) implies

F(x, tτ ) ≥ t4 – 1
4

f (x, τ )τ + F(x, τ )

–
1 – 2t + t4

4
θ0V (x)τ 2, ∀x ∈R

N , 0 ≤ t ≤ 1, τ ∈R. (3.9)

Combining (3.8) and (3.9), we have

1
4

f (x, tτ )tτ – F(x, tτ ) +
θ0V (x)

4
(tτ )2

≤ 1
4

f (x, τ )τ – F(x, τ ) +
θ0V (x)

4
τ 2, ∀x ∈R

N , 0 ≤ t ≤ 1, τ ∈R. (3.10)

Then by (2.1), (2.2), (3.6) and (3.10), the weakly lower semi-continuity of the norm and
Fatou’s lemma, we have

c ≤ �(t1v̄) –
1
4
〈
�′(t1v̄), t1v̄

〉

=
aθ0

4
t2
1
∥∥(–�)

α
2 v̄

∥∥2
2 +

1 – θ0

4
t2
1‖v̄‖2

+
∫

RN

[
1
4

f (x, t1v̄)t1v̄ – F(x, t1v̄) +
θ0V (x)

4
(t1v̄)2

]
dx

<
aθ0

4
∥∥(–�)

α
2 v̄

∥∥2
2 +

1 – θ0

4
‖v̄‖2 +

∫

RN

[
1
4

f (x, v̄)v̄ – F(x, v̄) +
θ0V (x)

4
(v̄)2

]
dx

≤ lim
n→∞

{
aθ0

4
∥∥(–�)

α
2 vn

∥∥2
2 +

1 – θ0

4
‖vn‖2

+
∫

RN

[
1
4

f (x, vn)vn – F(x, vn) +
θ0V (x)

4
v2

n

]
dx

}

= lim
n→∞

{
�(vn) –

1
4
〈
�′(vn), vn

〉} ≤ c, (3.11)

which is impossible. Thus, we get v̄ ∈ N and �(v̄) ≥ c. Jointly with (3.7), we have
limn→∞ ‖(–�) α

2 vn‖2 = ‖(–�) α
2 v̄‖2 and �′(v̄) = 0. On the other hand, from (2.10), (3.6),
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the weakly lower semi-continuous of norm and Fatou’s lemma, one has

c ≥ c∗ = �(vn) –
1
4
〈
�′(vn), vn

〉

= lim
n→∞

{
aθ0

4
∥∥(–�)

α
2 vn

∥∥2
2 +

1 – θ0

4
‖vn‖2

+
∫

RN

[
1
4

f (x, vn)vn – F(x, vn) +
θ0V (x)

4
v2

n

]
dx

}

≥ lim inf
n→∞

[
aθ0

4
∥∥(–�)

α
2 vn

∥∥2
2 +

1 – θ0

4
‖vn‖2

]

+ lim inf
n→∞

∫

RN

[
1
4

f (x, vn)vn – F(x, vn) +
θ0V (x)

4
v2

n

]
dx

≥ 1
4
‖v̄‖2 +

∫

RN

[
1
4

f (x, v̄)v – F(x, v̄)
]

dx

= �(v̄) –
1
4
〈
�′(v̄), v̄

〉
= �(v̄). (3.12)

This shows that �(v̄) ≤ c and so �(v̄) = c = infN � > 0. �

4 The asymptotically periodic case
In this section, we have V (x) = V0(x) + V1(x) and f (x, u) = f0(x, u) + f1(x, u). Define the func-
tional �0 as follows:

�0(u) =
1
2

∫

RN

(
a
∣∣(–�)

α
2 u

∣∣2 + V0(x)u2)dx

+
b
4

(∫

RN

∣∣(–�)
α
2 u

∣∣2 dx
)2

–
∫

RN
F0(x, u) dx, ∀u ∈ E, (4.1)

where F0(x, u) :=
∫
RN f0(x, s) ds. By (V0′), (F0′), (F1) and (F2), we have �0 ∈ C1(E,R) and

〈
�′

0(u), v
〉

=
∫

RN

(
a(–�)

α
2 u(–�)

α
2 v + V0(x)uv

)
dx

+ b
∫

RN

∣∣(–�)
α
2 u

∣∣2 dx
∫

RN
(–�)

α
2 u(–�)

α
2 v dx

–
∫

RN
f0(x, u)v dx, ∀u, v ∈ E. (4.2)

By a standard argument, we have the following lemma.

Theorem 4.1 Assume that (V0′), (F0′), (F1) and (F2) hold. If un ⇀ 0 in E, then

lim
n→∞

∫

RN
V1(x)u2

n dx = 0, lim
n→∞

∫

RN
V1(x)unv dx = 0, ∀v ∈ E; (4.3)

lim
n→∞

∫

RN
F1(x, un) dx = 0, lim

n→∞

∫

RN
f1(x, un)v dx = 0, ∀v ∈ E. (4.4)
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Proof of Theorem 1.2 Lemma 2.7 implies the existence of a sequence {un} ⊂ E satisfying
(2.17), then

�(un) → c∗,
∥∥�′(un)

∥∥(
1 + ‖un‖

) → 0. (4.5)

By Lemma 2.8, {un} is bounded in E. Thus, there exists C > 0 such that ‖un‖2 ≤ C. Passing
to a subsequence, we have un ⇀ ū in E, un → ū in Lq

loc(RN ) for 2 ≤ q < 2∗
α and un → ū a.e.

on R
N . There are two possible cases: (i) ū = 0; (ii) ū 
= 0.

Case i). ū = 0. Then un ⇀ 0 in E, un → 0 in Lq
loc(RN ) for 2 ≤ q < 2∗

α and un → 0 a.e. on
R

N . Note that

‖u‖2 =
∫

RN

(
a
∣∣(–�)

α
2 u

∣∣2 + V0(x)u2)dx +
∫

RN
V1(x)u2 dx, ∀u ∈ E, (4.6)

�0(u) = �(u) –
1
2

∫

RN
V1(x)u2 dx +

∫

RN
F1(x, u) dx, ∀u ∈ E, (4.7)

and

〈
�′

0(u), v
〉

=
〈
�′(u), v

〉
–

∫

RN
V1(x)uv dx +

∫

RN
f1(x, u)v dx, ∀u, v ∈ E. (4.8)

By (2.17), (4.3), (4.4), (4.6)-(4.8), one has

�0(un) → c∗,
∥∥�′

0(un)
∥∥(

1 + ‖un‖
) → 0. (4.9)

Analogous to the proof of (3.4), there exists kn ∈ Z
N , going if necessary to a subsequence,

such that
∫

B2(kn)
|un|2 dx >

δ

2
. (4.10)

Let us define vn(x) = un(x + kn). Then
∫

B2(0)
|vn|2 dx >

δ

2
. (4.11)

Since V (x) and f (x, u) are periodic on x, we have

�0(vn) → c∗ ∈ (0, c],
∥∥�′

0(vn)
∥∥(

1 + ‖vn‖
) → 0. (4.12)

Passing to a subsequence, we have vn ⇀ v̄ in E, vn → v̄ in Lq
loc(RN ) for 2 ≤ q < 2∗

α and
vn → v̄ a.e. on R

N . Thus, (4.10) implies that v̄ 
= 0. Similar to Corollary 2.3 and Lemma 2.6,
by (2.4), (4.7) and (4.8), we can deduce that

�0(u) = max
t≥0

�0(tu), ∀u ∈N0, inf
u∈N

�0(u) = c0 = inf
u∈E0

max
t≥0

�0(tu) > 0, (4.13)

where

N0 :=
{

u ∈ E :
〈
�′

0(u), u
〉

= 0, u 
= 0
}

,

E0 =
{

u ∈ E : b
∥∥(–�)

α
2 u

∥∥4
2 +

∫

RN

[
V0(x)u2 – f0(x, u)u

]
dx < 0

}
.
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In view of Theorem 1.1, there exists v0 ∈ N0 ⊂ E0 such that c0 = �(v0). Then, from (F0′),
(4.7) and (4.13), we get

c = inf
u∈E

max
t≥0

�(tv) ≤ max
t≥0

�(tv0) ≤ max
t≥0

�0(tv0) ≤ �0(v0) = c0. (4.14)

Similar to (3.7), we have 〈�′
0(v̄), v̄〉 ≤ 0. If 〈�′

0(v̄), v̄〉 < 0, together with 〈�′
0(tv̄), tv̄〉 > 0 for

small t > 0, we see that there exists t2 ∈ (0, 1) such that 〈�′
0(t2v̄), t2v̄〉 = 0 and �(t2v) ≥ c0.

By (F0′), we have

f0(x, tτ )tτ ≤ f0(x, τ )τ t4 + V0(x)
(
1 – t2)(tτ )2, ∀x ∈R

N , 0 ≤ t ≤ 1, τ ∈R, (4.15)

and

1 – t4

4
τ f0(x, τ ) + F0(x, tτ ) – F0(x, τ ) +

V0(x)
4

(
1 – t2)2

τ 2

=
∫ 1

t

[
f0(x, τ )

τ 3 –
f0(x, ξτ )

(ξτ )3 + V0(x)
1 – ξ 2

(ξτ )2

]
ξ 3τ 4 dξ

≥ 0, ∀x ∈R
N , t ≥ 0, τ ∈R\{0}. (4.16)

Combining (4.15) and (4.16), we have

1
4

f0(x, tτ )tτ – F0(x, tτ ) +
V (x)

4
(tτ )2

≤ 1
4

f0(x, τ )τ – F0(x, τ ) +
V0(x)

4
τ 2, ∀x ∈R

N , 0 ≤ t ≤ 1, τ ∈R. (4.17)

It follows from (4.16) with t = 0 that

1
4

f0(x, τ )τ – F0(x, τ ) +
V0(x)

4
τ 2 ≥ 0, ∀x ∈R

N , τ ∈R. (4.18)

Since t2 ∈ (0, 1), from (4.1), (4.2), (4.12), (4.14), (4.17) and (4.18), the weakly lower semi-
continuity of the norm and Fatou’s lemma, we have

c0 ≤ �0(t2v̄) –
1
4
〈
�′

0(t2v̄), t2v̄
〉

=
a
4

t2
2
∥∥(–�)

α
2 v̄

∥∥2
2 +

∫

RN

[
1
4

f0(x, t2v̄)t2v̄ – F0(x, t2v̄) +
V0(x)

4
(t2v̄)2

]
dx

<
a
4
∥∥(–�)

α
2 v̄

∥∥2
2 +

∫

RN

[
1
4

f0(x, v̄)v̄ – F0(x, v̄) +
V0(x)

4
(v̄)2

]
dx

≤ lim
n→∞

{
a
4
∥∥(–�)

α
2 vn

∥∥2
2 +

∫

RN

[
1
4

f0(x, vn)vn – F0(x, vn) +
V0(x)

4
v2

n

]
dx

}

= lim
n→∞

{
�0(vn) –

1
4
〈
�′

0(vn), vn
〉} ≤ c ≤ c0, (4.19)

which is impossible. Thus, we get 〈�′
0(v̄), v̄〉 = 0 and �0(v̄) ≥ c0. By a standard argument,

we have �′
0(v̄) = 0. On the other hand, from (4.1), (4.2), (4.12) and (4.18), the weakly lower



Peng et al. Boundary Value Problems  (2018) 2018:3 Page 15 of 17

semi-continuity of the norm and Fatou’s lemma, we obtain

c ≥ c∗ = lim
n→∞

[
�0(vn) –

1
4
〈
�′

0(vn), vn
〉]

= lim
n→∞

{
a
4
∥∥(–�)

α
2 vn

∥∥2
2 +

∫

RN

[
1
4

f0(x, vn)vn – F0(x, vn) +
V0(x)

4
v2

n

]
dx

}

≥ lim inf
n→∞

a
4
∥∥(–�)

α
2 vn

∥∥2
2 + lim inf

n→∞

∫

RN

[
1
4

f0(x, vn)vn – F0(x, vn) +
V0(x)

4
v2

n

]
dx

≥ 1
4
‖v̄‖2 +

∫

RN

[
1
4

f0(x, v̄)v – F0(x, v̄)
]

dx

= �0(v̄) –
1
4
〈
�′

0(v̄), v̄
〉

= �0(v̄). (4.20)

This implies that �0(v̄) ≤ c. By (F0′), we have 〈�′(v̄), v̄〉 ≤ 〈�′
0(v̄), v̄〉 = 0, which implies

v̄ ∈ E . Then, by Lemma 2.5, there exists t0 = t(v̄) such that t0v̄ ∈ N ≥ c, and so �(t0v̄) ≥ c.
Now we prove that �(t0v̄) = c. Arguing indirectly, we assume that �(t0v̄) > c. Then by
(V0′), (F0′), (4.1), (4.2) and (4.16), we have

c ≥ �0(v̄)

= �0(t0v̄) +
1 – t4

0
4

〈
�′

0(v̄), v̄
〉
+

a(1 – t0)2

4

∫

RN

∣∣(–�)
α
2 u

∣∣2 dx

+
∫

RN

[
1 – t4

0
4

τ f0(x, v̄) + F0(x, t0v̄) – F0(x, v̄) +
V0(x)

4
(
1 – t2

0
)2(v̄)2

]
dx

≥ �0(t0v̄) = �(t0v̄) –
1
2

∫

RN
V1(x)(t0v̄)2 dx +

∫

RN
F1(x, t0v̄) dx

≥ �(t0v̄) > c. (4.21)

This contradiction shows that �(t0v̄) = c.
Let u0 = t0v̄. Then u0 ∈N and �(u0) = c. In view of Lemma 2.9, we have �′(u0) = 0. This

shows that u0 ∈ E is a solution for (1.1) with �(u0) = infN � > 0.
Case ii). ū 
= 0. By the same fashion as the last part of the proof of Theorem 1.1, we can

prove that �′(ū) = 0 and �(ū) = c = infN �. This shows that ū ∈ E is a solution for (1.1)
with �(ū) = infN �. �

5 Conclusion
In this paper, by using the variational methods and some weaker conditions, the existence
of Nehari-type solutions to equation (1.1) is established. We consider periodic or asymp-
totically periodic fractional Kirchhoff problems with more general nonlinearity f in R

N ,
where 2α < N < 4α and α ∈ (0, 1), especially f unifies asymptotically cubic and super-cubic
nonlinearity, which generalizes and improves the previous results. Meanwhile, (1.1) is a
nonlocal problem, so we need to overcome some new difficulties, which involves some
new approaches and analytical techniques in our paper.
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