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Abstract
In this paper, we study the solutions for nonlinear fractional differential equations
with p-Laplacian operator nonlocal boundary value problem in a Banach space. By
means of the technique of the properties of the Kuratowski noncompactness
measure and the Sadovskii fixed point theorem, we establish some new existence
criteria for the boundary value problem. As application, an interesting example is
provided to illustrate the main results.
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1 Introduction
A p-Laplacian differential equation was first introduced by Leibenson [1] when he studied
the turbulent flow in a porous medium. Converting this fundamental mechanics problem
into the existence of solutions to the following p-Laplacian differential equation:

(
ϕp

(
u′(t)

))′ = f
(
t, u(t)

)
, t ∈ (0, 1), (1)

where ϕp(s) = |s|p–2s (p > 1) is the p-Laplacian operator, its inverse function is denoted
by ϕq(s) with ϕq(s) = |s|q–2s, and p, q satisfy 1

p + 1
q = 1, he solved the practical and signif-

icant theoretical problem. Then many important results relative to differential equation
(1) with different initial conditions and boundary conditions have been obtained (e.g. [2–
14]). Scholars now find that fractional-order models are more adequate than integer-order
models for problems in various fields of science such as physics, fluid flows, electrical net-
works, and many other (e.g. [15–25]). Consequently, the research of fractional differential
equations with p-Laplacian operator BVP has already become a focus in recent years, and
it has developed very rapidly (e.g. [26, 27]).

The authors in [28] studied the existence of positive solutions for the nonlinear fractional
equation with p-Laplacian operator

Dα
0+

(
φp

(
Dα

0+ u(t)
))

= f
(
t, u(t)

)
,
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with the boundary conditions

u(0) = 0, u(1) = au(ξ ), Dα
0+ u(0) = 0,

where 0 < α ≤ 2, 0 < η ≤ 1, 0 < ξ < 1, 0 ≤ a ≤ 1. By using the Guo-Krasnosel’skii fixed point
theorem and the Leggett-Williams theorem, some sufficient conditions for the existence
positive solutions have been obtained. The authors in [29] considered the above equation
with the boundary conditions

u(0) = 0, Dα
0+ u(0) = 0, u(1) = aDα

0+ u(1).

Some existence and multiplicity results of positive solutions have been obtained. In [30],
the authors also considered the same equation with the boundary conditions

u(0) = 0, u(1) = au(ξ ), Dα
0+ u(0) = 0, Dα

0+ u(1) = bDα
0+ u(η),

where 0 ≤ a, b ≤ 1. They obtained the existence of at least one positive solution by means
of the upper and lower solutions method.

As far as we know, few results have been obtained to the solutions of the fractional order
differential equations with p-Laplacian operator nonlocal boundary value problem (BVP):

⎧
⎪⎪⎨

⎪⎪⎩

–Dβ
0+(ϕp(Dα

0+x))(t) = f (t, x(t)), 0 < t < 1,

x(0) = θ , Dα
0+x(0) = θ ,

D
γ
0+x(1) =

∑m–2
i=1 αiD

γ
0+x(ξi),

(2)

in a Banach space E, where Dα
0+, Dβ

0+ and D
γ
0+ are the standard Riemann-Liouville frac-

tional derivatives, θ is the zero element of E, 1 < α ≤ 2, 0 < β ,γ ≤ 1, α – γ – 1 ≥ 0,
I = [0, 1], f : I × E → E is continuous, αi ≥ 0 (i = 1, 2, . . . , m – 2), 0 < ξ1 < ξ2 < · · · < ξm–2 < 1,
∑m–2

i=1 αiξ
α–γ –1
i < 1. We establish some existence of solutions to BVP (2). The technique re-

lies on the properties of the Kuratowski noncompactness measure and the Sadovskii fixed
point theorem. Obviously, BVP (2) is more general than the problems discussed in some
recent literature (such as [28–30]). Firstly, the boundary conditions are nonlocal, which
can cover the well-known Sturm-Liouville boundary conditions as a special case, so we
generalize the results of [28]. Secondly, as we generalized the space from the scalar space
to the abstract space, our work includes the results of [28–30].

The rest of this paper is organized as follows. In Section 2, we introduce some definitions
and lemmas to prove our main results. In Section 3, the existence results of solutions to the
BVP are discussed by using the properties of the Kuratowski measure of noncompactness
and the Sadovskii fixed point theorem. Finally, one example is provided to illustrate our
main results in Section 4.

2 Preliminaries
For convenience, we present here the necessary definitions and preliminary facts which
are used throughout this paper.
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Definition 2.1 (see [31]) Let α > 0, the fractional integral of order α > 0 of a function
x : (0,∞) → R is given by

Iα
0+x(t) =

1

(α)

∫ x

0

x(t)
(t – s)1–α

dt,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 (see [31]) The Riemann-Liouville standard fractional derivative of order
α > 0 of a continuous function x : [0,∞) → R is given by

Dα
0+x(t) =

1

(n – α)

(
d
dt

)n ∫ t

0

x(s)
(t – s)α–n+1 ds,

where n = [α] + 1, [α] denotes the integer part of the real number α, provided that the
right-hand side integral is pointwise defined on [0,∞).

Proposition 2.1 (see [32, 33]) Let x be integrable,
(1) if α > 0, then

Iα
0+Dα

0+x(t) = x(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈ R, i = 1, 2, 3, . . . , N , N is the smallest integer greater than or equal to α.
(2) if β > α > 0, then

Dα
0+Iβ

0+x(t) = Iβ–α
0+ x(t),

Dα
0+Iα

0+x(t) = x(t).

Definition 2.3 (Kuratowski measure of noncompactness, see [34]) Let E be a real Banach
space, S be a bounded set in E, the Kuratowski measure of noncompactness of S is given
by

α(S) = inf

{

δ > 0 : S =
m⋃

i=1

Si, diam(Si) < δ, i = 1, 2, . . . , m

}

,

where diam(Si) denotes the diameters of Si.

Remark 2.1 From the definition, it is obvious that 0 ≤ α(S) < ∞.

Definition 2.4 (k-set contraction operator, see [34]) Let E1 and E2 be real Banach spaces,
D ⊂ E1, A : D → E2 is a continuous and bounded operator. If there exists a constant k ≥ 0
such that α(A(S)) ≤ kα(S) for any bounded set S in D, then A is called a k-set contraction
operator.

Remark 2.2 When k < 1, A is called a strict set contraction operator. It is easy to prove
that a strict set contraction operator is a condensing operator.
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Now, we denote

Q(I) =
{

x ∈ C[I, E] : sup
t∈I

‖x(t)‖
1 + t

< +∞
}

,

where C[I, E] is the Banach space of a continuous function x : I → E with the norm ‖x‖C =
maxt∈I ‖x(t)‖. It is easy to see that Q(I) is a Banach space with the norm ‖x‖Q = supt∈I

‖x(t)‖
1+t .

The basic space used in this paper is Q(I). The Kuratowski measure of noncompactness
in E, C[I, E] and Q(I) are denoted by αE(·), αC(·) and αQ(·), respectively.

The following properties of the Kuratowski noncompactness measure and the Sadovskii
fixed point theorem are needed for our discussion.

Lemma 2.1 (see [35]) If H ⊂ C[I, E] is bounded and equicontinuous, then αE(H(t)) is
continuous on I and αC(H) = maxt∈I αE(H(t)), αE(

∫
I x(t) dt : x ∈ H) ≤ ∫

I αE(H(t)) dt, where
H(t) = {x(t) : x ∈ H} for each t ∈ I .

Lemma 2.2 (Sadovskii, see [34]) Let D be a bounded, closed and convex subset of the Ba-
nach space E. If the operator A : D → D is condensing, then A has a fixed point in D.

3 Main results
For simplicity of presentation, we give some notations and list some conditions as follows:

M = σ

[
1 +

m – 1
1 –

∑m–2
i=1 αiξ

α–γ –1
i

]
, M̄ = max

t∈I

{
a(t), b(t)

}
,

σ =
(
(β))1–q


(α)
, Kr =

{
x ∈ E : ‖x‖ ≤ r

}
,

KR =
{

x ∈ Q(I) : ‖x‖Q ≤ R
}

, Kρ =
{

x ∈ Q(I) : ‖x‖Q ≤ ρ
}

.

(H1) There exist nonnegative functions a, b ∈ C[0, 1] such that

∫ t

0

∥
∥f (s, x)

∥
∥ds ≤ ϕp

[
a(t)‖x‖ + b(t)

]
, ∀t ∈ I, x ∈ E,

and

∫ 1

0
(1 + t)a(t) dt < M,

∫ 1

0
b(t) dt < +∞.

(H2) For any r > 0, [α,β] ⊂ I , f (t, x) is uniformly continuous on [α,β] × Kr and f (t, x) ≥ 0.
(H3) For all t ∈ [0, 1], bounded subsets W ⊂ E, there exists a positive constant l < 1

4M such
that

αE
(
f (s, W )

) ≤ ϕp
(
lαE(W )

)
.

In order to discuss the BVP, the preliminary lemmas are given in this section.
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Lemma 3.1 Given y ∈ C[0, 1] and y ≥ 0. Then the following BVP

⎧
⎪⎪⎨

⎪⎪⎩

–Dβ
0+(ϕp(Dα

0+x))(t) = y(t), 0 < t < 1,

x(0) = 0, Dα
0+x(0) = 0,

D
γ
0+x(1) =

∑m–2
i=1 αiD

γ
0+x(ξi),

(3)

has a unique solution satisfying

x(t) = –σ

∫ t

0
(t – s)α–1ϕq

(∫ s

0
(s – τ )β–1y(τ ) dτ

)
ds

+ σ
tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∫ 1

0
(1 – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1y(τ ) dτ

)
ds

– σ
tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

×
m–2∑

i=1

αi

∫ ξi

0
(ξi – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1y(τ ) dτ

)
ds. (4)

Proof Step 1. From [36, Lemma 2.3], we know the following BVP

⎧
⎨

⎩
–Dα

0+x(t) = y(t), 0 < t < 1,

x(0) = 0, D
γ
0+x(1) =

∑m–2
i=1 αiD

γ
0+x(ξi)

has a unique solution satisfying

x(t) = –
1


(α)

∫ t

0
(t – s)α–1y(s) ds

+
1


(α)
tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∫ 1

0
(1 – s)α–γ –1y(s) ds

–
1


(α)
tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

m–2∑

i=1

αi

∫ ξi

0
(ξi – s)α–γ –1y(s) ds. (5)

Step 2. Let u = Dα
0+x(t) and v = ϕp(u). It is easy to know that u = ϕq(v). By Proposition 2.1,

the solution of the following initial value problem

⎧
⎨

⎩
–Dβ

0+v(t) = y(t), 0 < t < 1,

v(0) = 0,

can be written as v(t) = –Iβ
0+y(t), t ∈ [0, 1]. Combining with the expression of u, we know

that the solution of (3) satisfies

⎧
⎨

⎩
–Dα

0+x(t) = ϕ–1
p (–Iβ

0+y(t)), 0 < t < 1,

x(0) = 0, D
γ
0+x(1) =

∑m–2
i=1 αiD

γ
0+x(ξi).

(6)
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As we have stated in Step 1, we can easily get the solution of BVP (6) as follows:

x(t) =
1


(α)

∫ t

0
(t – s)α–1ϕq

(
–Iβ

0+y(t)
)

ds

–
1


(α)
tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∫ 1

0
(1 – s)α–γ –1ϕq

(
–Iβ

0+y(t)
)

ds

+
1


(α)
tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

m–2∑

i=1

αi

∫ ξi

0
(ξi – s)α–γ –1ϕq

(
–Iβ

0+y(t)
)

ds.

Since y(t) ≥ 0, t ∈ [0, 1], we have ϕ–1
p (–Iβ

0+y(t)) = –(Iβ
0+y(t))q–1, which implies that the so-

lution of (3) is given by (4).
The following lemma is a straightforward conclusion of Lemma 3.1. �

Lemma 3.2 Suppose that condition (H1) is satisfied. Then BVP (2) has a unique solution
satisfying

x(t) = σ

∫ t

0
(t – s)α–1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

+
σ tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∫ 1

0
(1 – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

–
σ tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

×
m–2∑

i=1

αi

∫ ξi

0
(ξi – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds.

Proof The proof is similar to Lemma 3.1, so we omit.
For any x ∈ Q(I), we define the operator T by

(Tx)(t) = –σ

∫ t

0
(t – s)α–1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

+
σ tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∫ 1

0
(1 – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

–
σ tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

×
m–2∑

i=1

αi

∫ ξi

0
(ξi – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds. (7)

�

Remark 3.1 Lemma 3.2 indicates that the existence of solution to BVP (2) is equivalent
to the existence of the fixed point of the operator T .

Lemma 3.3 Suppose that conditions (H1) and (H2) are satisfied. Then the operator T :
Q(I) → Q(I) is continuous and bounded.
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Proof Step 1. For any x ∈ Q(I), we prove that (Tx)(t) ∈ Q(I). By condition (H1), together
with the definition of operator T , we have

∥∥
∥∥

(Tx)(t)
1 + t

∥∥
∥∥

≤
∥∥
∥∥

σ

1 + t

∫ t

0
(t – s)α–1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥∥
∥∥

+
∥
∥∥
∥

σ

1 + t
tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∫ 1

0
(1 – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥
∥∥
∥

+

∥
∥∥
∥∥

σ

1 + t
tα–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

×
m–2∑

i=1

αi

∫ ξi

0
(ξi – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥
∥∥∥
∥

≤ σ

∫ 1

0
(1 – s)α–1ϕq

(∫ s

0

∥
∥f

(
τ , x(τ )

)∥∥dτ

)
ds

+
σ

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∫ 1

0
ϕq

(∫ s

0

∥∥f
(
τ , x(τ )

)∥∥dτ

)
ds

+
σ (m – 2)

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∫ 1

0
ϕq

(∫ s

0

∥
∥f

(
τ , x(τ )

)∥∥dτ

)
ds

≤ M
∫ 1

0
ϕq

(∫ s

0

∥∥f
(
τ , x(τ )

)∥∥dτ

)
ds

≤ M
∫ 1

0

[
a(s)‖x‖ + b(s)

]
ds

≤ M
[∫ 1

0
(1 + s)a(s) ds‖x‖Q +

∫ 1

0
b(s) ds

]

< +∞. (8)

This means that (Tx)(t) is well defined and (Tx)(t) ∈ Q(I) for any x ∈ Q(I).
Step 2. It is time to show that T is a bounded operator. For any x ∈ Bρ , from (8), we get

∥∥
∥∥

(Tx)(t)
1 + t

∥∥
∥∥ ≤ MM̄(2ρ + 1). (9)

So T maps bounded sets into bounded sets in Q(I), it follows that T is a bounded operator.
Step 3. It remains to show that T is continuous on Q(I). Let xn, x ∈ Q(I) with

limn→+∞ ‖xn – x‖Q → 0. It is trivial to see that {xn} is a bounded subset of Q(I). As a
result, there exists a constant η > 0 such that ‖xn‖Q ≤ η for all n ≥ 1. Taking limit, we see
‖x‖Q ≤ η. Taking (H2) into consideration, we know that for any ε > 0, there exists N > 0
such that

∥∥f
(
s, xn(s)

)
– f

(
s, x(s)

)∥∥ ≤ M
1

1–q ε
1

q–1 , ∀n ≥ N , s ∈ I. (10)
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According to (8), a routine computation gives rise to the inequality as follows:

∥∥
∥∥

(Txn)(t)
1 + t

–
(Tx)(t)
1 + t

∥∥
∥∥

≤ M
1 + t

{∫ 1

0
ϕq

(∫ s

0

∥∥f
(
τ , xn(τ )

)
– f

(
τ , x(τ )

)∥∥dτ

)
ds

}

≤ ε

1 + t

< ε. (11)

It follows that ‖ (Txn)(t)
1+t – (Tx)(t)

1+t ‖Q < ε. Thus T : Q(I) → Q(I) is continuous. This completes
the proof of Lemma 3.3. �

Lemma 3.4 Let condition (H1) be satisfied and V be a bounded subset of Q(I). Then (TV )(t)
1+t

is equicontinuous on [0, 1].

Proof In fact, in the light of the boundedness of V , namely, for any x ∈ V , there exists η̃ > 0
such that ‖x‖Q ≤ η̃. Without loss of generality, suppose that t1, t2 ∈ I with t1 < t2 by means
of the monotonicity of (t–s)α–1

1+t in t for s < t and the mean value theorem. Combining with
the definition of operator T , we have

∥
∥∥
∥

(Tx)(t2)
1 + t2

–
(Tx)(t1)
1 + t1

∥
∥∥
∥

≤ σ

∥
∥∥∥

1
1 + t2

∫ t2

0
(t2 – s)α–1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

–
1

1 + t1

∫ t1

0
(t1 – s)α–1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥∥
∥∥

+
σ

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∥∥
∥∥

tα–γ –1
2
1 + t2

∫ 1

0
(1 – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

–
tα–γ –1
1
1 + t1

∫ 1

0
(1 – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥
∥∥
∥

+
σ

1 –
∑m–2

i=1 αiξ
α–γ –1
i

×
∥
∥∥
∥∥

tα–γ –1
2
1 + t2

m–2∑

i=1

αi

∫ ξi

0
(ξi – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

–
tα–γ –1
1
1 + t1

m–2∑

i=1

αi

∫ ξi

0
(ξi – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥∥
∥∥
∥

≤ σ

∥∥
∥∥

1
1 + t2

∫ t1

0
(t2 – s)α–1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

+
1

1 + t2

∫ t2

t1

(t2 – s)α–1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

–
1

1 + t1

∫ t1

0
(t1 – s)α–1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥∥
∥∥
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+
σ

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∣∣∣
∣
tα–γ –1
2
1 + t2

–
tα–γ –1
1
1 + t1

∣∣∣
∣

×
{∥

∥∥
∥

∫ 1

0
(1 – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥
∥∥
∥

+

∥
∥∥
∥∥

m–2∑

i=1

αi

∫ ξi

0
(ξi – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥
∥∥
∥∥

}

≤ σ

∣
∣∣
∣

tα
2

1 + t2
–

tα
1

1 + t1
–

(t2 – t1)α

1 + t2

∣
∣∣
∣

∥
∥∥
∥

∫ t1

0
ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥
∥∥
∥

+ σ
1

1 + t2

∥∥
∥∥

∫ t2

t1

(t2 – s)α–1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥∥
∥∥

+
σ (m – 2)

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∣∣∣
∣
tα–γ –1
2
1 + t2

–
tα–γ –1
1
1 + t1

∣∣∣
∣

×
∥∥
∥∥

∫ 1

0
(1 – s)α–γ –1ϕq

(∫ s

0
(s – τ )β–1f

(
τ , x(τ )

)
dτ

)
ds

∥∥
∥∥

≤ σ

∣
∣∣
∣

tα
2

1 + t2
–

tα
1

1 + t1

∣
∣∣
∣

∫ 1

0
ϕq

(∫ s

0

∥∥f
(
τ , x(τ )

)∥∥dτ

)
ds

+ σ

∫ t2

t1

ϕq

(∫ s

0

∥
∥f

(
τ , x(τ )

)∥∥dτ

)
ds

+
σ (m – 2)

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∣∣∣
∣
tα–γ –1
2
1 + t2

–
tα–γ –1
1
1 + t1

∣∣∣
∣

∫ 1

0
ϕq

(∫ s

0

∥∥f
(
τ , x(τ )

)∥∥dτ

)
ds

≤ σM̄
(

2α–1 +
m – 2

1 –
∑m–2

i=1 αiξ
α–γ –1
i

)
(2η̃ + 1)(t2 – t1)

+ σM̄(2η̃ + 1)(t2 – t1)

= σM̄
(

1 + 2α–1 +
m – 2

1 –
∑m–2

i=1 αiξ
α–γ –1
i

)
(2η̃ + 1)(t2 – t1). (12)

Let

δ =
[
σM̄

(
1 + 2α–1 +

m – 2
1 –

∑m–2
i=1 αiξ

α–γ –1
i

)
(2η̃ + 1)

]–1

· ε

2
.

It follows from (12) that
∥∥∥
∥

(Tx)(t2)
1 + t2

–
(Tx)(t1)
1 + t1

∥∥∥
∥ < ε. (13)

For the case of t1 ≥ t2, after a tedious computation similar to the one used in the case of
t1 ≤ t2, we can also get (13). This ensures that (TV )(t)

1+t is equicontinuous on [0, 1]. The proof
of Lemma 3.4 is finished. �

The existence of solution to BVP (2) is as follows.

Theorem 3.1 Let conditions (H1)-(H3) be satisfied. Then the BVP has at least one solution
belonging to Q(I).
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Proof From Remark 3.1, the main point of our argument is to show that the operator T
has a fixed point in Q(I).

Step 1. Take

R >
∫ 1

0
b(s) ds ·

[
M–1 –

∫ 1

0
(1 + s)a(s) ds

]–1

.

We first prove that TKR ⊂ KR. In fact, for any x ∈ KR and t ∈ I , by (8), we have

∥∥
∥∥

(Tx)(t)
1 + t

∥∥
∥∥ ≤ M

∫ 1

0
ϕq

(∫ s

0

∥
∥f

(
τ , x(τ )

)∥∥dτ

)
ds

≤ M
[∫ 1

0
(1 + s)a(s) ds‖x‖D +

∫ 1

0
b(s) ds

]

≤ M
{∫ 1

0
(1 + s)a(s) dsR + R

[
M–1 –

∫ 1

0

[
(1 + s)a(s)

]
ds

]}–1

< R. (14)

Thus, from Lemma 3.3, TKR ⊂ KR follows.
Step 2. We show that T is a strict set contraction operator. Let D = c̄oQ(TKR), i.e., D is

the convex closure of TKR in Q(I). Clearly, D is a nonempty, bounded, convex and closed
subset of KR. By Lemma 3.4, we see (TKR)(t)

1+t is equicontinuous on I , it follows that T(D)(t)
1+t is

equicontinuous on I . By means of the definition of D, it is trivial to see that D ⊂ KR and
TKR ⊂ D. According to Lemma 3.3, we know that T : D → D is bounded and continuous.
In addition, it is apparent from (H2) that {f (s, x(s)) : x ∈ D} is equicontinuous on I . Taking
(H3) and Lemma 2.1 into consideration, for any t ∈ I and U ⊂ D, we have

αE

(
(TU)(t)

1 + t

)

≤ σ

[∫ 1

0
(1 – s)α–1ϕq

(∫ s

0
αE

({
f
(
τ , x(τ ) : x ∈ U

)})
dτ

)
ds

+
∫ 1

0

(1 – s)α–γ –1

1 –
∑m–2

i=1 αiξ
α–γ –1
i

ϕq

(∫ s

0
αE

({
f
(
τ , x(τ ) : x ∈ U

)})
dτ

)
ds

+
m – 2

1 –
∑m–2

i=1 αiξ
α–γ –1
i

∫ 1

0
ϕq

(∫ s

0
αE

({
f
(
τ , x(τ ) : x ∈ U

)})
dτ

)
ds

]

≤ M
∫ 1

0
ϕq

(∫ s

0
αE

({
f
(
τ , x(τ ) : x ∈ U

)})
dτ

)
ds

= M
∫ 1

0
ϕq

(∫ s

0
αE

({
f (τ , V )

})
dτ

)
ds

≤ MlαE(V ), (15)

where V = {x(τ ) : τ ∈ I, x ∈ U}. For any given ε > 0, we partition U as follows:

U =
n⋃

i=1

Ui, diam(Ui) < αD(V ) +
ε

5
, i = 1, 2, . . . , n.
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Moreover, for any xi ∈ Ui, there exists a partition 0 = t0 < t1 < · · · < tm = 1 such that

∥
∥xi(s) – xi(t)

∥
∥ <

ε

5
, t, s ∈ [tj–1, tj].

Let Vij = {x(t) : x ⊂ Ui, t ∈ [tj–1, tj]}. It is easy to see that Vij is a partition of V , that is,
V =

⋃n
i=1

⋃m
j=1 Vij. Owing to the partition of V , for any x, y ⊂ Ui, t, s ∈ [tj–1, tj], we get

diam Vij ≤ ∥∥x(s) – y(t)
∥∥

≤ ∥∥x(s) – xi(s)
∥∥ +

∥∥xi(s) – xi(t)
∥∥ +

∥∥xi(t) – y(t)
∥∥

≤ (1 + s)‖x – xi‖D +
ε

5
+ (1 + t)‖xi – y‖D

≤ 4 diam Ui +
ε

5
< 4αD(U) + ε. (16)

So, αE(V ) < 4αD(U) + ε, due to ε being arbitrary, we obtain

αE(V ) ≤ 4αD(U). (17)

By substituting (17) into (15), we have

αE

(
(TU)(t)

1 + t

)
≤ 4MlαD(U). (18)

Taking the least upper bound of αE( (TU)(t)
1+t ) when t is in the set of I , applying [11,

Lemma 2.6], we know that

αD(TU) = sup
t∈I

αE

(
(TU)(t)

1 + t

)
, ∀U ⊂ D, (19)

where

(TU)(t)
1 + t

=
{

(Tx)(t)
1 + t

: x ∈ U , t ∈ I is fixed
}

⊂ D.

Take L = 4Ml. From (15), (18) and (19), we get

αD(TU) ≤ LαD(U).

Obviously, 0 ≤ L < 1, that is, T is a strict set contraction operator from D to D. Obviously,
T is condensing too. It follows from Lemma 2.2 that T has at least one fixed point in D,
that is, BVP (2) has at least one solution in Q(I). �

Remark 3.2 If E = [0,∞), as a special case of Theorem 3.1, we can obtain the following
result.

Corollary 3.1 Let (H1)-(H3) be satisfied and f ∈ C[[0, 1] × [0,∞), [0,∞)]. Then BVP (2)
has at least one solution in Q(I).

Proof Letting E = [0,∞) in Theorem 3.1, we get the desired result. �
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4 Illustrative example
Let E = l∞ = {x = (x1, x2, . . . , xn, . . .), supn |xn| < +∞, t ∈ I}. It is easy to see that E is a Ba-
nach space with the norm ‖x‖ = supn |xn|. We consider the following nonlocal fractional
differential equations BVP:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–D
1
2

0+(ϕ 3
2

(D
3
2

0+xn))(t) = [ xn(t)
16(1+t)(1+t2) + sin(t)+

√
| sin(xn+1(t))|2

42n2e
√

t ] 1
2 ,

xn(0) = 0, D
3
2

0+xn(0) = 0,

D
1
4

0+xn(1) = 1
4D

1
4

0+xn( 1
4 ) + 1

2D
1
4

0+xn( 3
4 ).

(20)

BVP (20) can be regarded as a problem with the form of BVP (2), where

f (t, x) =
(
f1(t, x), f2(t, x), . . . , fn(t, x), . . .

)
,

fn(t, x) =
[

xn(t)
16(1 + t)(1 + t2)

+
sin(t) +

√| sin(xn+1(t))|2
42n2e

√
t

] 1
2

.

Clearly, α = 3
2 , β = 1

2 , γ = 1
4 ,

∑m–2
i=1 αi = 0.642 < 1 and

∫ t

0

∥
∥fn(s, x)

∥
∥ds ≤ ϕ 3

2

(
1

16(1 + t)(1 + t2)
+

1
42e

√
t

)
.

Take l = 0.02, a(t) = 1
16(1+t)(1+t2) + 1

42e
√

t , b(t) = 1
42e

√
t . In view of 
( 1

2 ) ≈ 1.772 and 
( 3
2 ) ≈

0.8862, by a simple computation, we have

M =

(β)1–q


(α)

(
1 +

m – 1
1 –

∑m–2
i=1 αi

)
= 9.589,

∫ 1

0

[
(1 + t)a(t)

]
dt = 0.0693 < M–1,

∫ 1

0
b(t) dt = 0.0126 < +∞.

Therefore, all the conditions of Theorem 3.1 are satisfied. Consequently, we infer that (20)
has at least one solution.
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