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Abstract
This paper concerns a new kind of fractional differential equation of arbitrary order by
combining a multi-point boundary condition with an integral boundary condition. By
solving the equation which is equivalent to the problem we are going to investigate,
the Green’s functions are obtained. By defining a continuous operator on a Banach
space and taking advantage of the cone theory and some fixed point theorems, the
existence of multiple positive solutions for the BVPs is proved based on some
properties of Green’s functions and under the circumstance that the continuous
functions f satisfy certain hypothesis. Finally, examples are provided to illustrate the
results.
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1 Introduction
Fractional calculus has attracted many researchers’ interests because of its wide applica-
tion in solving practical problems that arise in fields like viscoelasticity, biological science,
ecology, aerodynamics, etc. Numerous writings have showed that fractional-order differ-
ential equations could provide more methods to deal with complex problems in statistical
physics and environmental issues. Especially, writers introduced the development history
of fractional calculus in [1], and authors in [2] stated some pioneering applications of frac-
tional calculus. For specific applications, see [3, 4] and the references therein.

Fractional-order differential equations with boundary value problems sprung up dra-
matically. Multi-point boundary conditions and integral boundary conditions become hot
spots of research among different types of boundary value problems, and the studies in [5–
9] are excellent. However, most researchers tend to investigate either integral conditions
or multi-point conditions.

For instance, the authors explored the fractional-order equation with integral boundary
conditions as follows in [9]:

⎧
⎨

⎩

cDqx(t) = f (t, x), 1 < q ≤ 2, t ∈ [0, 1],

x(0) = δx(σ ), acDμx(ρ1) + bcDμx(ρ2) = c
∫ β2
β1

cDμx(s) ds,
(1.1)
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where f : [0, 1] × R → R is a given continuous function, 0 < ρ1 < σ < β1 < β2 < ρ2 < 1,
0 < μ < 1, δ, a, b, c are real constants and cDq is a standard Caputo derivative. They de-
voted themselves to finding the existence and uniqueness of solutions by making use of
Krasnoselskii’s fixed point theorem, Schauder’s fixed point theorem and Banach’s contrac-
tion mapping principle. However, the results for the problems were concluded without
application of Green’s function.

In [8], Gu and Jia investigated the following higher order fractional differential equation
by using the reduced order method:

⎧
⎨

⎩

–Dαx(t) = f (t, x(t), Dμ1 x(t), Dμ2 x(t), . . . , Dμn–1 x(t)), t ∈ [0, 1],

x(0) = 0, Dμi x(0) = 0, Dμx(1) =
∑p–2

j=1 ajDμx(ξj), i = 1, 2, . . . , n – 1,
(1.2)

where Dα is the standard Riemann-Liouville fractional derivative and f : [0, 1] × R → R is
continuous. With n ≥ 3, n ∈ N+, n – 1 < α ≤ n, n – l – 1 < α – μl < n – l for l = 1, 2, . . . , n – 2
and μ – μn–1 > 0, α – μn–1 ≤ 2, α – μ > 1, aj ∈ [0, +∞), 0 < ξ1 < ξ2 < · · · < ξp–2 < 1,
∑p–2

j=1 ajξ
α–μ–1 �= 1. Moreover, the authors obtained the existence and uniqueness of non-

trivial solutions due to the application of Leray-Schauder’s nonlinear alternative and
Schauder’s fixed point theorem.

In consideration of the fact that integral boundary conditions and multi-point boundary
conditions have been investigated in a variety of papers (see [10–17]), in this paper we are
dedicated to considering fractional differential equations that contain both the integral
boundary condition and the multi-point boundary condition:

⎧
⎪⎪⎨

⎪⎪⎩

Dσ x(t) + f (t, x(t)) = 0, t ∈ [0, 1],

x(i)(0) = 0, i = 0, 1, 2, . . . , n – 2,

x(1) =
∑m–2

i=1 βi
∫ ηi

0 x(s) ds +
∑m–2

i=1 γix(ηi),

(1.3)

where Dσ represents the standard Riemann-Liouville fractional derivative of order σ sat-
isfying n – 1 < σ ≤ n with n ≥ 3 and n ∈ N+. In addition, 0 < η1 < η2 < · · · < ηm–2 < 1 and
βi,γi > 0 with 1 ≤ i ≤ m – 2, where m is an integer satisfying m ≥ 3. f : [0, 1] × R → R is a
given continuous function.

To ensure that readers can easily understand the results, the rest of the paper is planned
as follows. Section 2 is aimed to recall certain basic definitions and lemmas to obtain the
Green’s functions. Section 3 is devoted to reviewing Krasnoselkii’s fixed point theorem,
Schauder type fixed point theorem, Banach’s contraction mapping principle and nonlinear
alternative for single-valued maps and to applying them to analyze the problem in order
to show the main results. In the last section, some examples are given to verify that the
results are practical.

2 Preliminaries
Definition 2.1 ([18]) The Riemann-Liouville fractional integral of order α > 0 of a func-
tion f : (0, +∞) → R is given by

Iα
0+ f (t) =

1

(α)

∫ t

0
(t – s)α–1f (s) ds,

where 
(·) is the Euler gamma function.
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Definition 2.2 ([18]) The Riemann-Liouville fractional derivative of order α > 0 for a
function f : (0, +∞) → R is defined by

Dα
0+ f (t) =

1

(n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1f (s) ds,

where n = [α] + 1.

Lemma 2.3 Let α > 0, then the fractional differential equation

Dα
0+u(t) = 0

has a solution

u(t) = C1tα–1 + C2tα–2 + C3tα–3 + · · · + Cntα–n, Ci ∈ R, i = 1, 2, . . . , n,

where n – 1 < α < n.

Lemma 2.4 Let α > 0. Then the following equality holds for u ∈ L(0, 1), Dα
0+ u(t) ∈ L(0, 1):

Iα
0+ Dα

0+ u(t) = u(t) + C1tα–1 + C2tα–2 + · · · + Cntα–n,

Ci ∈ R, i = 1, 2, . . . , n, where n – 1 < α ≤ n.

Lemma 2.5 Assume that h ∈ L1[0, 1], x ∈ ACn[0, 1] and n – 1 < σ ≤ n with n ≥ 3, then the
solution to the fractional differential equation

Dσ x(t) + h(t) = 0, t ∈ [0, 1] (2.1)

with multi-point and integral boundary conditions

⎧
⎨

⎩

x(i)(0) = 0, i = 0, 1, 2, . . . , n – 2,

x(1) =
∑m–2

i=1 βi
∫ ηi

0 x(s) ds +
∑m–2

i=1 γix(ηi)
(2.2)

is given by

x(t) =
∫ 1

0
G(t, s)h(s) ds +

tσ–1

ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)h(s) ds +

tσ–1

ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)h(s) ds,

where ξ = 1 – 1
σ

∑m–2
i=1 βiη

σ
i –

∑m–2
i=1 γiη

σ–1
i > 0 and

G(t, s) =
1


(σ )

⎧
⎨

⎩

tσ–1(1 – s)σ–1 – (t – s)σ–1, 0 ≤ s ≤ t ≤ 1,

tσ–1(1 – s)σ–1, 0 ≤ t ≤ s ≤ 1,
(2.3)

H(t, s) =
1


(σ + 1)

⎧
⎨

⎩

tσ (1 – s)σ–1 – (t – s)σ , 0 ≤ s ≤ t ≤ 1,

tσ (1 – s)σ–1, 0 ≤ t ≤ s ≤ 1.
(2.4)
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Proof By Lemmas 2.3 and 2.4, the following equality holds:

x(t) = C1tσ–1 + Cσ–2
2 + C3tσ–3 + · · · + Cntσ–n –

1

(σ )

∫ t

0
(t – s)σ–1h(s) ds.

In view of the boundary conditions, the parameters C2 = C3 = · · · = Cn = 0 are concluded
and

x(1) = –
1


(σ )

∫ 1

0
(1 – s)σ–1h(s) ds + C1

=
m–2∑

i=1

βi

∫ ηi

0
x(s) ds +

m–2∑

i=1

γix(ηi)

=
m–2∑

i=1

βi

[

–Iσ+1h(ηi) +
C1η

σ
i

σ

]

+
m–2∑

i=1

γi
[
–Iσ h(ηi) + C1η

σ–1
i

]
,

i.e.,

{

1 –
1
σ

m–2∑

i=1

βiη
σ
i –

m–2∑

i=1

γiη
σ–1
i

}

C1 =
1


(σ )

∫ 1

0
(1 – s)σ–1h(s) ds

–
m–2∑

i=1

βi


(σ + 1)

∫ ηi

0
(ηi – s)σ h(s) ds

–
m–2∑

i=1

γi


(σ )

∫ ηi

0
(ηi – s)σ–1h(s) ds.

So,

C1 =
1
ξ

{∫ 1

0

(1 – s)σ–1


(σ )
h(s) ds –

m–2∑

i=1

βi

∫ ηi

0

(ηi – s)σ


(σ + 1)
h(s) ds

–
m–2∑

i=1

γi

∫ ηi

0

(ηi – s)σ–1


(σ )
h(s) ds

}

.

Hence, the solution is

x(t) = –
1


(σ )

∫ t

0
(1 – s)σ–1h(s) ds +

tσ–1

ξ
(σ )

∫ 1

0
(1 – s)σ–1h(s) ds

–
tσ–1

ξ

m–2∑

i=1

βi


(σ + 1)

∫ ηi

0
(ηi – s)σ h(s) ds –

tσ–1

ξ

m–2∑

i=1

γi


(σ )

∫ ηi

0
(ηi – s)σ–1h(s) ds

= –
1


(σ )

∫ t

0
(1 – s)σ–1h(s) ds +

tσ–1


(σ )

∫ 1

0
(1 – s)σ–1h(s) ds

+
tσ–1

ξ
(σ )

{
1
σ

m–2∑

i=1

βiη
σ
i +

m–2∑

i=1

γiη
σ–1
i

}∫ 1

0
(1 – s)σ–1h(s) ds

–
tσ–1

ξ

m–2∑

i=1

βi


(σ + 1)

∫ ηi

0
(ηi – s)σ h(s) ds –

tσ–1

ξ

m–2∑

i=1

γi


(σ )

∫ ηi

0
(ηi – s)σ–1h(s) ds
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=
∫ 1

0
G(t, s)h(s) ds +

tσ–1

ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)h(s) ds +

tσ–1

ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)h(s) ds.

Therefore, we complete the proof. �

Lemma 2.6 The functions G(t, s) and H(t, s) obtained in Lemma 2.5 are continuous and
nonnegative on [0, 1] × [0, 1]. It is easy to figure out that 0 ≤ G(t, s) ≤ 1


(σ ) and 0 ≤ H(t, s) ≤
1


(σ+1) hold for all t, s ∈ [0, 1].

3 Main results
Based on the lemmas mentioned in the previous section, we define an operator S : C → C
as follows:

(Sx)(t) =
∫ 1

0
G(t, s)f

(
s, x(s)

)
ds +

tσ–1

ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)f

(
s, x(s)

)
ds

+
tσ–1

ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)f

(
s, x(s)

)
ds, (3.1)

where C = C([0, 1], R) denotes the Banach space of all continuous functions defined on
[0, 1] that are mapped into R with the norm defined as ‖x‖ = supt∈[0,1] |x(t)|. And G and H
are provided in Lemma 2.6.

Solutions to the problem exist if and only if the operator S has fixed points. In order to
make the analysis clear, we introduce some fixed point theorems that play a role in our
proof.

Lemma 3.1 (Krasnoselskii [19]) Let Q be a closed, convex, bounded and nonempty subset
of a Banach space Y . Let ψ1, ψ2 be operators such that

(i) ψ1v1 + ψ2v2 ∈ Q whenever v1, v2 ∈ Q;
(ii) ψ1 is compact and continuous;

(iii) ψ2 is a contraction mapping.
Then there exists v ∈ Q such that v = ψ1v1 + ψ2v2.

Lemma 3.2 ([19]) Let X be a Banach space. Assume that T : X → X is a completely con-
tinuous operator and the set V = {u ∈ X : u = εTu, 0 < ε < 1} is bounded. Then T has a fixed
point in X.

Lemma 3.3 ([20]) Let E be a Banach space, E1 be a closed, convex subset of E, V be an
open subset of E1 and 0 ∈ V . Suppose that U : V → E1 is a continuous, compact (that is,
U(V ) is a relatively compact subset of E1) map. Then either

(i) U has a fixed point in V , or
(ii) there are x ∈ ∂V (the boundary of V in E1) and k ∈ (0, 1) with x = kU(x).

For convenience, we set some notations:

α1 =
1


(σ )
+

1
ξ

m–2∑

i=1

βi
(σ + 1)ησ

i – σησ+1
i

σ (σ + 1)
(σ + 1)
+

1
ξ

m–2∑

i=1

γi
ησ–1

i – ησ
i


(σ + 1)
,

α2 = α1 –
1


(σ )
.

(3.2)
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Theorem 3.4 Let f : [0, 1] × R → R be a continuous function that satisfies the conditions:

(H1) |f (t, x) – f (t, y)| ≤ l|x – y| for all t ∈ [0, 1] and x, y ∈ R;
(H2) |f (t, x)| ≤ ω(t) for all (t, x) ∈ [0, 1] × R and ω ∈ C([0, 1], R+),

then BVP (1.3) has at least one solution on [0, 1] when lα2 ≤ 1 with α2 given in (3.2).

Proof Define a set Bρ = {x ∈ C : ‖x‖ ≤ ρ}, where ρ ≥ ‖ω‖α1 with α1 defined in (3.2) and
‖ω‖ = supt∈[0,1] |ω(t)|. Let the operators S1 and S2 on Bρ be defined as

(S1x)(t) =
∫ 1

0
G(t, s)f

(
s, x(s)

)
ds,

(S2x)(t) =
tσ–1

ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)f

(
s, x(s)

)
ds +

tσ–1

ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)f

(
s, x(s)

)
ds.

It is easy to understand ‖S1x + S2y‖ ≤ ‖ω‖α1 for any x, y ∈ Bρ that means S1x + S2y ∈ Bρ .
By assumption(H1),

‖S2x – S2y‖ = sup
t∈[0,1]

|S2x – S2y|

≤ sup
t∈[0,1]

tσ–1

ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)

∣
∣f (s, x) – f (s, y)

∣
∣ds

+ sup
t∈[0,1]

tσ–1

ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)

∣
∣f (s, x) – f (s, y)

∣
∣ds

≤ l
ξ

{m–2∑

i=1

βi
(σ + 1)ησ

i – σησ+1
i

σ (σ + 1)
(σ + 1)
+

m–2∑

i=1

γi
ησ–1

i – ησ
i


(σ + 1)

}

‖x – y‖

≤ lα2‖x – y‖.

The operator S2 is a contraction because of lα2 < 1. As we all know, S1 is a continuous
result from the continuity of f . Moreover,

‖S1x‖ = sup
t∈[0,1]

{∫ 1

0
G(t, s)f

(
s, x(s)

)
ds

}

≤ sup
t∈[0,1]

{∫ 1

0

|f (s, x(s))|

(σ )

ds
}

≤ ‖ω‖

(σ )

,

which implies that S1 is uniformly bounded on Bρ . Apart from that, the following inequal-
ities hold with sup(t,x)∈[0,1]×Bρ

|f (t, x)| = fm < +∞ and 0 < t1 < t2 < 1:

∣
∣(S1x)(t2) – (S1x)(t1)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(t2, s)f

(
s, x(s)

)
ds –

∫ 1

0
G(t1, s)f

(
s, x(s)

)
ds

∣
∣
∣
∣

≤
∫ 1

0

[
G(t2, s) – G(t1, s)

]∣
∣f

(
s, x(s)

)∣
∣ds

≤ fm


(σ + 1)
[(

tσ–1
2 – tσ–1

1
)

+
(
tσ
2 – tσ

1
)]

.

The operator S1 is compact due to the Arzela-Ascoli theorem. Since three conditions
are satisfied, BVP (1.3) has at least one solution on [0, 1] by application of Krasnoselskii’s
fixed point theorem. �
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Theorem 3.5 Assume that there exists a constant L such that |f (t, x)| ≤ L for any t ∈ [0, 1]
and x ∈ C[0, 1]. Then there exists at least one solution to BVP (1.3).

Proof Firstly, we set out to verify that the operator S given in (3.1) is completely continu-
ous. Define a bounded set U ⊂ C([0, 1], R+), then |(Sx)(t)| ≤ Lα1 holds when we take x ∈ U .
On the top of that,

∣
∣(Sx)(t2) – (Sx)(t1)

∣
∣ =

∣
∣
∣
∣
∣

∫ 1

0

[
G(t2, s) – G(t1, s)

]
f
(
s, x(s)

)
ds

+
tσ–1
2 – tσ–1

1
ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)f

(
s, x(s)

)
ds

+
tσ–1
2 – tσ–1

1
ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)f

(
s, x(s)

)
ds

∣
∣
∣
∣
∣

≤ L
{

(tσ–1
2 – tσ–1

1 ) + (tσ
2 – tσ

1 )

(σ + 1)

+ α2
(
tσ–1
2 – tσ–1

1
)
}

.

Hence, S is equicontinuous on [0, 1] in view of tσ and tσ–1 is equicontinuous on [0, 1].
The operator S is deduced to be completely continuous by the Arzela-Ascoli theorem
along with the continuity of S decided by f .

Secondly, we consider the set V = {x ∈ C : x = λSx, 0 < λ < 1} and prove that V is
bounded. In fact, for each x ∈ V and t ∈ [0, 1],

∥
∥x(t)

∥
∥ =

∥
∥λ(Sx)(t)

∥
∥

≤ L

{
1


(σ )
+

1
ξ

m–2∑

i=1

βi
(σ + 1)ησ

i – σησ+1
i

σ (σ + 1)
(σ + 1)
+

1
ξ

m–2∑

i=1

γi
ησ–1

i – ησ
i


(σ + 1)

}

= Lα1.

Consequently, the set V is bounded by definition.
Finally, we conclude that BVP (1.3) has at least one solution according to Lemma 3.5 and

the proof is completed. �

Theorem 3.6 Assume that f : [0, 1] × R → R is a continuous function and satisfies
condition(H1) with lα1 < 1, where α1 is defined in (3.2). Then the BVP has a unique so-
lution on [0, 1].

Proof Let Pr = {x ∈ C : ‖x‖ ≤ r} be a bounded set. To show SPr ⊂ Pr with the operator S
defined in (3.1), |f (s, x(s))| ≤ lr + δ holds when we take x ∈ Pr for t ∈ [0, 1] and with the
condition provided by supt∈[0,1] |f (t, 0)| = δ and r ≥ δα1

1–lα1
. Beyond that,

∥
∥(Sx)

∥
∥ ≤ sup

t∈[0,1]

{∫ 1

0
G(t, s)

∣
∣f

(
s, x(s)

)∣
∣ds +

tσ–1

ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)

∣
∣f

(
s, x(s)

)∣
∣ds

+
tσ–1

ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)

∣
∣f

(
s, x(s)

)∣
∣ds

}

≤ (lr + δ)α1 ≤ r.
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SPr ⊂ Pr is strictly proved. Next, choosing x, y ∈ C with t ∈ [0, 1], we get

‖Sx – Sy‖ ≤ sup
t∈[0,1]

{∫ 1

0
G(t, s)

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣ds

+
tσ–1

ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣ds

+
tσ–1

ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣
∣ds

}

≤ lα1‖x – y‖.

The operator S is a contraction with the assumption lα1 < 1. Therefore, BVP (1.3) has a
unique solution by Banach’s contraction mapping principle. �

Theorem 3.7 Let f : [0, 1] × R → R be a continuous function, and assume that

(H3) there exist a function p ∈ C([0, 1], R+) and a nondecreasing function q : R+ → R+ such
that

∣
∣f (t, x)

∣
∣ ≤ p(t)q

(‖x‖) for all (t, x) ∈ [0, 1] × R;

(H4) there exists a constant N > 0 such that

N

{

q(v)‖p‖
{

1

(σ )

+
1
ξ

m–2∑

i=1

βi
(σ + 1)ησ

i – σησ+1
i

σ (σ + 1)
(σ + 1)
+

1
ξ

m–2∑

i=1

γi
ησ–1

i – ησ
i


(σ + 1)

}}–1

≤ 1.

Then BVP (1.3) has at least one solution on [0, 1].

Proof The first step is to show that the operator S given in (3.1) maps bounded sets into
bounded sets in C. Let v be a positive number and Bv = {x ∈ C : ‖x‖ ≤ v} be a bounded set
in C. For each x ∈ Bv and by(H3), the following equalities are obtained:

∣
∣(Sx)(t)

∣
∣ ≤

∫ 1

0
G(t, s)p(s)q

(‖x‖)ds +
tσ–1

ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)p(s)q

(‖x‖)ds

+
tσ–1

ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)p(s)q

(‖x‖)ds

≤ q(v)‖p‖
{

1

(σ )

+
1
ξ

m–2∑

i=1

βi
(σ + 1)ησ

i – σησ+1
i

σ (σ + 1)
(σ + 1)
+

1
ξ

m–2∑

i=1

γi
ησ–1

i – ησ
i


(σ + 1)

}

= q(v)‖p‖α1.

The next step is to verify that the operator S maps bounded sets into equicontinuous
sets of C.
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Choose t1, t2 ∈ [0, 1] with t1 < t2 and take x ∈ Bv,

∣
∣(Sx)t2 – (Sx)t1

∣
∣ =

∣
∣
∣
∣
∣

∫ 1

0

[
G(t2, s) – G(t1, s)

]
f
(
s, x(s)

)
ds

+
tσ–1
2 – tσ–1

1
ξ

m–2∑

i=1

βi

∫ 1

0
H(ηi, s)f

(
s, x(s)

)
ds

+
tσ–1
2 – tσ–1

1
ξ

m–2∑

i=1

γi

∫ 1

0
G(ηi, s)f

(
s, x(s)

)
ds

∣
∣
∣
∣
∣

≤ q(v)‖p‖
{

(tσ–1
2 – tσ–1

1 ) + (tσ
2 – tσ

1 )

(σ + 1)

+ α2
(
tσ–1
2 – tσ–1

1
)
}

.

By the Arzela-Ascoli theorem, the operator S is completely continuous since the right-
hand side tends to zero independent of x ∈ Bv as t2 → t1. Let x be a solution of BVP (1.3),
then for μ ∈ (0, 1) and by the same method applied to show the boundedness of S, the
results hold:

∣
∣x(t)

∣
∣ =

∣
∣μ(Sx)(t)

∣
∣

≤ q
(‖x‖)‖p‖

{
1


(σ )
+

1
ξ

m–2∑

i=1

βi
(σ + 1)ησ

i – σησ+1
i

σ (σ + 1)
(σ )
+

1
ξ

m–2∑

i=1

γi
ησ–1

i – ησ
i


(σ + 1)

}

,

i.e.,

‖x‖
{

q(v)‖p‖
{

1

(σ )

+
1
ξ

m–2∑

i=1

βi
(σ + 1)ησ

i – σησ+1
i

σ (σ + 1)
(σ + 1)
+

1
ξ

m–2∑

i=1

γi
ησ–1

i – ησ
i


(σ + 1)

}}–1

≤ 1.

The final step is to select a set Q = {x ∈ C : ‖x‖ < N + 1} in order to take(H4) into con-
sideration where there exists N such that ‖x‖ �= N . Even though S : Q → C is completely
continuous can be verified, there is no x ∈ ∂N that can satisfy x = μS(x) for μ ∈ (0, 1) de-
cided by the selection of N .

Above all, we complete the proof that the operator S has a fixed point in Q which is a
solution to BVP (1.3). �

4 Examples
Example 4.1 Consider the fractional differential equations with boundary value as fol-
lows:

⎧
⎪⎪⎨

⎪⎪⎩

D 7
2 x(t) + t sin x + e–t tan–1 x + 1

2 = 0, t ∈ [0, 1],

x′(0) = 0, x′′(0) = 0,

x(1) = 5
2
∫ 1

4
0 x(s) ds + 4

∫ 1
3

0 x(s) ds + 3
2 x( 1

4 ) + 2x( 1
3 ).

(4.1)

From the equation above, it is clear that σ = 7
2 , m = 2, β1 = 5

2 , β2 = 4, γ1 = 3
2 , γ2 = 2, η1 = 1

4 ,
η2 = 1

3 . Consequently, we can get ξ = 0.7948064, α1 = 0.3164000 and α2 = 0.0154990 by
computation.
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Since f (t, x) = t sin x + e–t cos x + 1
2 ,

∣
∣f (t, x) – f (t, y)

∣
∣ =

∣
∣t sin x – t sin y + e–t tan–1 x – e–t tan–1 y

∣
∣

≤ t| sin x – sin y| + e–t∣∣tan–1 x – tan–1 y
∣
∣

≤ 2|x – y|,

that implies l = 2 and both lα1 < 1 and lα2 < 1 hold. Problem (4.1) has a unique solution
on [0, 1] because all the conditions of Theorem 3.6 are satisfied.

Example 4.2 Keep investigating a more complicated equation defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

D 9
2 x(t) + (1 + t)(5 cos x + sin x

2 ) = 0, t ∈ [0, 1],

x′(0) = 0, x′′(0) = 0, x(3)(0) = 0,

x(1) = 3
∫ 1

3
0 x(s) ds + 2

∫ 1
2

0 x(s) ds + 4
∫ 2

3
0 x(s) ds + x( 1

3 ) + 5
2 x( 1

2 ) + 1
2 x( 2

3 ).

(4.2)

Some important figures, such as ξ = 0.4689267, can be obtained. Obviously, |f (t, x)| ≤
p(t)q(|x|) with p(t) = 1 + t and q(|x|) = 5 + |x|

2 . Besides,

N

{

q(N)‖p‖
{

1

(σ )

+
1
ξ

m–2∑

i=1

βi
(σ + 1)ησ

i – σησ+1
i

σ (σ + 1)
(σ + 1)
+

1
ξ

m–2∑

i=1

γi
ησ–1

i – ησ
i


(σ + 1)

}}–1

> 1,

when N > 1.1258514 holds. Therefore, the conclusion that Problem (1.3) has at least one
solution can be deduced as the assumptions in Theorem 3.7 satisfy all the conditions in
Lemma 3.3.

5 Conclusion
We have proved the existence of solutions for fractional differential equations with integral
and multi-point boundary conditions. The problem is issued by applying some fixed point
theorems and the properties of Green’s function. We also provide examples to make our
results clear.
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