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Abstract
In this paper, we consider the Dirichlet boundary value problem to singular semilinear
subelliptic equation on the Heisenberg group

–�Hu =
1
uγ

+ f (u), γ > 0.

We prove the positivity and continuity up to the boundary for the weak solutions. We
also conclude monotonicity of cylindrical solutions to the problem based on a study
of the equation –�Hu0 = 1

u
γ
0
. The main technique is a generalization of the moving

plane method to the Heisenberg group.
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1 Introduction
Crandall, Rabinowitz, and Tartar [1] considered the Dirichlet problem to elliptic equa-
tion with singular nonlinearity and deduced the existence and continuity of solutions. The
Dirichlet problem on the sufficiently regular bounded domain to the elliptic equation

�u + p(x)
1

uγ
= 0, γ > 0

was treated by Lazer and Mckenna [2], and the existence of solutions with smoothing in
the domain and continuity up to the boundary was given under the assumption p(x) > 0.
Boccardo and Orsina [3] derived the existence, regularity, and nonexistence for the Dirich-
let problem to the model

–�u =
f (x)
uγ

,

where the results depend on γ and the summability of f (x) in some Lebesgue spaces.
Canino and Degiovanni [4] applied a variational approach to the singular semilinear

elliptic equation

–�u = u–β + g(x, u), β > 0,
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and obtained some properties of solutions u and u0, where u0 is the solution of the Dirich-
let problem to the equation

–�u0 = u0
–β .

Based on the approach in [4] and the moving plane method, the monotonicity properties
of weak solutions of the Dirichlet problem to the singular elliptic equation

–�u =
1

uγ
+ f (u)

were proved by Canino, Grandinetti, and Sciunzi [5].
Along with the development of theory of degenerate elliptic partial differential equa-

tions, there were many attempts to extend various results of elliptic equations to subellip-
tic equations. Birindelli and Prajapat [6] derived a Liouville theorem for the nonnegative
cylindrical solutions of the equation

�Hu + up = 0

in the Heisenberg groupH
n = (R2n+1,◦), where �H is the sub-Laplacian on H

n, 0 < p < Q+2
Q–2 ,

by using the CR inversion to a regular function u. Xu [7] determined that there exist C∞(�)
solutions of the Dirichlet problem

⎧
⎨

⎩

∑m
j=1 X∗

j Xj + cu = f (x, u) in �,

u = ϕ on ∂�,

where f and ϕ satisfy proper smooth conditions, {Xj} (j = 1, . . . , m) is a system of vector
fields satisfying Hörmander’s condition, � is a bounded domain, and its boundary ∂� is
smooth and noncharacteristic for {Xj}. By extending the Perron method in the Euclidean
space to the Carnot group and constructing barrier functions, the existence and unique-
ness of solutions for the Dirichlet problem

⎧
⎨

⎩

Lu + f (x, u) = 0 in �,

u = ϕ on ∂�,

where L is the sub-Laplacian on the Carnot group, were established by Yuan and Yuan [8].
We also refer the readers to [9] and [10] for the related results.

The purpose of this paper is to consider the Dirichlet problem in H
n to the subelliptic

equation with singular nonlinearities

⎧
⎨

⎩

–�Hu = 1
uγ + f (u), ξ ∈ �,

u = 0, ξ ∈ ∂�,
(1.1)

where � is a bounded convex domain (see [11, 12]) in H
n with boundary ∂� satisfying the

Wiener criterion (for any a ∈ (0, 1), let the Cj be the capacity of the set BH(ξ0, aj)∩�C ; then
ξ0 ∈ ∂� is a regular point if and only if

∑∞
j=0 Cj/aj(Q–2) diverges; see [13, 14] etc.), γ > 0,

and f satisfies the following condition:
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(F) f is a nonnegative nondecreasing locally Lipschitz function, f (s) > 0 for any s > 0,
and f (0) ≥ 0.

We say that u ∈ H1(�) is a weak solution to (1.1) if for any ϕ ∈ C∞
0 (�),

∫

�

∇Hu · ∇Hϕ =
∫

�

(
1

uγ
+ f

)

ϕ.

We first consider the Dirichlet problem

⎧
⎨

⎩

–�Hu0 = 1
u0γ , ξ ∈ �,

u0 = 0, ξ ∈ ∂�.
(1.2)

By borrowing the method in [3] to our setting we prove that existence, uniqueness, and
boundedness of weak positive solutions un for the approximation problem

⎧
⎨

⎩

–�Hun = 1
(un+ 1

n )γ
, ξ ∈ �,

un = 0, ξ ∈ ∂�,
(1.3)

for each fixed n (the bound of un in H1
0 (�) is local when γ > 1), and then we obtain the

existence and uniqueness of a weak solution u of (1.2) as the limit of an increasing sequence
of positive solutions {un}. Since ∂� satisfies the Wiener criterion, we use the sub-super
solution method similarly to [4] and get that the positive solution u0 of (1.2) is continuous
up to ∂�. The monotonicity of u0 is shown via the moving plane method.

Similarly to the method of energy functional in [4], we define the functional Ff : L2(�) →
(–∞, +∞] to problem (1.1) by

Ff (u) =

⎧
⎨

⎩

1
2
∫

�
|∇H(u – u0)|2 +

∫

�
G0(ξ , u – u0) –

∫

�
f (ξ , u – u0) if u ∈ u0 + H1

0 (�),

+∞ otherwise,

where G0 : � ×R → [0, +∞] is the Borel function

G0(ξ , s) = 	
(
u0(ξ ) + s

)
– 	

(
u0(ξ )

)
+ su–β

0 (ξ )

with

	(s) =

⎧
⎨

⎩

–
∫ s

1 t–β if s ≥ 0,

+∞ if s < 0.

It follows that G0(ξ , 0) = 0 and G0(ξ , ·) is convex and lower semicontinuous for any ξ ∈ �

and that Ff is convex, lower semicontinuous, and coercive with Ff (u0) = 0. The effective
domain of Ff is {u ∈ L2(�) : Ff (u) < +∞}, which is independent of f . Moreover, if u0 is the
minimum of F0, then the effective domain of Ff is

{
u ∈ u0 + H1

0 (�)
} ⊆ H1

loc(�),
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and we see that u ∈ H1
loc(�) is a weak solution to (1.1). Motivated by the idea in [5], we use

the decomposition

u = u0 + w

and demonstrate two maximum principles for w satisfying

–�Hw = –�Hu + �Hu0. (1.4)

Then the monotonicity of w is derived. Based on this, we arrive at the monotonicity
of u.

To obtain the monotonicity of u, we apply the moving plane method onH
n in [6] (see also

[15–18]) by adopting the simpler way of [15] in the proof. Since �H is not invariant with
respect to the general reflection, Birindelli and Prajapat [6] introduced the so-called H-
reflection and pointed out that �H is invariant with respect to the H-reflection. Applying
the H-reflection and the moving plane method, we prove that the cylindrical solution of
(1.1) is monotone.

Our main result is the following:

Theorem 1.1 Let � be a bounded convex domain symmetric with respect to Tλ1 about
H-reflection in H

n such that ∂� satisfies the Wiener criterion. If u ∈ H1
0 (�) (γ ≤ 1) or u ∈

H1
loc(�) (γ > 1) is a weak solution to (1.1), then u is positive, and u ∈ C(�). If u is a positive

cylindrical solution to (1.1), then for any λ0 < λ < λ1 (see Section 2),

u(ξ ) < uλ(ξ ) for any ξ ∈ �λ (1.5)

with respect to t (the definitions of Tλ1 , uλ(ξ ), and �λ will be given in Section 2).

Since �H on H
n is essentially different from � on R

n, the proof of Theorem 1.1 is also
essentially different from those for � on R

n. Unlike the Euclidean space case, there is no
Poincaré’s inequality for the narrow region in H

n, so we utilize the fact that the volume of
the narrow region is small enough to prove the maximum principle on the narrow region.
Because the invariance of �H does not hold for the reflection uλ(x, y, t) = u(y, 2λ – x, t) or
uλ(x, y, t) = u(2λ – y, x, t), the monotonicity of solutions to x or y cannot be established.
The assumption that the boundary satisfies the Wiener criterion is weaker than the outer
sphere or cone condition.

The paper is organized as follows. In Section 2, we collect some well-known facts about
H

n and the subelliptic operator �H. In Section 3, we give the existence, regularity, and
monotonicity of un to (1.3). Section 4 is devoted to the regularity and monotonicity of u0

to (1.2) and to the interior gradient estimate for u0 ∈ C3(�). Finally, in Section 5, we derive
the maximum principles of w and prove Theorem 1.1.

2 Preliminaries
In this section, we list some facts related to the Heisenberg group and sub-Laplacian �H.
For proofs and more details, we refer, for example, to [19–22].
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The Heisenberg group H
n is the Euclidean space R

2n+1 (n ≥ 1) endowed with the group
action ◦ defined by

ξ0 ◦ ξ =

(

x + x0, y + y0, t + t0 + 2
n∑

i=1

(xiyi0 – yixi0 )

)

, (2.1)

where ξ = (x1, . . . , xn, y1, . . . , yn, t) := (x, y, t) ∈R
n ×R

n ×R, ξ0 = (x0, y0, t0). We denote by δλ

the dilations on R
2n+1, that is,

δλ(ξ ) =
(
λx,λy,λ2t

)
, (2.2)

which satisfies δλ(ξ0 ◦ ξ ) = δλ(ξ0) ◦ δλ(ξ ).
The left-invariant vector fields corresponding to H

n are of the form

Xi =
∂

∂xi
+ 2yi

∂

∂t
, i = 1, . . . , n,

Yi =
∂

∂yi
– 2xi

∂

∂t
, i = 1, . . . , n,

T =
∂

∂t
.

The Heisenberg gradient of a function u is defined as

∇Hu = (X1u, . . . , Xnu, Y1u, . . . , Ynu). (2.3)

The sub-Laplacian �H on H
n is

�H =
n∑

i=1

X2
i + Y 2

i (2.4)

with the expansion

�H =
n∑

i=1

∂2

∂x2
i

+
∂2

∂y2
i

+ 4yi
∂2

∂xi ∂t
– 4xi

∂2

∂yi ∂t
+ 4

(
x2

i + y2
i
) ∂2

∂t2 .

It is easy to check that

[Xi, Yj] = –4Tδij, [Xi, Xj] = [Yi, Yj] = 0, i, j = 1, . . . , n,

and {X1, . . . , Xn, Y1, . . . , Yn} satisfies Hörmander’s rank condition (see [22]). In particular,
this implies that �H is hypoelliptic (see [22]) and the solution of equation including �H

satisfies the maximum principle (see [20, 23]).
Denote by Q = 2n + 2 the homogeneous dimension of Hn. The norm |ξ |H is the distance

of ξ to the origin (see [21]):

|ξ |H =

( n∑

i=1

(
x2

i + y2
i
)2 + t2

) 1
4

. (2.5)
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Afterward, we also denote r = (|x|2 + |y|2) 1
2 . Using this norm, we can define the distance

between two points in H
n in the natural way:

dH(ξ ,η) =
∣
∣η–1 ◦ ξ

∣
∣
H

,

where η–1 denotes the inverse of η with respect to the group action ◦, that is, η–1 = –η.
The open ball of radius R > 0 centered at ξ0 is the set

BH(ξ0, R) =
{
η ∈H

n|dH(η, ξ0) < R
}

.

By the dilation of the group, ξ → |ξ |H is homogeneous of degree one with respect to δλ,
and

∣
∣BH(ξ0, R)

∣
∣ =

∣
∣BH(0, R)

∣
∣ =

∣
∣BH(0, 1)

∣
∣RQ,

where | · | denotes the Lebesgue measure. Noting that Xi and Yi are homogeneous of degree
minus one with respect to δλ, that is,

Xi(δλ) = λδλ(Xi), Yi(δλ) = λδλ(Yi),

we see that �H is homogeneous of degree minus two and left invariant.
Define the Sobolev space

H1(�) =
{

u|u, |∇Hu| ∈ L2(�)
}

,

which is a Banach space with the norm

‖u‖H1(�) = ‖u‖L2(�) + ‖∇Hu‖L2(�).

Denote by H1
0 (�) the closure of C∞

0 (�) in H1(�).
If u(x, y, t) = u(r, t), then we say that u is cylindrical. It is easy to see that

�Hu(r, t) =
∂2u
∂r2 +

2n – 1
r

∂u
∂r

+ 4r2 ∂2u
∂t2 . (2.6)

If the weak solution u ∈ H1
0 (�) to (1.1) is cylindrical, then u is said to be the cylindrical

solution to (1.1).
For any ξ = (x, y, t) ∈ H

n and λ ∈ R, we set

Tλ =
{
ξ ∈ H

n|t = λ
}

and

�λ = {ξ ∈ �|t < λ}.

Let ξλ = (y, x, 2λ – t) be the H-reflection of ξ about Tλ, and let

�′
λ = {ξλ ∈ �|ξ ∈ �λ}.
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Denote

λ0 = min{λ : Tλ ∩ � �= ∅}

and

λ1 = max
{
λ : �λ ∪ Tλ ∪ �′

λ = �
}

.

Similarly to [6], we denote by uλ the H-reflection of u about Tλ:

uλ(x, y, t) = uλ(r, t) = u(r, 2λ – t) = u(y, x, 2λ – t).

The following result is from [24].

Lemma 2.1 If f ∈ L∞(�) and u ∈ H1
0 (�) is a solution to the subelliptic equation

–�Hu = f ,

then

sup
�

u ≤ C‖f ‖L∞(�),

where C is a positive constant depending only on n and �.

Let us state Sobolev’s and Poincaré’s inequalities in H
n; see [25, 26].

Lemma 2.2 Let U be a bounded domain in H
n, and let � � U . If 1 < p < Q and u ∈

W 1,p
0 (�), then there exists C > 0 depending on n, p, and �, such that for any 1 ≤ q ≤ pQ

Q–p ,

(∫

�

|u|q
) 1

q
≤ C

(∫

�

|∇Hu|p
) 1

p
. (2.7)

If 1 ≤ p < ∞ and u ∈ W 1,p
0 (�), then

∫

�

|u|p ≤ C
∫

�

|∇Hu|p. (2.8)

Lemma 2.3 ([20, 23]) Let � be a bounded domain, and let K(ξ ) > 0. If u satisfies

–�Hu + Ku ≥ 0 on �; u = 0 in ∂�,

then u ≥ 0 on �. Furthermore, u > 0 on � unless u ≡ 0.

3 Solutions un to (1.3)
Let � be a bounded domain of Hn, and let γ > 0. In this section, we prove the existence,
uniqueness, and boundedness of solutions to the Dirichlet problem (1.3). We will work by
approximation similarly to [3].
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Lemma 3.1 Problem (1.3) has a nonnegative solution un ∈ H1
0 (�)∩L∞(�) for any given n.

Proof Let v ∈ L2(�). It is well known that the Dirichlet problem to the subelliptic equation

⎧
⎨

⎩

–�Hv∗ = 1
(|v|+ 1

n )γ
, ξ ∈ �,

v∗ = 0, ξ ∈ ∂�,
(3.1)

has a unique solution v∗ = S(v). Multiplying by v∗ the equation and integrating over �, we
have

∫

�

∣
∣∇Hv∗∣∣2 =

∫

�

(
–�Hv∗)v∗ =

∫

�

v∗

(|v| + 1
n )γ

≤ nγ

∫

�

∣
∣v∗∣∣.

By (2.8) in Lemma 2.2 and Hölder’s inequality we obtain

∫

�

(
v∗)2 ≤ C

∫

�

∣
∣∇Hv∗∣∣2 ≤ Cnγ

∫

�

∣
∣v∗∣∣ ≤ Cnγ

(∫

�

∣
∣v∗∣∣2

) 1
2

and

∥
∥v∗∥∥

L2(�) ≤ Cnγ .

Then the ball in L2(�) of radius Cnγ is invariant for S(v) = |v|. Using the Sobolev em-
bedding [25], we see that S is continuous and compact on L2(�), and by Schauder’s fixed
point theorem there exists un ∈ H1

0 (�) such that un = S(un), that is, un is a solution to the
problem

⎧
⎨

⎩

–�Hun = 1
(|un|+ 1

n )γ
, ξ ∈ �,

un = 0, ξ ∈ ∂�.

Noting that 1
(|un|+ 1

n )γ
≥ 0, Lemma 2.3 gives un ≥ 0, and then un solves (1.3). Since 1

(un+ 1
n )γ

in (1.3) belongs to L∞(�), Lemma 2.1 implies that un ∈ L∞(�). �

Lemma 3.2 A solution of (1.3) is unique.

Proof Since vn satisfies

–�Hvn =
1

(vn + 1
n )γ

in the distribution sense, it follows that

–�H(un – vn) =
1

(un + 1
n )γ

–
1

(vn + 1
n )γ

=
(vn + 1

n )γ – (un + 1
n )γ

(un + 1
n )γ (vn + 1

n )γ
. (3.2)

Taking (un – vn)+ as the test function and observing that

((

vn +
1
n

)γ

–
(

un +
1
n

)γ )

(un – vn)+ ≤ 0, (3.3)
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it follows by (3.2) that

0 ≤
∫

�

∣
∣∇H(un – vn)+∣

∣2 ≤ 0,

and therefore (un – vn)+ = 0 a.e. in �, which implies un ≤ vn. In the same way, taking
(vn – un)+ as the test function, we can prove that un ≥ vn. This proves the uniqueness. �

Lemma 3.3 The nonnegative solution sequence {un} from (1.3) is nondecreasing with re-
spect to n, and for every ω � �, there exists a constant cω > 0, independent on n, such that,
for any ξ ∈ ω,

un(ξ ) ≥ cω for every n. (3.4)

Proof For γ > 0, we have that

–�Hun =
1

(un + 1
n )γ

≤ 1
(un + 1

n+1 )γ

in the distribution sense, and then

–�H(un – un+1) ≤ 1
(un + 1

n+1 )γ
–

1
(un+1 + 1

n+1 )γ

=
(un+1 + 1

n+1 )γ – (un + 1
n+1 )γ

(un + 1
n+1 )γ (un+1 + 1

n+1 )γ
. (3.5)

Taking (un – un+1)+ as the test function in (3.5) and using

((

un+1 +
1

n + 1

)γ

–
(

un +
1

n + 1

)γ )

(un – un+1)+ ≤ 0, (3.6)

we have

0 ≤
∫

�

∣
∣∇H(un – un+1)+∣

∣2 ≤ 0,

which implies (un – un+1)+ = 0 a.e. in �, that is, un ≤ un+1, so {un} is nondecreasing.
Noting that u1 ∈ L∞(�) by Lemma 3.1 and using Lemma 2.1 to the equation –�Hu1 =

1
(u1+1)γ ≤ 1, we get that there exists a constant C > 0, only depending on � and Q, such
that ‖u1‖L∞(�) ≤ C and

–�Hu1 =
1

(u1 + 1)γ
≥ 1

(‖u1‖L∞(�) + 1)γ
≥ 1

(C + 1)γ
.

Lemma 2.3 implies that u1 > 0 in �, and then (3.4) also holds for u1. By the monotonicity
of un, (3.4) holds for un. �

Remark 3.1 Using (3.4), it follows that

–�Hun =
1

(un + 1
n )γ

≤ 1
(un)γ

≤ 1
c

γ

ω
,



Wang and Wang Boundary Value Problems  (2018) 2018:7 Page 10 of 22

and Lemma 2.1 yields

sup
ω

un ≤ C.

Lemma 3.4 Let un ∈ H1
0 (�) be the solution to (1.3). Then un is bounded if 0 < γ ≤ 1 and

locally bounded if γ > 1.

Proof If γ > 1, then by taking un as the test function in (1.3) and using Lemma 3.3 we have

∫

�

|∇Hun|2 =
∫

�

(–�Hun)un =
∫

�

un

(un + 1
n )γ

≤
∫

�

1
(un + 1

n )γ –1 ≤ |�|
cγ –1
ω

.

This shows that un is locally bounded. For 0 < γ ≤ 1, choosing un as the test function in
(1.3) and using Hölder’s inequality, we get that

∫

�

|∇Hun|2 =
∫

�

(–�Hun)un =
∫

�

un

(un + 1
n )γ

≤
∫

�

u1–γ
n

≤ |�|1– 1
m

(∫

�

u(1–γ )m
n

) 1
m

, m > 1. (3.7)

If γ = 1, then

∫

�

|∇Hun|2 =
∫

�

(–�Hun)un =
∫

�

un

un + 1
n

≤ |�|.

If 0 < γ < 1, the taking m in (3.7) satisfying 2∗ = (1 – γ )m and applying (2.7), we arrive at

(∫

�

u2∗
n

) 1
2∗

≤ C
(∫

�

|∇Hun|2
) 1

2 ≤ C|�|1– 1
m

(∫

�

u2∗
n

) 1
2m

.

Since 1
2∗ > 1

2m , this inequality implies un ∈ L2∗ (�). Using this estimate again together with
(3.7), we have

‖∇Hun‖L2(�) ≤ C,

so that un is bounded in H1
0 (�). �

Remark 3.2 Note that un ∈ C(�) since the right-hand side in (1.3) is nonsingular.

Lemma 3.5 Let un ∈ C(�) ∩ H1
0 (�) (γ ≤ 1) and un ∈ C(�) ∩ H1

loc(�) (γ > 1) be solutions
to (1.3). If un ≤ (un)λ on ∂�, then un ≤ (un)λ in � with respect to t, and then un < (un)λ in
� unless un ≡ (un)λ.

Proof Since un satisfies (1.3) and �H is invariant under the H-reflection, we have

–�H(un)λ =
1

((un)λ + 1
n )γ

. (3.8)
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Take positive functions φi ∈ C∞
0 (�), suppφi ⊆ supp (un – (un)λ)+, i = 1, 2, 3, . . . , such that

φi converges to (un – (un)λ)+ in C(�) ∩ H1
0 (�). Using φi as the test function in (3.8), we

have by combining (1.3) that

0 ≤ lim
i→∞

∫

�

∇H

(
un – (un)λ

) · ∇Hφi

= lim
i→∞

∫

�

(
–�H

(
un – (un)λ

))
φi

= lim
i→∞

∫

�

(
1

(un + 1
n )γ

–
1

((un)λ + 1
n )γ

)

φi

=
∫

�

(((un)λ + 1
n )γ – (un + 1

n )γ )(un – (un)λ)+

(un + 1
n )γ ((un)λ + 1

n )γ

≤ 0.

Then (un – (un)λ)+ = 0 a.e. in �, which implies by Lemma 2.3 that un ≤ (un)λ in �.
Assume that there exists ξ0 ∈ � such that un(ξ0) = (un)λ(ξ0) and let R = R(ξ0) > 0 be such

that B(ξ0, R) � �. We have that

–�H

(
un – (un)λ

)
=

1
(un + 1

n )γ
–

1
((un)λ + 1

n )γ
in B(ξ0, R) (3.9)

in the distribution sense. Since un(ξ0) > 0, we can assume that un > 0 in B(ξ0, R) for small R.
By Lemma 3.3, un ≥ cB(ξ0,R) > 0. Therefore,

1
(un + 1

n )γ
–

1
((un)λ + 1

n )γ
= c(ζ )

(
un – (un)λ

)
,

where c(ζ ) = –γ

ζγ +1 with ζ between un + 1
n and (un)λ + 1

n . We see that c(ζ ) is bounded by
using un ≥ cB(ξ0,R). Thus there exists a positive constant � ≥ |c(ζ )| such that

1
(un + 1

n )γ
–

1
((un)λ + 1

n )γ
+ �w ≥ 0 in B(ξ0, R).

Putting this into (3.9), we have

–�H

(
un – (un)λ

)
+ �

(
un – (un)λ

) ≥ 0 in B(ξ0, R).

By Lemma 2.3 this implies that un ≡ (un)λ in B(ξ0, R). The usual covering argument shows
that un ≡ (un)λ in �. �

4 Solutions to (1.2)
In this section, we get the regularity of solutions to (1.2) by using results to (1.3). Also,
we obtain the monotonicity of cylindrical solutions to (1.2). The gradient estimate and
Harnack inequality for classical solutions to (1.2) are provided by calculating the Harnack
quantity, which is similar to Li [27] and Ma and Wei [28].
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4.1 Regularity and symmetry of solutions to (1.2)
Lemma 4.1 Problem (1.2) allows a unique nonnegative solution u ∈ H1

0 (�) (γ ≤ 1) or u ∈
H1

loc(�) (γ > 1), and (3.4) is true for u0, that is, u0(ξ ) ≥ cω for ξ ∈ ω ⊂⊂ �.

Proof For every n, since the solution un ∈ H1
0 (�) to (1.3) is bounded by Lemma 3.4 and un

converges pointwise to u0 in � by Remark 3.1, it follows that un converges weakly to u0 in
H1

0 (ω), ω � �, that is, for any ϕ ∈ C1
0(�) such that suppϕ = ω,

lim
n→∞

∫

ω

∇Hun · ∇Hϕ =
∫

ω

∇Hu0 · ∇Hϕ. (4.1)

Noting that un satisfies (3.4), we have that, for any ϕ ∈ C1
0(�),

0 ≤
∣
∣
∣
∣

ϕ

(un + 1
n )γ

∣
∣
∣
∣ ≤ ‖ϕ‖L∞(�)

cγ
ω

.

By Lebesgue’s dominated convergence theorem,

lim
n→∞

∫

�

ϕ

(un + 1
n )γ

=
∫

�

ϕ

uγ
0

. (4.2)

This implies by (4.1) and (4.2) that problem (1.2) has a solution u0.
Using un ≥ cω on ω � �, this yields u0 ≥ 0 in �. The uniqueness can be proved as in the

proof of Lemma 3.2. �

For the equation �Hz = 0 in �, by [29] we have z ∈ C2(�).

Lemma 4.2 If ∂� satisfies the Wiener criterion and z1 ∈ H1
0 (�) ∩ C2(�) solves

–�Hz1 = 1 in �,

then z1 ∈ C(�) is positive with z1|∂� = 0.

Proof Let z2(ξ ) = x2
1

2 . Then �Hz2 = 1. Since ∂� satisfies the Wiener criterion, it follows by
[13] (p. 1158) that there exists z ∈ C(�) ∩ C2(�) such that

�Hz = 0 in � and z|∂� = z2.

We easily see that z – z2 ∈ H1
0 (�) ∩ C2(�) satisfies

–�H(z – z2) = 1 in �,

and therefore z1 = z – z2 ∈ C(�) is the required function with z1 > 0 and z|∂� = 0. �

Lemma 4.3 If ∂� satisfies the Wiener criterion, then there exists a solution u0 to problem
(1.2), and u0 ∈ C(�).
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Proof Taking u∗
0 = ((γ + 1)z1)

1
γ +1 , we have by Lemma 4.2 that

�Hu∗
0 +

(
u∗

0
)–γ

= –γ
(
(γ + 1)z1

) –2γ –1
γ +1 |∇Hz1|2 +

(
(γ + 1)z1

) –γ
γ +1 �Hz1 +

(
(γ + 1)z1

) –γ
γ +1

= –γ
(
(γ + 1)z1

) –2γ –1
γ +1 |∇Hz1|2 ≤ 0. (4.3)

Noting that u0 is nonnegative, we know by (4.3) that

0 ≤ u0 ≤ u∗
0 =

(
(γ + 1)z1

) 1
γ +1 ,

that is, u∗
0 and 0 are the super- and subsolutions of (1.2), respectively. This implies the

existence of a solution u0 to (1.2). Using z1 ∈ C(�) in Lemma 4.2, we have u0 ∈ C(�). �

Lemma 4.4 If ∂� satisfies the Wiener criterion, u0 ∈ C(�)∩H1
0 (�) (γ ≤ 1) or u0 ∈ C(�)∩

H1
loc(�) (γ > 1) is a cylindrical solution to problem (1.2), then for any λ0 < λ < λ1, we have

u0(ξ ) < (u0)λ(ξ ) for all ξ ∈ �λ (4.4)

with respect to t.

Proof Step 1. Suppose that λ is sufficiently close to λ0. Then by Lemma 3.3 we have that
un > 0 in �λ, and then un ≤ (un)λ on ∂�λ. Since un = (un)λ on the hyperplane Tλ, it follows
that un ≤ (un)λ in �λ, and then un < (un)λ on �λ by Lemma 3.5.

Step 2. Since Step 1 provides a starting point, we can move the plane Tλ to the right
keeping un ≤ (un)λ on �λ until its limiting position λ1. Denoting

λ = sup
{
λ|un ≤ (un)λ in �μ,μ ≤ λ

}
,

we claim that λ = λ1. Indeed, suppose λ < λ1; we will show that the plane Tλ can be moved
further to the right or, to be more rigorous, there exists ε > 0 such that, for any λ ∈ (λ,λ+ε),

un ≤ (un)λ. (4.5)

This is a contradiction to the definition of λ. Hence λ = λ1.
To prove (4.5), we separate �λ+ε into two parts, �λ–ε and �λ+ε \ �λ–ε for ε > 0.
Clearly, (un)λ̄ – un ≥ cε > 0 in �λ–ε for any ε > 0. Since (un)λ – un depends continuously

on λ, there exists ε > 0 sufficiently small such that, for all λ ∈ (λ,λ + ε), we have

(un)λ – un ≥ 0 in �λ–ε . (4.6)

On the other hand, since (un)λ – un ≥ 0 on ∂(�λ+ε \ �λ–ε) for fixed ε > 0, it follows by
Lemma 3.5 that

(un)λ – un ≥ 0 in �λ+ε \ �λ–ε . (4.7)

Combining (4.6) and (4.7), we prove (4.5).
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Using the equality λ = λ1 and the convergence of un to u0 a.e., we get that u0 ≤ (u0)λ on
�λ. So (4.4) is proved by Lemma 2.3. �

4.2 Harnack inequality for a solution to (1.2)
Results in the subsection are not used in the sequel, but they are of independent interest.

Lemma 4.5 Let u0 ∈ C3(�) be a positive solution to (1.2). Then, for any R = R(ξ0) > 0,
ξ0 ∈ �, and B(ξ0, 2R) ⊂ �, there exists a positive constant C = C(R) such that

|∇Hu0|2 ≤ Cu2
0 in B(ξ0, R). (4.8)

Proof Let w0 = log u0. Then

∇Hw0 = u–1
0 ∇Hu0 (4.9)

and

�Hw0 = –|∇Hw0|2 –
1

uγ +1
0

. (4.10)

Taking a smooth cut-off function φ with φ = 1 in B(ξ0, R) and φ = 0 outside B(ξ0, 2R),
define

P = φ|∇Hw0|2,

which as usual is called the Harnack quantity.
At the maximum point of P, we have ∇HP = 0 and �HP ≤ 0. Then

∇H

(|∇Hw0|2
)

= –φ–1∇Hφ|∇Hw0|2 = –φ–2P∇Hφ, (4.11)

|∇Hw0|2�Hφ + 2∇Hφ · ∇H

(|∇Hw0|2
)

+ φ�H

(|∇Hw0|2
) ≤ 0. (4.12)

Using the basic formula

�H|∇Hv|2 = 2
(
(∇H�Hv,∇Hv) +

∣
∣D2

H
v
∣
∣2), (4.13)

for any smooth function v in H
n, it follows

φ�H

(|∇Hw0|2
)

= 2φ(∇H�Hw0,∇Hw0) + 2φ
∣
∣D2

H
w0

∣
∣2. (4.14)

Let us estimate the right-hand side in (4.14). For the first term, we have

2φ(∇H�Hw0,∇Hw0) = 2φ

(

∇H

(

–|∇Hw0|2 –
1

uγ +1
0

)

,∇Hw0

)

= –2φ
(∇H

(|∇Hw0|2
)
,∇Hw0

)
+ 2(γ + 1)φ

(∇Hu0

uγ +2
0

,∇Hw0

)

= –2φ
(
–φ–2P∇Hφ,∇Hw0

)
+ 2(γ + 1)φ

|∇Hw0|2
uγ +1

0
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= 2φ–1(∇Hφ,∇Hw0)P +
2(γ + 1)

uγ +1
0

P

≥ –φ–1|∇Hφ|2P – φ–1|∇Hw0|2P +
2(γ + 1)

uγ +1
0

P

= –φ–1|∇Hφ|2P – φ–2P2 +
2(γ + 1)

uγ +1
0

P. (4.15)

Due to (4.10), the second term of (4.14) satisfies

2φ
∣
∣D2

H
w0

∣
∣2 ≥ 2φ|�Hw0|2

= 2φ

∣
∣
∣
∣–|∇Hw0|2 –

1
uγ +1

0

∣
∣
∣
∣

2

= 2φ|∇Hw0|4 +
4φ|∇Hw0|2

uγ +1
0

+
2φ

u2(γ +1)
0

≥ 2
φ

P2 +
4

uγ +1
0

P. (4.16)

Substituting (4.15) and (4.16) into (4.14), we obtain

φ�H

(|∇Hw0|2
) ≥ –

|∇Hφ|2
φ

P –
P2

φ2 +
2γ + 6
uγ +1

0
P +

2
φ

P2. (4.17)

From (4.12), |∇Hw0|2 = P
φ

, (4.11), and (4.17) we have that

0 ≥ φ�H

(|∇Hw0|2
)

+
�Hφ

φ
P –

2|∇Hφ|2
φ

P

≥ �Hφ

φ
P –

2|∇Hφ|2
φ2 P –

|∇Hφ|2
φ

P –
P2

φ2 +
2γ + 6
uγ +1

0
P +

2
φ

P2, (4.18)

and so

–
�Hφ

φ
+

2|∇Hφ|2
φ2 +

|∇Hφ|2
φ

–
2γ + 6
uγ +1

0
≥ 2φ – 1

φ2 P.

This gives

2φ – 1
φ2 P ≤ –

�Hφ

φ
+

2|∇Hφ|2
φ2 +

|∇Hφ|2
φ

on B(ξ0, 2R).

Using the bounds |∇Hφ| ≤ CR–1 and |�Hφ| ≤ CR–2, we get

(2φ – 1)P ≤ –φ�Hφ + 2|∇Hφ|2 + φ|∇Hφ|2 ≤ C
R2 . (4.19)

Since φ = 1 on B(ξ0, R), by (4.19) we have that

|∇Hw0|2 ≤ C(R) on B(ξ0, R), (4.20)

which implies (4.8). �
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Theorem 4.6 Let u0 ∈ C3(�) be a positive solution to (1.2). Then, for any R = R(ξ0) > 0,
ξ0 ∈ �, and B(ξ0, 2R) ⊂ �, there exists C = C(R) > 0 such that, for all ξ ,η ∈ B(ξ0, R

2 ),

u0(ξ ) ≤ Cu0(η). (4.21)

Proof Let I be the shortest curve in B(ξ0, R) joining ξ to η. Then the length of I is clearly
at most 2R. Integrating the quantity |∇H log u0| along I yields

log u0(ξ ) – log u0(η) ≤
∫

I
|∇H log u0|. (4.22)

Applying (4.20), we get

∫

I
|∇H log u0| ≤

∫

I
C ≤ C. (4.23)

Now (4.21) is obtained from (4.22) and (4.23). �

5 Properties of w and proof of Theorem 1.1
In this section, we prove several properties of w = u – u0. Similarly to [5], we provide two
maximum principles; see Lemmas 5.2 and 5.4. The idea to check monotonicity is inspired
by [5, 15].

Lemma 5.1 If ∂� satisfies the Wiener criterion, then the weak solution u ∈ H1
0 (�) (γ ≤ 1)

or u ∈ H1
loc(�) (γ > 1) to problem (1.1) is positive, and u ∈ C(�).

Proof By the hypothesis f ≥ 0 we sees that u is a supersolution to the equation

–�Hu0 =
1

uγ
0

.

Therefore, u ≥ u0 > 0 in �.
Since u = u0 + w, it follows that w ≥ 0 in �. Due to (1.4), we have that w satisfies

�Hw +
1

(u0 + w)γ
+ f (u0 + w) –

1
uγ

0
= 0 in �; w|∂� = 0. (5.1)

Since the equation in (5.1) has no any singularity with respect to w, the continuity in � of
w is clearly obtained; refer to [7, 8, 10] etc. Now we only need to check the continuity of w
near the boundary ∂�.

Indeed, by the nonnegativity of f we easily get that w∗ = 0 is a subsolution to (5.1). Also,
note that w∗ = ((γ + 1)z1)

1
γ +1 satisfies

�Hw∗ + f
(
u0 + w∗) ≤ 0,

that is,

–γ
(
(γ + 1)z1

) –2γ –1
γ +1 |∇Hz1|2 –

(
(γ + 1)z1

) –γ
γ +1 + f

(
u0 +

(
(γ + 1)z1

) 1
γ +1

) ≤ 0 (5.2)
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near the boundary (z1 → 0 at this moment), which yields

0 ≤ w ≤ (
(γ + 1)z1

) 1
γ +1

near the boundary, and this shows that w is continuous near ∂� and then w ∈ C(�). Hence
u = u0 + w ∈ C(�). �

Lemma 5.2 Suppose that ∂� satisfies the Wiener criterion, u ∈ C(�) ∩ H1
0 (�) (γ ≤ 1) or

u ∈ C(�) ∩ H1
loc(�) (γ > 1) is a solution to problem (1.1), f is locally Lipschitz continuous,

f (s) > 0 for any s > 0, and f (0) ≥ 0. Then u > u0 in �, and w > 0 in �.

Proof By contradiction assume that there exists ξ0 ∈ � such that

w(ξ0) = u(ξ0) – u0(ξ0) = 0.

Take R = R(ξ0) > 0 such that B(ξ0, R) ⊂⊂ �. Then

–�Hw = –�Hu + �Hu0 =
1

(u0 + w)γ
+ f (u) –

1
uγ

0
≥ 1

(u0 + w)γ
–

1
uγ

0
in B(ξ0, R). (5.3)

Since u0(ξ0) > 0 by Lemma 4.1, we can assume that u0 > 0 in B(ξ0, R). Since

1
(u0 + w)γ

–
1

uγ
0

= c(ξ )(u0 + w – u0) = c(ξ )w

and |c(ξ )| ≤ � for a positive constant �, it follows that

1
(u0 + w)γ

–
1

uγ
0

+ �w ≥ 0 in B(ξ0, R).

Combining this with (5.3), we get

–�Hw + �w ≥ 0 in B(ξ0, R).

By Lemma 2.3 we have w ≡ 0 in B(ξ0, R). The covering argument shows that w ≡ 0 in �.
Therefore f ≡ 0 by (5.3), which is impossible. �

Lemma 5.3 ([5]) For γ > 0, consider the function

gγ (a, b, c, d) := aγ (a + b)γ (c + d)γ + aγ cγ (c + d)γ – cγ (a + b)γ (c + d)γ – aγ cγ (a + b)γ ,

where (a, b, c, d) ∈ D := {(a, b, c, d)|0 ≤ a ≤ c; 0 ≤ d ≤ b} ⊂R
4. Then gγ ≤ 0 in D.

Lemma 5.4 (Narrow region maximum principle) Assume that ∂� satisfies the Wiener
criterion and T is a hyperplane in H

n. For λ ∈ R, denote

Tλ =
{
ξ = (x, y, t) ∈H

n|t = λ
}

,

H =
{
ξ = (x, y, t) ∈ H

n|t < λ
}

.
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Let �′ be a bounded narrow region in H contained in {ξ ∈ H
n|λ – l < t < λ} with small

l > 0. Suppose that u ∈ C(�) ∩ H1
0 (�) (γ ≤ 1) or u ∈ C(�) ∩ H1

loc(�) (γ > 1) is a cylin-
drical solution to problem (1.1) and that f satisfies (F). If w ≤ wλ on ∂�′, then for a suffi-
ciently small l, we have w ≤ wλ in �′ with respect to t. Furthermore, w < wλ in �′, unless
w ≡ wλ.

Proof Since u satisfies problem (1.1), we have in the distribution sense that

–�H(u0 + w) =
1

(u0 + w)γ
+ f (u0 + w) in �, (5.4)

and

–�H

(
(u0)λ + wλ

)
=

1
((u0)λ + wλ)γ

+ f
(
(u0)λ + wλ

)
in �. (5.5)

Also,

–�H(u0)λ =
1

(u0)γλ
in �, (5.6)

and

–�Hwλ = –�H

(
(u0)λ + wλ

)
+ �H(u0)λ

=
1

((u0)λ + wλ)γ
+ f

(
(u0)λ + wλ

)
–

1
(u0)γλ

in �. (5.7)

Consider positive functions ψi ∈ C∞
0 (�′) with suppψi ⊆ supp (w – wλ)+ and ψi →

(w – wλ)+ ∈ H1
0 (�′) in H1

0 (�′). Taking ψi as the test function, by (5.1) and (5.7) we get
that

∫

�′
∇H(w – wλ) · ∇Hψi

=
∫

�′

(
–�H(w – wλ)

)
ψi

=
∫

�′

(
1

(u0 + w)γ
+ f (u0 + w) –

1
uγ

0
–

1
((u0)λ + wλ)γ

– f
(
(u0)λ + wλ

)
+

1
(u0)γλ

)

ψi

=
∫

�′

(
1

(u0)γλ
–

1
uγ

0
+

1
(u0 + w)γ

–
1

((u0)λ + wλ)γ

)

ψi

+
∫

�′

(
f (u0 + w) – f

(
(u0)λ + wλ

))
ψi. (5.8)

Note that u0 ≤ (u0)λ in �′ ∩ H by Lemma 4.4 and that w ≥ wλ on suppψi. Applying
Lemma 5.3 with a = u0, c = (u0)λ, b = w, and d = wλ, we have

1
(u0)γλ

–
1

uγ
0

+
1

(u0 + w)γ
–

1
((u0)λ + wλ)γ

≤ 0. (5.9)
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Since f is locally Lipschitz continuous and nondecreasing, it follows that (5.8) and (5.9)
imply

∫

�′
∇H(w – wλ) · ∇Hψi ≤

∫

�′

(
f (u0 + w) – f

(
(u0)λ + wλ

))
ψi

≤
∫

�′

(
f
(
(u0)λ + w

)
– f

(
(u0)λ + wλ

))
ψi

≤ C
∫

�′
(w – wλ)ψi. (5.10)

Since ψi converges to (w – wλ)+, by Hölder’s inequality and Lemma 2.2 we have
∫

�′

∣
∣∇H(w – wλ)+∣

∣2 ≤ C
∫

�′

∣
∣(w – wλ)+∣

∣2

≤ C
∣
∣�′∣∣

Q
2

(∫

�′

∣
∣(w – wλ)+∣

∣
2Q

Q–2

) Q–2
Q

≤ C
∣
∣�′∣∣

Q
2

∫

�′

∣
∣∇H(w – wλ)+∣

∣2. (5.11)

Since C|�′| Q
2 < 1 for sufficiently small l, it follows that

∫

�′

∣
∣∇H(w – wλ)+∣

∣2 = 0, (5.12)

and then (w – wλ)+ = 0, that is, w ≤ wλ in �′.
Assume that there exists ξ0 ∈ �′ such that w(ξ0) = wλ(ξ0). We have from (5.1) and (5.7)

that

–�H(wλ – w)

=
(

1
uγ

0
–

1
(u0)γλ

+
1

((u0)λ + w)γ
–

1
(u0 + w)γ

)

+
1

((u0)λ + wλ)γ
–

1
((u0)λ + w)γ

+
(
f
(
(u0)λ + wλ

)
– f (u0 + w)

)
. (5.13)

Noting that u0 ≤ (u0)λ in �′ by Lemma 4.4 and w ≤ wλ in �′ from the previous result,by
the monotonicity of f we obtain that

f
(
(u0)λ + wλ

)
– f (u0 + w) ≥ 0 in �′. (5.14)

Applying Lemma 5.3 yields

1
(u0)γλ

–
1

uγ
0

+
1

(u0 + w)γ
–

1
((u0)λ + wλ)γ

≤ 0 in �′. (5.15)

Putting (5.14) and (5.15) into (5.13) shows that

–�H(wλ – w) ≥ 1
((u0)λ + wλ)γ

–
1

((u0)λ + w)γ
. (5.16)

Now similarly to the proof of Lemma 5.2, we derive that wλ – w ≡ 0 in �′. �
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Remark 5.1 In proving (5.11) and (5.12), although there is no Poincaré’s inequality on the
narrow domain in H

n, Sobolev’s inequality (2.7) and the fact that |�′| is small helps us to
derive (5.12).

Lemma 5.5 If ∂� satisfies the Wiener criterion and u ∈ H1
0 (�) ∩ C(�) (γ ≤ 1) or u ∈

H1
loc(�) ∩ C(�) (γ > 1) is a cylindrical solution of problem (1.1), then, for any λ0 < λ < λ1,

we have

w(ξ ) < wλ(ξ ) (5.17)

for ξ ∈ �λ with respect to t.

Proof Step 1. If λ is sufficiently close to λ0, we have w > 0 in �λ by Lemma 5.2 and w ≤ wλ

on ∂�λ. Since w = wλ on the hyperplane Tλ, we get that w ≤ wλ in �λ, and then w < wλ on
�λ by Lemma 5.4.

Step 2. Since Step 1 provides a starting point, we can move the plane Tλ to the right
keeping w ≤ wλ on �λ to its limiting position λ1. We let

λ = sup{λ|w ≤ wμ in �μ,μ ≤ λ}

and claim that λ = λ1. Indeed, suppose λ < λ1; we will show that Tλ can further be moved
to the right, that is, there exists ε > 0 such that, for any λ ∈ (λ,λ + ε),

w ≤ wλ. (5.18)

This is a contradiction to the definition of λ. Hence λ = λ1.
Now we will prove that (5.18) holds on �λ+ε . Let us divide �λ+ε into two parts: �λ–ε and

�λ+ε \ �λ–ε , where ε > 0 is to be chosen.
Since wλ – w ≥ cε > 0 in �λ–ε and wλ – w depends continuously on λ, there exists ε > 0

sufficiently small such that, for all λ ∈ (λ,λ + ε),

wλ – w ≥ 0 in �λ–ε . (5.19)

On the other hand, since wλ – w ≥ 0 on ∂(�λ+ε \ �λ–ε) for ε > 0 as before, we have by
Lemma 5.4 that

wλ – w ≥ 0 in �λ+ε \ �λ–ε . (5.20)

Combining (5.19) and (5.20), there follows (5.18).
Then w ≤ wλ on �λ. Using Lemma 5.4, we obtain w < wλ on �λ, and now (5.17) is

proved. �

Proof of Theorem 1.1 Lemma 4.4 and 5.5 imply (1.5). �

6 Conclusions
In this paper, we obtained the monotonicity of cylindrical solutions to the Dirichlet bound-
ary value problem to singular semilinear subelliptic equation on the Heisenberg group. It
is a generalization of the corresponding result in the classical Euclidean setting.
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