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Abstract
In this work, we study a plate equation modelling a suspension bridge with weak
damping and hanger restoring force. We prove the well-posedness and establish an
explicit and general decay result without putting restrictive growth conditions on the
frictional damping term.
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1 Introduction
The study of plate problems has been widely investigated by mathematicians and other
scientists. Plate problems have a lot of applications in different areas of science and engi-
neering such as material engineering, mechanical engineering, nuclear physics and optics.
In order to describe the structural behaviour and the stability of large structures in our
societies, plate models have been extensively used. For instance, the Kirchhoff theory of
plates [1] establishes a two-dimensional mathematical model that is used to determine the
stresses and deformations in thin plates subjected to forces and moments. The stability of
Kirchhoff plates in the presence of a linear or nonlinear source has been studied by many
authors. See, for instance, the results obtained in Komornik [2], Lagnese [3] and Lasiecka
[4, 5]. Al-Gharabli and Messaoudi [6] studied the following nonlinear plate problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt + �2u + u + h(ut) = ku ln |u|u, in � × (0, +∞),

u = ∂u
∂η

= 0, on ∂� × [0, +∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in �,

(1.1)

and established decay of solutions. Lu [7] investigated the nonautonomous plate-type evo-
lutionary problem

⎧
⎪⎪⎨

⎪⎪⎩

utt + a(x)ut + �2u + λu + f (u) = g(x, t), in � × (0, T),

u = ∂u
∂η

= 0, on ∂� × [0, T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in �,

(1.2)
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and proved the existence of a uniform attractor. Ji and Lasiecka [8] considered a semilinear
Kirchhoff plate with a nonlinear dissipation acting via moments

⎧
⎪⎪⎨

⎪⎪⎩

wtt – γ�wtt + �2w + f (w) = 0, in � × (0, +∞),

w = 0, �w = –g( ∂wt
∂η

), in ∂� × [0, +∞),

w(x, 0) = w0(x), wt(x, 0) = w1(x), in �,

(1.3)

and proved that the plate is uniformly stabilizable with uniform energy decay rates with
respect to the parameter γ which represents rotational force. Moreover, they showed that
as γ −→ 0, the solutions of the Kirchhoff plate equation converge to the solutions of the
semilinear Euler-Bernoulli plate, which is also uniformly stable in finite energy norm.

Recently, plate models have also been of great importance in studying the structural
behaviour and instability of suspension bridges. The first attempt to model a suspension
bridge through a plate is due to Ferrero and Gazzola [9], where the following hyperbolic
problem was introduced:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt + ηut + �2u + h(x, y, u) = f (x, y, t), in � × (0, T),

u(0, y, t) = uxx(0, y, t) = 0, for (y, t) ∈ (–�,�) × (0, T),

u(π , y, t) = uxx(π , y, t) = 0, for (y, t) ∈ (–�,�) × (0, T),

uyy(x,±�, t) + σuxx(x,±�, t) = 0, for (x, t) ∈ (0,π ) × (0, T),

uyyy(x,±�, t) + (2 – σ )uxxy(x,±�, t) = 0, for (x, t) ∈ (0,π ) × (0, T),

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in �,

(1.4)

where � = (0,π ) × (–�,�) ⊂R
2 is a planar rectangular plate, σ is the Poisson ratio, η is the

damping coefficient, h is the nonlinear restoring force of the hangers and f is an external
force. The well-posedness and long-time behaviour of this problem were proved in [9]
under suitable assumptions on h. A quasilinear stationary variant of this equation was as
well suggested in [10]. Wang [11] considered the following fourth-order equation:

utt + δut + �2u + au = |u|m–2u, (1.5)

with the same boundary conditions and initial data as in [10]. He proved the existence and
uniqueness of local solution and a finite time blow up result. Messaoudi and co-authors
[12–16] have carried out extensive analysis of the suspension bridge plate model (1.4),
where existence, decay and global attractor results have been established. For more related
results, see Gazzola and Wang [17], Berchio et al. [18] and the book [19] on mathematical
models for suspension bridges by Gazzola.

In this paper, we consider the following fourth-order plate equation:

utt + �2u + β(t)g(ut) + h(u) = 0, in � × (0, T) (1.6)

with the same boundary and initial conditions as in (1.4), where g is a nonlinear function
to be specified later, β is the damping coefficient and u represents the downward displace-
ment of a vibrating suspension bridge under the effect of weak frictional damping.
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The main aim is to discuss the well-posedness of problem (1.6) and the decay rate of
the associated energy functional without any restrictive growth condition on the damping
term g . For the well-posedness, we reformulate (1.6) into a semigroup setting and apply the
semigroup theory (see Pazy [20]). For the decay rate, we exploit some convexity properties
used by Mustafa and Messaoudi [21]. The rest of this work is organised as follows. In
Section 2, we present preliminary materials which will be helpful in obtaining our results.
In Section 3, we discuss the well-posedness of problem (1.6). In Section 4, we study the
decay rate of the energy functional associated with problem (1.6).

2 Preliminaries
In this section, we state some preliminary material that will be helpful in achieving our
result. We assume that the functions β , g and h satisfy the following assumptions:

(A1) β : R+ →R+ is a nonincreasing differentiable function.
(A2) h : R →R is a locally Lipschitz nondecreasing function such that h(0) = 0, and denote

H(s) =
∫ s

0 h(τ ) dτ , which is positive, such that

sh(s) – H(s) ≥ 0, ∀s ∈R.

(A3) g : R → R is a locally Lipschitz nondecreasing C1-function such that there exist
ε, c1, c2 > 0 and an increasing function M ∈ C1([0, +∞)) with M linear or M(0) =
M′(0) = 0 is a strictly convex C2-function on [0, ε) such that

⎧
⎨

⎩

c1|s| ≤ |g(s)| ≤ c2|s|, if |s| ≥ ε,

s2 + g2(s) ≤ M–1(sg(s)), if |s| ≤ ε.
(2.1)

Remark 2.1
1. We obtain from assumption (A3) that sg(s) > 0 for s 
= 0.
2. Assumption (A3) with ε = 1 was first introduced by Lasiecka and Tataru [22], where

decay estimates for a second-order nonlinear wave equation with nonlinear
boundary damping were established.

3. To achieve our decay result, we borrow the techniques used by Mustafa and
Messaoudi in [21] to prove decay estimates for a second-order wave equation with
Dirichlet boundary conditions.

As in [9], let us introduce the space

H∗2(�) :=
{

w ∈ H2(�) : w(0, y) = w(π , y) = 0,∀y ∈ (–�,�)
}

, (2.2)

together with the inner product

(u, v)H2∗ =
∫

�

[
�u�v + (1 – σ )(2uxyvxy – uxxvyy – uyyvxx)

]
dx dy. (2.3)

For the completeness of the space H∗2(�), we have the following results by Ferrero and
Gazzola [9].
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Lemma 2.1 ([9]) Assume that 0 < σ < 1
2 . Then the usual H2(�)-norm and the norm defined

by (·, ·)H2∗ = ‖·‖2
H2∗ (�) are equivalent. Moreover, H2∗ (�) is a Hilbert space when endowed with

the scalar product (·, ·)H2∗ .

Theorem 2.1 ([9]) Assume that 0 < σ < 1
2 and f ∈ L2(�). Then there exists a unique

u ∈ H2∗ (�) such that

(u, v)H2∗ =
∫

�

fv, ∀v ∈ H2
∗ (�). (2.4)

Remark 2.2 The function u ∈ H2∗ (�) satisfying (2.4) is called the weak solution of the
stationary problem

⎧
⎪⎪⎨

⎪⎪⎩

�2u = f ,

u(0, y) = uxx(0, y) = u(π , y) = uxx(π , y) = 0,

uyy(x,±l) + σuxx(x,±l) = uyyy(x,±l) + (2 – σ )uxxy(x,±l) = 0.

(2.5)

Theorem 2.2 ([9]) The weak solution u ∈ H2∗ (�) of (2.4) is in H4(�), and there exists a
constant C = C(l,σ ) > 0 such that

‖u‖H4(�) ≤ C‖f ‖L2(�). (2.6)

In addition, if u ∈ C4(�̄), then u is a classical solution of (2.5).

Lemma 2.2 ([9]) Let u ∈ H2∗ (�) and assume that 1 ≤ p < +∞. Then there exists a constant
C∗ = C∗(�, p) > 0 such that

‖u‖Lp(�) ≤ C∗‖u‖H2∗ (�).

3 Well-posedness
In this section, we discuss the well-posedness of problem (1.6). We begin with the defini-
tion of a weak solution of problem (1.6).

Definition 3.1 We say that a function

u ∈ C
(
[0, T], H2

∗ (�)
) ∩ C1([0, T], L2(�)

)
(3.1)

is a weak solution of (1.6) if

⎧
⎪⎪⎨

⎪⎪⎩

d
dt

∫

�
utw + (u, w)H2∗ (�) + β(t)

∫

�
g(ut)w +

∫

�
h(u)w = 0, ∀w ∈ H2∗ (�),

u(0) = u0, ut(0) = u1,

for a.e t ∈ (0, T).

(3.2)

Now, we reformulate problem (1.6) into a semigroup setting. Let ut = v, then problem
(1.6) becomes

⎧
⎨

⎩

Ut + AU = F(t, U),

U(0) = U0,
(3.3)
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where

U =

(
u
v

)

, AU =

(
–v

�2u

)

, F(t, U) =

(
0

–h(u) – β(t)g(v)

)

, U0 =

(
u0

u1

)

.

We introduce the Hilbert space

H = H2
∗ (�) × L2(�)

equipped with the inner product

(U , V )H = (u, ũ)H2∗ (�) + (v, ṽ)L2(�), (3.4)

where

U = (u, v)T , V = (ũ, ṽ)T ∈H.

Next, we consider the following stationary boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

uxx(0, y) = uxx(π , y) = 0,

uyy(x,±�) + σuxx(x,±�) = 0,

uyyy(x,±�) + (2 – σ )uxxy(x,±�) = 0.

(3.5)

The domain of the operator A is defined as

D(A) =
{

(u, v) ∈H : u ∈ H4(�) satisfying (3.5) and v ∈ H2
∗ (�)

}
.

We have the following existence and uniqueness result for problem (3.3).

Theorem 3.1 Let U0 ∈H be given. Assume that (A1)-(A3) hold. Then problem (3.3) has a
unique global weak solution

U ∈ C
(
[0, T],H

)
).

Proof To achieve this result, we show that the operator A is maximal monotone and F is
locally Lipschitz continuous. For the monotonicity and maximality, see [15] for a complete
detail proof.

Local lipschitzness: Let U , V ∈ BR = {(u, v) ∈ D(A) : ‖(u, v)‖H ≤ R}. By using Lemma 2.2,
the local lipschitzness of h and g , and the boundedness of β , we get

∥
∥F(t, U) – F(t, V )

∥
∥2
H =

∥
∥
∥
∥
∥

(
0

–h(u) – β(t)g(v)

)

–

(
0

–h(ũ) – β(t)g(ṽ)

)∥
∥
∥
∥
∥

2

H

=
∫

�

∣
∣
(
h(ũ) – h(u)

)
+ β(t)

(
g(ṽ) – g(v)

)∣
∣2

≤ 2CR‖u – ũ‖2
L2(�) + 2CRβ2(0)‖v – ṽ‖2

L2(�)
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≤ 2CRC∗‖u – ũ‖2
H2∗ (�) + 2CRβ2(0)‖v – ṽ‖2

L2(�)

≤ CR
(‖u – ũ‖2

H2∗ (�) + ‖v – ṽ‖2
L2(�)

)

= CR‖U – V‖2
H. (3.6)

So, F is locally Lipschitz. Thus, by the semigroup theory (see Pazy [20]), we obtain a local
unique solution

U ∈ C
(
[0, Tm),H

)
for some Tm > 0.

To obtain a global unique solution, it suffices to show that ‖U(t)‖H is bounded indepen-
dently of t. To this end, we multiply (1.6)1 by ut and integrate over � to get

d
dt

(
1
2

∫

�

u2
t +

1
2
‖u‖2

H2∗
+

∫

�

H(u)
)

= –β(t)
∫

�

utg(ut) ≤ 0. (3.7)

On the account of assumption (A2) and remark number (2.1)1, we obtain

∥
∥U(t)

∥
∥2
H = ‖ut‖2

L2 + ‖u‖2
H2∗

≤ E(t) ≤ E(0),

where

E(t) =
1
2

∫

�

u2
t +

1
2
‖u‖2

H2∗
+

∫

�

H(u).

This completes the proof. �

4 Decay of the energy
In this section, we discuss the decay rates of the energy functional associated with prob-
lem (1.6). To achieve this, we state and prove several lemmas that will be fundamental in
establishing the main result.

4.1 Technical lemmas
The energy functional associated with problem (1.6) is given by

E(t) =
1
2

∫

�

|ut|2 +
1
2
‖u‖2

H2∗ (�) +
∫

�

H(u). (4.1)

Lemma 4.1 The energy functional defined in (4.1) satisfies

dE(t)
dt

= –β(t)
∫

�

utg(ut) ≤ 0. (4.2)

Proof Multiplying (1.6) by ut and integrating over �, we obtain

d
dt

(
1
2

∫

�

|ut|2 +
1
2
‖u‖2

H2∗ (�) +
∫

�

H(u)
)

+ β(t)
∫

�

utg(ut) = 0.

From (A3) we get that sg(s) > 0 for all s 
= 0. Thus, by using (A1), we obtain

dE(t)
dt

= –β(t)
∫

�

utg(ut) ≤ 0. (4.3)
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We note here that the calculations are justified for regular solutions. However, the result
in (4.3) remains true for a weak solution by a density argument. �

Define the functional

F(t) = mE(t) +
∫

�

uut , (4.4)

where m is a positive constant to be specified later.

Lemma 4.2 Assume that (A1)-(A3) hold. Then the functional F satisfies, along the solution
of (1.6), the estimates

F ′(t) ≤ –E(t) + C
∫

�

(
u2

t +
∣
∣ug(ut)

∣
∣
)

and

F ∼ E,

where C is a positive constant.

Proof By using (1.6), definition (3.2), Lemma 4.1 and exploiting assumptions (A1) and (A2),
direct differentiation gives

F ′(t) = mE′(t) +
∫

�

u2
t +

∫

�

uutt

= –mβ(t)
∫

�

utg(ut) +
∫

�

u2
t – ‖u‖2

H2∗ (�) – β(t)
∫

�

ug(ut) –
∫

�

uh(u)

≤
∫

�

u2
t –

1
2
‖u‖2

H2∗ (�) –
∫

�

H(u) – β(t)
∫

�

ug(ut) +
∫

�

(
H(u) – uh(u)

)

≤ –E(t) +
3
2

∫

�

u2
t + β(t)

∫

�

∣
∣ug(ut)

∣
∣

≤ –E(t) + C
∫

�

(
u2

t +
∣
∣ug(ut)

∣
∣
)
. (4.5)

Next, we show that F ∼ E. Using Young’s inequality and Lemma 2.2, we have

F(t) ≤ mE(t) +
1
2

∫

�

u2
t +

1
2
‖u‖2

L2(�)

≤ mE(t) +
1
2

∫

�

u2
t +

C∗
2

‖u‖2
H2∗ (�) ≤ λ2E(t). (4.6)

Also,

F(t) ≥ mE(t) –
1
2

∫

�

u2
t –

1
2
‖u‖2

L2(�)

≥ mE(t) –
1
2

∫

�

u2
t –

C∗
2

‖u‖2
H2∗ (�)

=
(m – 1)

2

∫

�

u2
t +

(m – C∗)
2

‖u‖2
H2∗ (�) + m

∫

�

H(u).
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We choose m > 0 large enough so that (m – 1), (m – C∗) > 0 and arrive at

F(t) ≥ λ1E(t). (4.7)

Thus, we get from (4.6) and (4.7) that

λ1E(t) ≤ F(t) ≤ λ2E(t).

This completes the proof. �

Next, we choose 0 < ε1 ≤ ε so that

sg(s) ≤ min
{
ε, M(ε)

}
, ∀|s| ≤ ε1. (4.8)

Then, for |s| ≥ ε1, the function s �−→ |g(s)|
|s| is continuous on compact intervals and thus

attains its extrema. Thus, it follows from assumption (A3) that

⎧
⎨

⎩

c′
1|s| ≤ |g(s)| ≤ c′

2|s|, if |s| ≥ ε1,

s2 + g2(s) ≤ M–1(sg(s)), if |s| ≤ ε1.
(4.9)

As in [23], let us partition � as follows:

�1 =
{

(x, y) ∈ � : |ut| ≤ ε1
}

and �2 =
{

(x, y) ∈ � : |ut| > ε1
}

.

Lemma 4.3 The following inequalities hold for any ε > 0 along the solution of (1.6):

∫

�1

(
u2

t +
∣
∣ug(ut)

∣
∣
) ≤

∫

�1

u2
t + C∗εE(t) + Cε

∫

�1

∣
∣g(ut)

∣
∣2 (4.10)

and

∫

�2

(
u2

t +
∣
∣ug(ut)

∣
∣
) ≤ CεE(t) – CεE′(t), (4.11)

where C∗ is the embedding constant defined in Lemma 2.2 and Cε is a generic positive
constant depending on ε.

Proof For the first inequality (4.10), we use Young’s inequality and Lemma 2.2 to get

∫

�1

(
u2

t +
∣
∣ug(ut)

∣
∣
) ≤

∫

�1

u2
t + ε

∫

�1

|u|2 + Cε

∫

�1

∣
∣g(ut)

∣
∣2

≤
∫

�1

u2
t + C∗ε‖u‖2

H2∗ (�) + Cε

∫

�1

∣
∣g(ut)

∣
∣2

≤
∫

�1

u2
t + C∗εE(t) + Cε

∫

�1

∣
∣g(ut)

∣
∣2. (4.12)
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For the second inequality (4.11), we use Lemma 2.2 and Hölder’s inequality to obtain

∫

�2

∣
∣ug(ut)

∣
∣ ≤

(∫

�2

|u|2
) 1

2
(∫

�2

∣
∣g(ut)

∣
∣2

) 1
2

≤ ‖u‖L2(�)

(∫

�2

∣
∣g(ut)

∣
∣2

) 1
2

≤ C∗‖u‖H2∗ (�)

(∫

�2

∣
∣g(ut)

∣
∣2

) 1
2

. (4.13)

Now, from (4.9)1 we observe that

|s|2 ≤ c′′
1sg(s) and

∣
∣g(s)

∣
∣2 ≤ c′′

2sg(s) for some positive constants c′′
1, c′′

2.

Thus, with this in mind and Young’s inequality, we obtain

∫

�2

(
u2

t +
∣
∣ug(ut)

∣
∣
) ≤ C

∫

�2

utg(ut) + C
(‖u‖2

H2∗ (�)

) 1
2

(∫

�2

utg(ut)
) 1

2

≤ –CE′(t) + C
(
E(t)

) 1
2
(
–E′(t)

) 1
2

≤ –CE′(t) + C
(
ε
(
E(t)

)
– CεE′(t)

)

= CεE(t) – CεE′(t). (4.14)
�

Lemma 4.4 For ε small enough and two positive constants d, C, the functional defined
by

L(t) = F1(t) + CεE(t), where F1(t) = F(t) + CεE(t)

satisfies, along the solution of (1.6), the estimate

L′(t) ≤ –dE(t) + C
∫

�1

(
u2

t +
∣
∣g(ut)

∣
∣2) (4.15)

and

L ∼ E.

Proof Using Lemmas 4.2 and 4.3, direct computations give

F ′
1(t) = F ′(t) + CεE′(t)

≤ –E(t) + C
∫

�1

(
u2

t +
∣
∣ug(ut)

∣
∣
)

+ C
∫

�2

(
u2

t +
∣
∣ug(ut)

∣
∣
)

≤ –E(t) + C
∫

�1

u2
t + CCeεE(t) + Cε

∫

�1

∣
∣g(ut)

∣
∣2 + CεE(t) – CεE′(t)

≤ –(1 – Cε)E(t) + Cε

∫

�1

(
u2

t +
∣
∣g(ut)

∣
∣2) – CεE′(t).
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That is,

(
F1(t) + CεE(t)

)′ ≤ –(1 – Cε)E(t) + Cε

∫

�1

(
u2

t +
∣
∣g(ut)

∣
∣2). (4.16)

This implies

L′(t) ≤ –(1 – Cε)E(t) + Cε

∫

�1

(
u2

t +
∣
∣g(ut)

∣
∣2). (4.17)

We then choose ε small enough so that (1 – Cε) > 0 and obtain the result. It is easy to see
that L ∼ E since F ∼ E. This completes the proof. �

4.2 Main decay result
Now, we state and prove our main decay result.

Theorem 4.1 Assume that (A1)-(A3) hold. Then there exist positive constants k1, k2, k3, ε0

such that the solution of (1.6) satisfies

E(t) ≤ k3M–1
1

(

k1

∫ t

0
β(s) ds + k2

)

, ∀t ≥ 0, (4.18)

where

M1(t) =
∫ 1

t

1
M2(s)

ds, M2(t) = tM′(ε0t) (4.19)

and M1 is strictly decreasing on (0, 1] and limt→0 M1(t) = +∞.

Proof We have two cases as follows.
Case I. M is linear on (0, ε]: Multiplying (4.15) by β(t) and using (4.9)2, we deduce that

β(t)L′(t) ≤ –dβ(t)E(t) + Cβ(t)
∫

�1

(
u2

t +
∣
∣g(ut)

∣
∣2)

≤ –dβ(t)E(t) + Cβ(t)
∫

�1

M–1(utg(ut)
)

= –dβ(t)E(t) + Cβ(t)
∫

�1

utg(ut)

≤ –dβ(t)E(t) + Cβ(t)
∫

�

utg(ut)

= –dβ(t)E(t) – CE′(t).

By using (A1), we obtain

(
β(t)L(t) + CE(t)

)′ ≤ –dβ(t)E(t). (4.20)

Let J1 = βL + CE. Then J1 ∼ E since L ∼ E, and we get from (4.20)

J ′
1(t) ≤ –k1β(t)J1(t). (4.21)
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Simple integration of (4.21) over (0, t) and using the fact that J1 ∼ E give

E(t) ≤ k2e–k1
∫ t

0 β(s) ds = cM–1
1

(

c
∫ t

0
β(s) ds

)

.

Case II. M is nonlinear on (0, ε]. In this case, we consider the functional I(t) defined by

I(t) =
1

|�1|
∫

�1

utg(ut).

We know that M is convex, so M–1 is concave. Thus, Jensen’s inequality yields

M–1(I(t)
) ≥ 1

|�1|
∫

�1

M–1(utg(ut)
)
. (4.22)

By using (4.9)2, we obtain

β(t)
∫

�1

(
u2

t +
∣
∣g(ut)

∣
∣2) ≤ β(t)

∫

�1

M–1(utg(ut)
) ≤ Cβ(t)M–1(I(t)

)
. (4.23)

We multiply (4.15) by β(t) and use (4.23) to arrive at

β(t)L′(t) ≤ –dβ(t)E(t) + Cβ(t)
∫

�1

(
u2

t +
∣
∣g(ut)

∣
∣2)

≤ –dβ(t)E(t) + Cβ(t)M–1(I(t)
)
. (4.24)

This implies

β(t)L′(t) + E′(t) ≤ –dβ(t)E(t) + Cβ(t)M–1(I(t)
)

since E′ ≤ 0. Using (A1), we obtain

R′
0(t) ≤ –dβ(t)E(t) + Cβ(t)M–1(I(t)

)
,

where

R0 = βL + E ∼ E. (4.25)

Let ε0 < ε, C0 > 0 and define the functional

R1(t) = M′
(

ε0
E(t)
E(0)

)

R0(t) + C0E(t). (4.26)

Let us note here that E(0) > 0, otherwise E(t) = 0, ∀t ∈ R
+, and thus the theorem is veri-

fied since E′(t) ≤ 0. Now, since R0 ∼ E and E′ ≤ 0, M′ > 0 (M is increasing), M′′ > 0 (M is
convex) on (0, ε], then R1 satisfies the following:

α1R1(t) ≤ E(t) ≤ α2R1(t) for some α1,α2 > 0 (4.27)
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and it follows from (4.26) that

R′
1(t) = ε0

(
E′(t)
E(0)

)

M′′
(

ε0
E(t)
E(0)

)

R0(t) + M′
(

ε0
E(t)
E(0)

)

R′
0(t) + C0E′(t)

≤ M′
(

ε0
E(t)
E(0)

)
[
–dβ(t)E(t) + Cβ(t)M–1(I(t)

)]
+ C0E′(t)

= –dβ(t)E(t)M′
(

ε0
E(t)
E(0)

)

+ Cβ(t)M′
(

ε0
E(t)
E(0)

)

M–1(I(t)
)

+ C0E′(t). (4.28)

Now, let M∗ be the convex conjugate of M in the sense of Young. Then

M∗(s) = s
(
M′)–1(s) – M

((
M′)–1(s)

)
, if s ∈ (

0, M′(ε)
)

(4.29)

and M∗ satisfies the generalised Young’s inequality

XY ≤ M∗(X) + M(Y ), if X ∈ (
0, M′(ε)

)
, Y ∈ (0, ε). (4.30)

Next, we set X = M′(ε0
E(t)
E(0) ) and Y = M–1(I(t)). By using Lemma 4.1, the fact that sg(s) ≤

min{ε, G(ε)}, if |s| ≤ ε1 and (4.28)-(4.30), we obtain

R′
1(t) ≤ –dβ(t)E(t)M′

(

ε0
E(t)
E(0)

)

+ C0E′(t)

+ Cβ(t)
[

M∗
(

M′
(

ε0
E(t)
E(0)

))

+ M
(
M–1(I(t)

))
]

= –dβ(t)E(t)M′
(

ε0
E(t)
E(0)

)

+ C0E′(t)

+ Cβ(t)M∗
(

M′
(

ε0
E(t)
E(0)

))

+ Cβ(t)I(t)

= –dβ(t)E(t)M′
(

ε0
E(t)
E(0)

)

+ C0E′(t)

+ Cε0β(t)
(

E(t)
E(0)

)

M′
(

ε0
E(t)
E(0)

)

– Cβ(t)M
(

ε0
E(t)
E(0)

)

+ Cβ(t)I(t)

≤ –E(0)dβ(t)
(

E(t)
E(0)

)

M′
(

ε0
E(t)
E(0)

)

+ Cε0β(t)
(

E(t)
E(0)

)

M′
(

ε0
E(t)
E(0)

)

+ Cβ(t)
∫

�

utg(ut) + C0E′(t)

≤ –E(0)dβ(t)
(

E(t)
E(0)

)

M′
(

ε0
E(t)
E(0)

)

+ Cε0β(t)
(

E(t)
E(0)

)

M′
(

ε0
E(t)
E(0)

)

– CE′(t) + C0E′(t).

We choose C0 large enough and ε0 small enough such that

C – C0 < 0, E(0)d – Cε0 > 0,
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and arrive at

R′
1(t) ≤ –kβ(t)

(
E(t)
E(0)

)

M′
(

ε0
E(t)
E(0)

)

= –kβ(t)M2

(

ε0
E(t)
E(0)

)

, (4.31)

where M2(t) = tM′(ε0t). We have that

M′
2(t) = M′(ε0t) + ε0tM′′(ε0t).

Thus, using the strict convexity of M on (0, ε], we get that M2, M′
2 > 0 on (0, 1]. It follows

from (4.27) and (4.31) that the functional

R2(t) = α1
R1(t)
E(0)

satisfies

R2 ∼ E (4.32)

and

R′
2(t) ≤ –k1β(t)M2

(
R2(t)

)
for some k1 > 0. (4.33)

Inequality (4.33) implies that

(
M1

(
R2(t)

))′ ≥ k1β(t),

where

M1(τ ) =
∫ 1

τ

1
M2(s)

ds, τ ∈ (0, 1].

Thus, integrating (4.33) over (0, t) and noting that M1 is strictly decreasing on (0, 1] give

R2(t) ≤ M–1
1

(

k1

∫ t

0
β(s) ds + k2

)

for some k2 > 0. (4.34)

Combining (4.32) and (4.34), we get the result. This completes the proof. �

5 Examples
In this section, we illustrate our result with some examples. As in [21], let g0 ∈ C2([0, +∞))
be a strictly increasing function such that g0(0) = 0, and for some positive constants c1, c2

and ε, the function g satisfies
⎧
⎨

⎩

c1|s| ≤ |g(s)| ≤ c2|s|, ∀|s| ≥ ε,

g0(|s|) ≤ |g(s)| ≤ g–1
0 (|s|), ∀|s| ≤ ε.

(5.1)

Define the function

M(s) =
(√

s
2

)

g0

(√
s
2

)

. (5.2)
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Then M is a C2-strictly convex function on (0, ε] when g0 is nonlinear and thus satisfies
assumption (A3). We give some examples of g0 such that g satisfies (5.1) near 0.

(1) Let g0(s) = ks, where k is a positive constant, then M(s) = ks satisfies (A3), and we get

E(t) ≤ ke–k1
∫ t

0 β(s) ds, ∀t ≥ 0.

(2) Let g0(s) = 1
s e– 1

s2 , then M(s) = e– 2
s satisfies (A3) near 0 and

E(t) ≤ k
(

ln

(

k1

∫ t

0
β(s) ds + k2

))–1

, ∀t ≥ 0.

(3) Let g0(s) = e– 1
s , then M(s) =

√ s
2 e–

√
2
s satisfies (A3) near 0, and we obtain

E(t) ≤ k
(

ln

(

k1

∫ t

0
β(s) ds + k2

))–2

, ∀t ≥ 0.

6 Conclusion
This paper has been able to establish the well-posedness and decay estimate for a nonlinear
plate equation with a partially hinged boundary condition. We also illustrated our result
with some examples. This result is new for these types of problems, and it generalises
many related problems in the literature.
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