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Abstract
This paper studies an inverse problem of determining the implied volatility in the
financial products linked with gold price, which has important application in financial
derivatives pricing. Based on the total variation regularization strategy, the existence
and necessary condition of the minimum for the control function are addressed, and
the local uniqueness of the solution is also given by a modified case. Furthermore, the
stability and convergence for the regularized approach are discussed. The results
obtained in this paper may be useful for those who engage in hedging or risk
management.
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1 Introduction
In this work, we study an inverse problem of determining the implied volatility in the
financial products linked with gold price. This problem was issued by the bank of East Asia
in Guangzhou (China) on February 20, 2006. The profits of this product not only depend
on some cumulative indexes of gold price but also on some trigger indexes. Thus this
problem can be regarded as a double barrier option question (see [1, 2]). The mathematical
model can be stated in the following form:

To simplify the problem, we make the following assumptions (see [2]):
(1) Gold price St satisfies a geometric Brownian motion

dSt

St
= μdt + σ (S) dWt ,

where μ is the expected rate of return, σ (S) is the volatility, and Wt is the standard
Brownian process which satisfies

E(dWt) = 0, Var(dWt) = dt.

(2) The limit range of the gold price is [Sa, Sb], and the initial price is S0, which satisfies
Sa ≤ S0 ≤ Sb. The upper bound Sa and the lower bound Sb are determined by the
estimation of expectation of gold price, which are made by the bank.
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(3) The risk-free rate of the dollar market is a nonnegative constant r, and the annual
rate of gold price is r0 when the price does not hit the interval [Sa, Sb]. Otherwise, it
is denoted by r1.

Based on the above assumptions and the standard �-hedging theory (see [1]), we can
obtain the following Black-Scholes type equation:

∂V
∂t

+
1
2
σ 2S2 ∂2V

∂S2 + rS
∂V
∂S

– rV = 0,

where V is the price of the corresponding financial product.
Under the agreement, investors can get the highest annual interest rate of r0 if the price

of gold does not touch the boundary of interval [Sa, Sb] through the observation period
[0, T]. So the termination condition is given by

V (S, T) = 1 + r0T (Sa < S < Sb).

If the gold price will never hit the endpoint of interval [Sa, Sb] from the initial moment
to time t, then the investor can gain the profit with the annual interest rate r1. Considering
the discount, we obtain the following boundary condition:

V (Sa, t) = V (Sb, t) = (1 + r1t)e–r(T–t) (0 ≤ t < T).

Once the gold price passes over the superior limit or below the inferior limit of the price,
the interest will no longer be calculated and the contract is stopped. It seems that the
price of the financial product has the character of double barrier options. The domain for
determining solution is as follows:

� =
{

(S, t) | Sa < S < Sb, 0 ≤ t < T
}

.

Based on the above analysis, the value V (S, t) satisfies the following backward partial
differential equation (PDE):

⎧
⎪⎨

⎪⎩

∂V
∂t + 1

2σ 2S2 ∂2V
∂S2 + rS ∂V

∂S – rV = 0, (S, t) ∈ �,
V (Sa, t) = V (Sb, t) = (1 + r1t)e–r(T–t), t ∈ [0, T),
V (S, T) = 1 + r0T , S ∈ (Sa, Sb).

(1.1)

For given σ = σ (S), equation (1.1) is called the forward or direct problem which is known
to be well posed in the sense of Hadamard (see [3]). In this paper, we are interested in the
inverse problem, i.e., we shall determine the unknown volatility function σ (S) and V (S, t)
simultaneously. In general, some extra condition is indispensable for the inverse coefficient
problem. In this paper, we use the following extra condition:

V
(
S∗, t∗) = V ∗(S), S ∈ [Sa, Sb], (1.2)

where 0 ≤ t∗ < T is the fixed observation time. It should be pointed out that the above
extra condition (1.2) is just an approximate form. In fact, when the gold prices vary during
the time observation domain [t∗ –δ, t∗], δ > 0, people may obtain various financial product
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prices V (S, t) from the financial market. So, if the parameter δ is small enough (compared
with T – t∗), the observed data V (S, t) ∈ [t∗ – δ, t∗] can be used to approximate (1.2).

We make the following change in the variable:

U = V – (1 + r1t)e–r(T–t), x = ln
S
Sa

, τ = T – t,

and a(x) = 1
2σ 2(S). Then the function U satisfies the following inverse parabolic problem

with terminal observation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Uτ – a(x)(Uxx – Ux) – rUx + rU = f (x, τ ), (x, τ ) ∈ (0, l) × (0, τ ∗],
U(x, 0) = φ(x), x ∈ (0, l),
U(0, τ ) = U(l, τ ) = 0, τ ∈ [0, τ ∗],
U(x, τ ∗) = U∗(x), x ∈ (0, l),

(1.3)

where

l = ln
S
Sa

, τ ∗ = T – t∗, U∗ = V ∗ –
(
1 + r1t∗)e–r(T–t∗),

φ(x) = [r0 – r0]T , f (x, τ ) = r1e–rτ .

Volatility is a very important parameter in the Black-Scholes equation, it is necessary
to accurately measure it in portfolio selection, underlying financial products pricing and
hedging or risk management. Determining the implied volatility is a typical PDE inverse
problem. It was first considered by Dupire in [4] where he obtained a formula of the lo-
cal volatility with all possible strikes and maturities. However, the formula was ill-posed
and could not be used in practice, it had to be modified. Some detailed treatments of
problems in these areas can be found in [4–16]. In [5, 9, 15], Bouchouev and Isakov re-
duce the identification of volatility to an inverse problem with the final observation, and
the local uniqueness and stability of volatility are proved under certain assumptions. Lu
and Yi in [12] obtain a Fredholm integral equation from the Dupire equation. In [16],
Mishura consider the diffusion approximation for the recurrent schemes of financial mar-
kets and generalize a classical scheme of weak convergence for discrete-time markets to
the Black-Scholes model. Based on the optimal control framework, in [10, 11], Jiang and
Tao consider the inverse problem of determining the implied volatility σ = σ (S) using the
Tikhonov regularization strategy and analyze the existence and uniqueness of σ = σ (S),
and a new well-posed algorithm is presented. Similar results are obtained in [7], where a
new extra condition (i.e., the average option premium) is assumed to be known. In [17],
the authors also consider an optimal control problem to a mathematical model of drug
treatment, a cost functional of the system is minimized and the total amount of drugs is
given.

As we all know, Tikhonov regularization strategy is a widely applied method for solving
the inverse problem (see [13, 18]). A lot of research work has been carried out in recent
years; see, for example, [3, 6, 7, 10, 11, 14, 19–22] and the references therein. However,
this method may over-smooth the exact solution, it cannot effectively approximate the
original solution when the exact solution has some singularities. In image processing, this
shortcoming will blur the edge. To overcome this weakness, in [23] Rudin proposed the
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total variation regularization strategy:

min
μ∈�

λ

2
‖μ – f ‖2

L2(�) + |∇μ|L1(�).

Based on the work of Rudin in [23], in recent years, the total variation regularization strat-
egy has been applied to the problem of determining the volatility (see [13, 18, 24]). In
[13, 24], Wang and Yang consider the inverse problem of identifying the implied volatility
σ = σ (S) using the total variation regularization strategy and analyze the existence and
uniqueness of σ = σ (S), the necessary condition which must be satisfied by the related
minimum is also discussed, and the optimization algorithm is found using the limited
memory quasi-Newton algorithm. The authors in [18] propose a bivariate total varia-
tion regularization model to calibrate the volatility σ = σ (S, t), the existence and conver-
gence for the regularized approach are discussed and some numerical experiments are
presented.

Considering the advantages and great success of the total variation regularization in im-
age processing and the work of [13, 18, 23, 24], in this paper, we would like to reconstruct
the unknown volatility function σ = σ (S) in (1.1) by using the total variation regulariza-
tion strategy, based on the optimal control method (see [6, 7, 13, 17, 22]). Being different
from the common inverse volatility problems arising in the area of option pricing (see [6,
7, 11, 13, 16, 18, 20, 22]), our inverse problem has the following unusual features. First, in
[6, 7, 11, 13, 18, 20, 22] the underlying mathematical model is a semi-infinite initial value
problem, whereas our model is an initial-boundary value parabolic equation defined on
a bounded domain. Secondly, to reduce the inverse option pricing problem to an inverse
parabolic problem with terminal observations, the conjugate theory (see [4]) should be
adopted. For our problem, since the underlying asset has the property of double barrier
option and the measurement data only depend on the price of gold, it is not necessary to
use the Green function theory. Finally, the authors in [6, 7, 10, 11, 22] use the Tikhonov
regularization to identify the implied volatility, while it may over-smooth the exact solu-
tion and may not preserve the singularities of the solution well when the exact solution
has some singularities. However, the total variation regularization model might be able to
characterize the properties of the volatility better. Therefore, using our model to identify
the implied volatility is a question worth thinking about. The inverse problem considered
in the paper and the obtained results can be regarded as the beneficial supplement of the
inverse option pricing problem.

The paper is organized as follows. In Section 2, we transform the parabolic problem (1.3)
into an optimal control problem. In Section 3, the existence of the minimum for the control
functional is given. The necessary condition which must be satisfied by the minimum is
deduced in Section 4. In Section 5, we investigate the uniqueness of the minimum under
some assumptions. The stability and convergence for the regularized approach are also
presented in the last section.

2 Optimal control problem
Consider the following optimal control problem P:

Find ā ∈A such that

T(ā) = min
a∈A

T(a), (2.1)
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where

T(a) =
1
2

∫ l

0

∣∣U
(
x, τ ∗) – U∗(x)

∣∣2 dx +
N
2

J(a) +
μ

2
G(a),

J(a) =
∫ l

0
|∇a|dx, G(a) =

∫ l

0
|∇a|2 dx,

A =
{

a(x) | 0 < α ≤ a(x) ≤ β ,∇a ∈ L2(0, l)
}

,

U(x, τ ) is the solution of (1.3) for a given coefficient a ∈A, N and μ are the regularization
parameters. Considering the ‘smile’ or ‘skew’ effect of the implied volatility, it is reason-
able to assume that 0 < α ≤ a(x) ≤ β , where α and β are two given positive constants. The
implied volatility a(x) is the principle coefficient in a second order parabolic equation. In
general, it is required a(x) ≥ α > 0. Moreover, for convenience, in the rest of discussion,
it is also assumed to be bounded, i.e., a(x) ≤ β . In practice, the parameter β can be taken
relatively larger. In fact, volatility is observed in many cases to be represented by two typ-
ical curves: smile and skew [4]. Many attempts have been made to remove this constant
volatility assumption from the Black-Scholes model.

To avoid the case |∇a| = 0, we replace |∇a| with |∇a|ε =
√|∇a|2 + ε2, where ε is a con-

stant and ε � 1. Then problem (2.1) is approximated by

T(a) =
1
2

∫ l

0

∣∣U
(
x, τ ∗) – U∗(x)

∣∣2 dx +
N
2

∫ l

0

√
|∇a|2 + ε2 dx +

μ

2

∫ l

0
|∇a|2 dx.

This problem is different from the traditional Tikhonov regularization method because
the regular item

∫ l
0

√|∇a|2 + ε2 dx is related to the total variation regularization.

3 Existence
Theorem 3.1 There exists a minimizer ā ∈A of T(a), i.e.,

T(ā) = min
a∈A

T(a).

Proof It is obvious that T(a) is nonnegative and thus T(a) has the greatest lower bound
infa∈A T(a). Let (Un, an) be a minimizing sequence, i.e.,

inf
a∈A

T(a) ≤ T(an) ≤ inf
a∈A

T(a) +
1
n

, n = 1, 2, . . . .

By noticing that T(an) ≤ C, and thanks to the particular structure of T , we can deduce
that

‖∇an‖L2(0,l) ≤ C,

where C is independent of n.
By the Sobolev imbedding theorem (see [25]), we can obtain

‖an‖
C

1
2 (0,l)

≤ C (C is independent of n).
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Thus
∥∥Un(x, τ )

∥∥
C

1
2 , 1

4 (Q̄)
≤ C (C is independent of n),

∥∥Un(x, τ )
∥∥

C2+ 1
2 ,1+ 1

4 (ω)
≤ C, ∀ω ⊂⊂ Q,

where Q = (0, l) × [0, τ ∗].
Therefore we can select subsequences of an and Un, again denoted by {an} and {Un},

such that

an(x) → ā(x) ∈ C
1
2 (0, l), uniformly in Cα(0, l)

(
0 ≤ α <

1
2

)
,

Un(x, τ ) → Ū(x, τ ), uniformly in Cα, α2 (Q̄) ∩ C2+α,1+ α
2

loc (Q).

One can easily check that (ā(x), Ū(x, τ )) satisfies (1.3). By the Lebesgue control conver-
gence theorem and the weak semi-continuity of the L2-norm, we obtain

T(ā) ≤ lim
n→∞ inf T(an) = min

a∈A
J(a).

Hence

T(ā) = min
a∈A

T(a).

This completes the proof of Theorem 3.1. �

4 Necessary condition
Theorem 4.1 Let a be the solution of the optimal control problem (2.1). Then there exists
a triple of functions (U ,ϕ, a) satisfying the following systems:

⎧
⎪⎨

⎪⎩

Uτ – a(x)(Uxx – Ux) – rUx + rU = f (x, τ ), (x, τ ) ∈ (0, l) × (0, τ ∗],
U(x, 0) = φ(x), x ∈ (0, l),
U(0, τ ) = U(l, τ ) = 0, τ ∈ [0, τ ∗],

(4.1)

⎧
⎪⎨

⎪⎩

–ϕτ – (aϕ)xx – (aϕ)x + rϕx + rϕ = 0, (x, τ ) ∈ (0, l) × (0, τ ∗],
ϕ(x, τ ∗) = U(x, τ ∗) – U∗(x), x ∈ (0, 1),
ϕ(0, τ ) = ϕ(l, τ ) = 0, τ ∈ [0, τ ∗],

(4.2)

and

∫ τ∗

0

∫ l

0
ϕ(h – a)(Uxx – Ux) dx dτ

+
N
2

∫ l

0

∇a
√|∇a|2 + ε2

· ∇(h – a) dx + μ

∫ l

0
∇a · ∇(h – a) dx ≥ 0 (4.3)

for any h ∈A.

Proof For any h ∈A, δ ∈ [0, 1], let

aδ = (1 – δ)a + δh ∈A.
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Then we have

Tδ ≡ T(aδ)

=
1
2

∫ l

0

∣∣U
(
x, τ ∗; aδ

)
– U∗(x)

∣∣2 dx +
N
2

∫ l

0

√
|∇aδ|2 + ε2 dx +

μ

2

∫ l

0
|∇aδ|2 dx. (4.4)

Let Uδ be the solution of (1.3) with given a = aδ . Since a is an optimal solution, and
thanks to the particular structure of J , we can deduce that the above function takes the
minimum at δ = 0, so

dT(aδ)
dδ

∣∣∣∣
δ=0

=
∫ l

0

[
U

(
x, τ ∗; a

)
– U∗(x)

]∂Uδ

∂δ

∣∣∣∣
δ=0

dx

+
N
2

∫ l

0

∇a
√|∇a|2 + ε2

· ∇(h – a) dx + μ

∫ l

0
∇a · ∇(h – a) dx

≥ 0. (4.5)

Let U ′
δ ≡ ∂Uδ

∂δ
, direct calculations lead to the following equation:

∂

∂τ

(
U ′

δ

)
= aδ

(
∂2U ′

δ

∂x2 –
∂U ′

δ

∂x

)
+ r

∂U ′
δ

∂x
– rU ′

δ + (h – a)
(

∂2Uδ

∂x2 –
∂Uδ

∂x

)
,

U ′
δ

∣∣
τ=0 = 0. (4.6)

Let ξ = U ′
δ|δ=0, then ξ satisfies

ξτ = a(x)(ξxx – ξx) + rξx – rξ + (h – a)(Uxx – Ux),

ξ |τ=0 = 0. (4.7)

From (4.5) we have

∫ l

0

[
U

(
x, τ ∗; a

)
– U∗(x)

]
ξ
(
x, τ ∗)dx

+
N
2

∫ l

0

∇a
√|∇a|2 + ε2

· ∇(h – a) dx + μ

∫ l

0
∇a · ∇(h – a) dx ≥ 0. (4.8)

Let

Lξ = ξτ – a(x)(ξxx – ξx) – rξx + rξ , (4.9)

and suppose ϕ is the solution of the following problem:

⎧
⎪⎨

⎪⎩

L∗ϕ = –ϕτ – (aϕ)xx – (aϕ)x + rϕx + rϕ = 0,
ϕ|τ=τ∗ = U(x, τ ∗) – U∗(x),
ϕ(0, τ ) = ϕ(l, τ ) = 0,

(4.10)

where L∗ is the adjoint operator of the operator L.
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From the Green formula, we have

∫ τ∗

0

∫ l

0

(
ϕLξ – ξL∗ϕ

)
dx dτ

=
∫ τ∗

0

∫ l

0

[
(ϕξ )τ –

(
a(x)ϕξy

)
y +

(
ξ
(
a(x)ϕ

)
y

)
y +

(
ξa(x)ϕ

)
y – r(ξϕ)y

]
dx dτ

=
∫ l

0
ϕξ |(x,τ∗)

(x,0) dx =
∫ l

0

[
U

(
x, τ ∗; a

)
– U∗(x)

]
ξ
(
x, τ ∗)dx. (4.11)

From (4.7) and (4.11), we can obtain

∫ l

0

[
U

(
x, τ ∗) – U∗(x)

]
ξ
(
x, τ ∗)dx =

∫ τ∗

0

∫ l

0
ϕ(h – a)(Uxx – Ux) dx dτ . (4.12)

Combining (4.8) and (4.12), one can easily obtain that

∫ τ∗

0

∫ l

0
ϕ(h – a)(Uxx – Ux) dx dτ

+
N
2

∫ l

0

∇a
√|∇a|2 + ε2

· ∇(h – a) dx + μ

∫ l

0
∇a · ∇(h – a) dx ≥ 0. (4.13)

The proof of Theorem 4.1 is thus completed. �

5 Uniqueness
It is well known that the optimal control problem is nonconvex. In general, one may not
expect a unique solution. However, the local uniqueness of the minimizer for the control
functional can be obtained if τ ∗ � 1.

Suppose that U∗
1 (x) and U∗

2 (x) are two given functions which satisfy condition 4.1. Let
a1(x) and a2(x) be two minimizers of the control problem (2.1) corresponding to U∗

i (x)
(i = 1, 2), respectively, and {Ui,ϕi} (i = 1, 2) be the solutions of system (4.1)/(4.2) in which
ā = ai (i = 1, 2), respectively.

Set

U1 – U2 = u, ϕ1 – ϕ2 = �, a1 – a2 = A.

Then U and � satisfy the following equations:

⎧
⎪⎨

⎪⎩

uτ – a1(x)(uxx – ux) – rux + ru = A(U2xx – U2x),
u(x, 0) = 0,
u(0, τ ) = u(l, τ ) = 0.

(5.1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
a2

�τ + �xx + �x – r( �
a2

)x – r
a2

�

= ( 1
a2

– 1
a1

)(a1ϕ1)τ – r[( 1
a2

– 1
a1

)(a1ϕ1)]x – r( 1
a1

– 1
a2

)(a1ϕ1),
�(x, 0) = 0,
�(0, τ ) = �(l, τ ) = 0,
�|τ=τ∗ = a1U(x, τ ∗) + A(U2(x, τ ∗) – U∗(x)).

(5.2)
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Lemma 5.1 For problem (4.2), we have the following estimate:

max
τ∈[0,τ∗]

∫ l

0
ϕ2 dx +

∫ τ∗

0

∫ l

0

∣∣ϕx|2 dx dτ ≤ C
∫ l

0
|U(

x, τ ∗) – U∗(x)
∣∣2 dx,

max
τ∈[0,τ∗]

∫ l

0
|ϕx|2 dx +

∫ τ∗

0

∫ l

0
|ϕxx|2 ≤ C

∥∥U
(
x, τ ∗) – U∗(x)

∥∥2
H1(0,l).

Lemma 5.2 For any bounded continuous function g(x) ∈ C(0, l), we have

∥∥g(x)
∥∥∞ ≤ ∣∣g(x0)

∣∣ +
√

l
∥∥∇g(x)

∥∥
L2(0,l),

where x0 is a fixed point in (0, l).

Proof For 0 < x < l, we have

∣∣g(x)
∣∣ ≤ ∣∣g(x0)

∣∣ +
∣∣∣∣

∫ x

x0

g ′ dx
∣∣∣∣

≤ ∣∣g(x0)
∣∣ +

(∫ l

0
1 dx

) 1
2
(∫ l

0
|∇g|2 dx

) 1
2

.

This completes the proof of Lemma 5.2. �

Lemma 5.3 For problem (5.1), we have the following estimate:

max
τ∈[0,τ∗]

∫ l

0
u2 dx ≤ C

(
max |A|)2

∫ τ∗

0

∫ l

0
|U2xx – U2x|2 dx dτ , (5.3)

∫ τ∗

0

∫ l

0
|uxx – ux|2 dx dτ ≤ C

(
max |A|)2

∫ τ∗

0

∫ l

0
|U2xx – U2x|2 dx dτ , (5.4)

where C is a constant.

Proof From equation (5.1), we have, for 0 < τ ≤ τ ∗,

∫ τ

0

∫ l

0
a1(uxx – ux)2 dx dτ

=
∫ τ

0

∫ l

0
uτ (uxx – ux) dx dτ –

∫ τ

0

∫ l

0
A(U2xx – U2x)(uxx – ux) dx dτ

– r
∫ τ

0

∫ l

0
ux(uxx – ux) dx dτ + r

∫ τ

0

∫ l

0
u(uxx – ux) dx dτ

=
∫ τ

0

∫ l

0
(uτ ux)x dx dτ –

∫ τ

0

∫ l

0
uτxux dx dτ

–
∫ τ

0

∫ l

0
uτ ux dx dτ + r

∫ τ

0

∫ l

0
u2

x dx dτ

+ r
∫ τ

0

∫ l

0
u(uxx – ux) dx dτ –

∫ τ

0

∫ l

0
A(U2xx – U2x)(uxx – ux) dx dτ .
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By noticing the boundary conditions, we have

∫ τ

0

∫ l

0
a1(uxx – ux)2 dx dτ

= –
∫ τ

0

∫ l

0
uxuxτ dx dτ –

∫ τ

0

∫ l

0
uτ ux dx dτ + r

∫ τ

0

∫ l

0
u2

x dx dτ

+ r
∫ τ

0

∫ l

0
u(uxx – ux) dx dτ –

∫ τ

0

∫ l

0
A(U2xx – U2x)(uxx – ux) dx dτ

= –
1
2

∫ l

0
u2

x
∣∣
(x,τ ) dx –

∫ τ

0

∫ l

0
a1ux(uxx – ux) dx dτ –

∫ τ

0

∫ l

0
AUx(U2xx – U2x) dx dτ

– r
∫ τ

0

∫ l

0
u(uxx – ux) dx dτ –

∫ τ

0

∫ l

0
A(U2xx – U2x)(uxx – ux) dx dτ ,

where we have used the deformation of equation (5.1).
This yields

1
8

∫ τ

0

∫ l

0
a1(uxx – ux)2 dx dτ +

1
2

∫ l

0
u2

x
∣∣
(x,τ ) dx

≤ 4 max
x∈(0,l)

a1(x)
∫ τ

0

∫ l

0
u2

x dx dτ + C
∫ τ

0

∫ l

0
U2 dx dτ

+ C
(
max |A|)2

∫ τ∗

0

∫ l

0
|U2xx – U2x|2 dx dτ . (5.5)

By estimating (5.3) we have

1
8

∫ τ

0

∫ l

0
a1(uxx – ux)2 dx dτ +

1
2

∫ l

0
u2

x
∣∣
(x,τ ) dx

≤ 4 max
x∈(0,l)

a1(x)
∫ τ

0

∫ l

0
u2

x dx dτ + C
(
max |A|)2

∫ τ∗

0

∫ l

0
|U2xx – U2x|2 dx dτ . (5.6)

From Gronwall’s inequality, we have

∫ τ∗

0

∫ l

0
(uxx – ux)2 dx dτ +

∫ l

0
u2

x dx ≤ C
(
max |A|)2

∫ τ∗

0

∫ l

0
(U2xx – U2x)2 dx dτ , (5.7)

which implies the conclusion.
The proof of Lemma 5.3 is thus completed. �

Lemma 5.4 For problem (5.2) we have the following estimate:

max
τ∈[0,τ∗]

∫ l

0
�2 dx +

∫ τ

0

∫ l

0
|�x|2 dx dτ

≤ C
(
max |A|)2

∫ τ∗

0

∫ l

0

(|U2x|2 + |ϕ1τ |2
)

dx dτ

+ C
(
max |A|)2

∫ l

0

∣∣U2
(
x, τ ∗) – U∗(x)

∣∣2 dx.
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Proof For problem (5.2), we have

∫ τ∗

τ

∫ l

0

[
1
a2

��τ + ��xx + ��x – r�
(

�

a2

)

x
–

r
a2

�2
]

dx dτ

=
∫ τ∗

τ

∫ l

0
�

[(
1
a2

–
1
a1

)
(a1ϕ1)τ

– r
[(

1
a2

–
1
a1

)
(a1ϕ1)

]

x
– r

(
1
a1

–
1
a2

)
(a1ϕ1)

]
dx dτ .

This yields

1
2a1

∫ l

0
�2∣∣

(x,τ ) dx +
∫ τ∗

τ

∫ l

0
|�x|2 dx dτ +

∫ τ∗

τ

∫ l

0

r
a2

�2 dx dτ

=
∫ l

0

1
2a2

∣∣a1U
(
x, τ ∗) + A

(
U2

(
x, τ ∗) – U∗(x)

)∣∣2 dx

–
∫ τ∗

τ

∫ l

0

A
a2

�ϕ1τ dx dτ –
∫ τ∗

τ

∫ l

0
(rϕ1x + rϕ1) dx dτ

≤ C
∫ l

0

∣∣U
(
x, τ ∗)∣∣2 + C

(
max |A|)2

∫ l

0

∣∣U2
(
x, τ ∗) – U∗(x)

∣∣2 dx

+
∫ τ∗

τ

∫ l

0

1
2a2

�2 dx dτ + C
(
max |A|)2

∫ τ∗

τ

∫ l

0
|ϕ1τ |2 dx dτ

≤
∫ τ∗

τ

∫ l

0

1
2a2

�2 dx dτ + C
(
max |A|)2

∫ l

0

∣∣U2
(
x, τ ∗) – U∗(x)

∣∣2 dx

+ C
(
max |A|)2

∫ τ∗

τ

∫ l

0

(|U2xx – U2x|2 + |ϕ1τ |2
)

dx dτ . (5.8)

From (5.8) and Gronwall’s inequality, we have

∫ l

0
�2 dx +

∫ τ∗

0

∫ l

0
�2

x dx dτ

≤ C
(
max |A|)2

∫ l

0

∣∣U2
(
x, τ ∗) – U∗(x)

∣∣2 dx

+ C
(
max |A|)2

∫ τ∗

τ

∫ l

0

(|U2x|2 + |ϕ1τ |2
)

dx dτ .

This completes the proof of Lemma 5.4. �

Theorem 5.1 Suppose that a1(x), a2(x) are two minimizers of the optimal control problem
(2.1) corresponding to U∗

1 (x) and U∗
2 (x), respectively. If there exists a point x0 ∈ (0, l) such

that a1(x0) = a2(x0), then for τ ∗ � 1, we have

a1(x) ≡ a2(x), for any x ∈ (0, l).
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Proof By taking h = a2 when ā = a1 and taking h = a1 when ā = a2 in (4.3), we have

∫ τ∗

0

∫ l

0
ϕ(a2 – a1)(U1xx – U1x) dx dτ

+
N
2

∫ l

0

∇a1√|∇a1|2 + ε2
· ∇(a2 – a1) dx + μ

∫ l

0
∇a1 · ∇(a2 – a1) dx ≥ 0, (5.9)

∫ τ∗

0

∫ l

0
ϕ(a1 – a2)(U2xx – U2x) dx dτ

+
N
2

∫ l

0

∇a2√|∇a2|2 + ε2
· ∇(a1 – a2) dx + μ

∫ l

0
∇a2 · ∇(a1 – a2) dx ≥ 0, (5.10)

where {Ui,ϕi} (i = 1, 2) are the solutions of system (4.1)/(4.2) with ā = ai (i = 1, 2), respec-
tively.

Combining equations (5.9) and (5.10), when ε → 0, we have

μ

∫ l

0

∣∣∇(a1 – a2)
∣∣2 dx

≤
∫ τ∗

0

∫ l

0
A

(
ϕ2(U2xx – U2x) – ϕ1(U1xx – U1x)

)
dx dτ

≤
∫ τ∗

0

∫ l

0

1
a2

A(U2xx – U2x)a2ϕ2 dx dτ –
∫ τ∗

0

∫ l

0

1
a1

A(U1xx – U1x)a1ϕ1 dx dτ

≤
∫ τ∗

0

∫ l

0

(
1
a2

A(U2xx – U2x)a2ϕ2 –
1
a2

A(U2xx – U2x)a1ϕ1

)
dx dτ

+
∫ τ∗

0

∫ l

0

(
1
a2

A(U2xx – U2x)a1ϕ1 –
1
a2

A(U1xx – U1x)a1ϕ1

)
dx dτ

+
∫ τ∗

0

∫ l

0

(
1
a2

A(U1xx – U1x)a1ϕ1 –
1
a1

A(U1xx – U1x)a1ϕ1

)
dx dτ

≤
∫ τ∗

0

∫ l

0

1
a2

A2(U1xx – U1x)ϕ1 dx dτ

–
∫ τ∗

0

∫ l

0

1
a2

A�(U2xx – U2x) dx dτ

–
∫ τ∗

0

∫ l

0

1
a2

A(uxx – ux)a1ϕ1 dx dτ .

From the assumption of Theorem 5.1, there exists a point x0 ∈ (0, l) such that

A(x0) = a1(x0) – a2(x0) = 0. (5.11)

From Lemma 5.2 we have

max
x∈[0,l]

|A| ≤ C
(∫ l

0
|∇A|2 dx

)1/2

. (5.12)
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From (5.3), (5.11) and Hölder’s inequality, we have

μ

∫ l

0
|∇A|2 dx

≤ C max |A|
√∫ τ∗

0

∫ l

0
�2 dx dτ ·

√∫ τ∗

0

∫ l

0
|U2xx – U2x|2 dx dτ

+ C max |A|2
√∫ τ∗

0

∫ l

0
|ϕ1|2 dx dτ ·

√∫ τ∗

0

∫ l

0
|U1xx – U1x|2 dx dτ

+ C max |A|
√∫ τ∗

0

∫ l

0
|ϕ1|2 dx dτ ·

√∫ τ∗

0

∫ l

0
|uxx – ux|2 dx dτ

≤ C max |A|2
√

τ ∗
(∫ τ∗

0

∫ l

0

(|U2x|2 + |ϕ1τ |2
)

dx dτ +
∫ l

0

∣∣U2
(
x, τ ∗) – U∗(x)

∣∣2 dx
)

·
√∫ τ∗

0

∫ l

0
|U2xx – U2x|2 dx dτ

+ C max |A|2
√∫ τ∗

0

∫ l

0
|ϕ1|2 dx dτ ·

√∫ τ∗

0

∫ l

0
|U1xx – U1x|2 dx dτ

+ C max |A|2
√

τ ∗
∫ τ∗

0

∫ l

0
|ϕ1|2 dx dτ ·

√∫ τ∗

0

∫ l

0
|U2xx – U2x|2 dx dτ .

From Lemmas 5.1, 5.3 and 5.4, we have

∫ τ∗

0

∫ l

0
|U1xx – U1x|2 dx dτ ≤ C,

∫ τ∗

0

∫ l

0
|U2xx – U2x|2 dx dτ ≤ C,

∫ τ∗

0

∫ l

0
|ϕ1|2 dx dτ ≤ Cτ ∗,

∫ τ∗

0

∫ l

0
ϕ2

1τ dx dτ ≤ C,

∫ l

0

∣∣U2
(
x, τ ∗) – U∗(x)

∣∣2 dx ≤ C.

Based on the above analysis, we have

μ

∫ l

0
|∇A|2 dx ≤ C max |A|2(√τ ∗ + τ ∗) ≤ C

(√
τ ∗ + τ ∗)

∫ l

0
|∇A|2 dx. (5.13)

Choose τ ∗ ≤ 1 such that

C
μ

(√
τ ∗ + τ ∗) =

1
4

. (5.14)

Combining (5.13) and (5.14), we can easily obtain

∫ l

0
|∇A|2 dx ≤ 0. (5.15)
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This yields

A(x) = a1(x) – a2(x) = a1(x0) – a2(x0) ≡ 0, x ∈ (0, l).

This completes the proof of Theorem 5.1. �

6 Stability
In the previous section, we have obtained the existence and uniqueness of the optimal
solution. In this section, we will discuss the stability of the solution.

We suppose that the exact final observation U∗(x) is attainable, i.e., there exists a ∈ A
with U(x, τ ; a) = U∗(x), and that an upper bound σ for the noise level

∥∥U∗
σ (x) – U∗(x)

∥∥
L2(0,l) ≤ σ

of the observation is known a priori. Let aσ ∈A denote the solution to problem (2.1) with
U∗(x) replaced by U∗

σ (x).

Theorem 6.1 The minimization of (2.1) is stable with respect to perturbations in the small
data σ , i.e., if U∗

σ (x) → U∗(x), then we have the following estimate in L2(0, l):

aσ → a, Jε(aσ ) → Jε(a), G(aσ ) → G(a).

Proof U∗
σ (x) → U∗(x) in L2(�) implies that (aσ , Uσ (x, τ )) satisfies

1
2
∥∥U(x, τ ) – U∗

σ (x)
∥∥2

L2(0,l) +
N
2

Jε(aσ ) +
μ

2
Gε(aσ )

≤ 1
2
∥∥U(x, τ ) – U∗

σ (x)
∥∥2

L2(0,l) +
N
2

Jε(a) +
μ

2
Gε(a). (6.1)

Since aσ is bounded in A, there exists a weakly convergent subsequence {an} of aσ satisfy-
ing {an} ⇀ â. Similarly, there exists a subsequence {Un(x, τ )} corresponding to {an} such
that {Un(x, τ )} ⇀ Û(x, τ ). By the weak semi-continuity of the L2-norm, we have

Jε (̂a) ≤ lim
n→∞ sup Jε(an)

and

1
2
∥∥Û(x, τ ) – U∗(x)

∥∥2
L2(0,l) +

μ

2
‖∇â‖L2(0,l)

≤ lim sup

{
1
2
∥∥Un(x, τ ) – U∗

n (x)
∥∥2

L2(0,l)

}
+

μ

2
‖∇an‖L2(0,l).

From (6.1), then for any a ∈ L2(0, l), we have

1
2
∥∥Û(x, τ ) – U∗(x)

∥∥2
L2(0,l) +

N
2

Jε (̂a) +
μ

2
G(̂a)

≤ lim inf

{
1
2
∥∥Un(x, τ ) – U∗

n (x)
∥∥2

L2(0,l) +
N
2

Jε(an) +
μ

2
G(an)

}
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≤ lim sup

{
1
2
∥∥Un(x, τ ) – U∗

n (x)
∥∥2

L2(0,l) +
N
2

Jε(an) +
μ

2
G(an)

}

≤ lim
n→∞

{
1
2
∥∥U(x, τ ) – U∗

n (x)
∥∥2

L2(0,l) +
N
2

Jε(a) +
μ

2
G(a)

}

=
1
2
∥∥U(x, τ ) – U∗(x)

∥∥2
L2(0,l) +

N
2

Jε(a) +
μ

2
G(a).

From this we can find that â is a solution of the optimal control problem P and satisfies

lim
n→∞

{
1
2
∥∥Un(x, τ ) – U∗

n (x)
∥∥2

L2(0,l) +
N
2

Jε(an) +
μ

2
G(an)

}

=
1
2
∥∥Û(x, τ ) – U∗(x)

∥∥2
L2(0,l) +

N
2

Jε (̂a) +
μ

2
G(̂a). (6.2)

If {an} does not converge to â, then

1
2
∥∥Û(x, τ ) – U∗(x)

∥∥2
L2(0,l) +

μ

2
G(̂a)

< lim sup

{
1
2
∥∥Un(x, τ ) – U∗(x)

∥∥2
L2(0,l) +

N
2

Jε(an) +
μ

2
G(an)

}
=: C,

and there exists a subsequence am of an satisfying

am ⇀ â, Um ⇀ Û , Jε (̂a) ≤ lim
m→∞ Jε(am),

1
2
∥∥Um(x, τ ) – U∗(x)

∥∥2
L2(0,l) +

μ

2
G(am) → C.

(6.3)

From (6.2) we have

N
2

lim
m→∞ Jε(am) =

N
2

Jε (̂a) +
1
2
∥∥Û(x, τ ) – U∗(x)

∥∥2
L2(0,l) +

μ

2
G(̂a) – C <

N
2

Jε (̂a), (6.4)

which is a contradiction to (6.3). This shows that

am → â, lim
m→∞ Jε(am) = Jε (̂a), G(am) → G(̂a). (6.5)

The proof of Theorem 6.1 is thus completed. �

7 Concluding remarks
A lot of research works have been made to identify the implied volatility by regularization
methods. In this paper, we propose the total variation regularization strategy for solving
the implied volatility in the Black-Scholes model. Based on the optimal control framework,
the inverse problem of determining the implied volatility in financial products linked with
gold price is discussed, which is still an interesting issue in financial mathematics. Since
the profit of the derivative product depends not only on some cumulative indexes of gold
price but also on some trigger indexes, such kind of product is, in a sense, similar to the
double barrier option. So, it is quite meaningful to reconstruct the volatility function by
the information obtained from the financial market.
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The difficulty is due to the lack of conventional stability, nonlinearity and nonconvexity.
Based on the optimal control framework, the inverse problem is reduced to an optimiza-
tion problem, then we propose the total variation regularization for identifying the implied
volatility, and the existence, uniqueness and stability of the minimizer are proved. The re-
sults obtained in the paper are interesting and useful and may be applied to a variety of
derivatives pricing problems.
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