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1 Introduction

In this paper, we are concerned with the following stochastic viscoelastic wave equation:

t
ltae|P oy — Atk — Aty + / h(t — v)Au(z) dT + |u | %u,
0
= ulP2u + eo(x, )0, W(x,t) inD x (0,T), (1.1)
u=0 onaDx (0,7),

u(x,0) = up(x), u(x,0) = u1(x) inD,

where D is a bounded domain in R” with smooth boundary dD, with given positive con-
stants p > 0, ¢ > 2, and p > 2. The function 4 : R* — R* in the viscoelastic term is a
positive relaxation function satisfying some conditions to be specified later. W (x, £) is an
infinite dimensional Wiener process, o (x, t) is L*(D)-valued progressively measurable, and
€ is a given positive constant which measures the strength of noise.

System (1.1) without the stochastic term is a model for quasilinear viscoelastic wave
equation with nonlinear damping and source terms. Various forms of the deterministic
system (1.1) have been considered by many authors, and several results considering ex-
istence, nonexistence, and asymptotic behavior have been established in [1-5], and the
references therein. For example, Liu [3] considered the following quasilinear viscoelastic
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wave equation problem:

t
letg|Pthyy — At — Aty +/ gt —1t)Au(t)dr = blulPu in D x (0,00),
0

u=0 onaD x (0,00),

u(x,0) = uo(x), us(x,0) = u1(x) in €,

where D is a bounded domain in R” (# > 1) with a smooth boundary dD, and p, b > 0,
p > 2 are constants. The author investigated the general solution and blow-up solutions for
this problem. Also, Song [4] studied the nonlinear quasilinear viscoelastic wave equation

problem

t
letg|P 1y — Au +/ gt —1t)Au(t)dr + |u " u, = \ulP>u  inD x [0, T],
0

u=0 onaD x[0,T],

u(x,0) = up(x), us(x,0) = u1(x) inD,

where D is a bounded domain of R” (n > 1) with a smooth boundary 9D, m > 2, g: R* —

R* is a positive nonincreasing function, and

2<p<oo ifn=1,2, 2<p<2(mn-1)/(n-2) ifn=>3,

2<p<oo ifn=1,2, 2<p<n/n-2) ifn=>3.

He proved the global nonexistence of positive initial energy solutions for a quasilinear
viscoelastic wave equation.

Under the consideration of random environment, there are many studies on the stochas-
tic wave equation with global existence and invariant measures for linear and nonlinear
damping (see the references in [6-25]).

Wei and Jiang [26] and Gao, Guo and Liang [24] considered the following nonlinear

stochastic viscoelastic wave equation:

t
un—Au+/ h(t —t)Au(t)dt + uy
0

= ulP2u+eo(u, Vu,x,6)0,W(x,t) inD x (0,T),
u=0 ondDx(0,T),

u(x,0) = uo(x), u(x,0) = up(x) inD.

They investigated the global existence and the energy decay estimate of a solution and
showed that the solution blows up with positive probability or it is explosive in L? sense
under some conditions.

Moreover, Cheng et al. [23] proved the existence of a global solution and blow-up solu-
tions with positive probability for the nonlinear stochastic viscoelastic wave equation with
linear damping (see [18, 22, 26]).
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Recently, Cheng et al. [23] studied the stochastic viscoelastic wave equation with non-

linear damping and source terms

t
Uy — A+ / h(t - 7) Dule) d + ] 2u,
0

= ulP2u+eo(xt)9,W(x,t) inD x(0,T),
u=0 onadDx(0,T),

u(x,0) = uo(x), u,(x,0) = uy(x) in D,

where D is a bounded domain in R” with smooth boundary 0D, g > 2,p > 2, € is a given
positive constant which measures the strength of noise; W (x, ) is an infinite dimensional
Wiener process; o (x,t,w) is L*(D)-valued progressively measurable; and / is a positive
relaxation function. The authors studied the global solution of stochastic viscoelastic wave
equations with nonlinear damping and source terms.

The previous work in Cheng et al. [23] established that the solution blows up with posi-
tive probability or it is explosive in energy sense for p > g. Motivated by this work, we prove
that the stochastic quasilinear viscoelastic wave equation (1.1) can blow up with positive
probability or it is explosive in energy sense for p > {g, p + 2} and obtain the existence of
global solution by the Borel-Cantelli lemma. To the best of our knowledge, there have been
no results for the blow-up of solutions of stochastic quasilinear viscoelastic wave equation
with positive probability.

This paper is organized as follows. In Section 2, we present some assumptions, defini-
tions, and lemmas needed for our work. The result for the local existence and a pointwise
unique solution of equation (1.1) are given too. In Section 3, we show Lemmas 3.1 and 3.2.
With those lemmas, we prove our main result for p > {¢q, p + 2}. In Section 4, we obtain

global existence of equation (1.1).

2 Preliminaries
Let (X, | - [lx) be a separable Hilbert space with Borel o -algebra B(X), and let (2,5, P) be
a probability space. We set H = L(D) with the inner product and norm denoted by (-, )
and || - ||, respectively. We denote by | - ||, the L4(D) norm for 0 < g < oo and by ||V - || the
Dirichlet norm in V = H} (D) which is equivalent to H!(D) norm.

First, we introduce the following hypotheses:

(H1) We assume that p, g, p satisfy

2(m—-1
q=>2, p>2, max{p,q} < (2 1) ifn>3;
q>2, p>2 ifn=12; (2.1)
2
0<p< 5 ifn>3, O<p<oo ifn=1,2.
n_

(H2) We assume that #: R* — R* is a bounded nonincreasing C! function satisfying

h(s) >0, 1—/ h(s)ds=1>0,
0

Page 3 of 15
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and there exist positive constants &; and &, such that
=E1h() <K () < ~&h(1), t=0. (2.2)

(H3) o (x,t) is H}(D) N L>®(D)-valued progressively measurable such that

T 2 2
E /0 ([vo @] + o @) de < . (2.3)

Lemma 2.1 ([8]) For all u,v € H'([R") and 0 < p < ﬁ (n>3)orp>0(n=1,2), there

exists a constant ¢, = ¢1(n, p) > 0 such that
+1
Nl 2o-0 < cullulln, u?v]| < & 1l Vil (2.4)

In this paper, E(-) stands for expectation with respect to probability measure P, and
W (x,t)(t > 0) isa V-valued Q-Wiener process on the probability space with the covariance
operator Q satisfying Tr(Q) < co. A complete orthonormal system {ex}?; in V with ¢q :=
SUPz-1 lleklloo < 00 and a bounded sequence of nonnegative real members {A;}?°; satisfy
that

Qei = hier, k=1,2,....

To simplify the computations, we assume that the covariance operator Q and Laplacian —A
with a homogeneous Dirichlet boundary condition have a common set of eigenfunctions,
that is,

—ANey = uxex, x€D,

er =0, x € 0D,

and then, for any ¢ € [0, T'], W(x, ) has an expansion
o0
W t) =Y v auBe()elt), (2.5)
k=1

where {Bi(£)}32, are real-valued Brownian motions mutually independent of (€2, §, P). Let
H be the set of L) = L*(Q'?V/, V)-valued processes with the norm

1/2

t , 1/2 t
”dD(t) HH = (E/ ||<I>(s) HLO ds) = (E/ Tr(dJ(s)QQD*(s)) ds) < 00, (2.6)
0 2 0

where ®*(s) denotes the adjoint operator of ®(s). For any ®*(¢) € H, we can define the
stochastic integral with respect to the Q-Wiener process as fot ®(s) dW (s), which is mar-
tingale. For more details about the finite dimension Winner process and the stochastic
integral, see [22].

Definition 2.1 Assume that (1o, u;) € HY(D) x L*(D) andEfOT llo(®)|1? dt < 0o. uis said to
be the solution of (1.1) on the interval [0, T if (, ) is H} (D) x L*(D)-valued progressively
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measurable, (i, u,) € L*($2; C([0, T]; Hy (D) x L*(D))), u; € L((0, T) x D), and such that
(1.1) holds in the sense of distributions over (0, T) x D for almost all w.

By combining the arguments of [20, 23, 24], we get the existence result.

Theorem 2.1 ([20, 24]) Assume that (H1)-(H3) hold. Then, for the initial data (uo,u;) €
(H*(D) N H} (D)) x H}(D), problem (1.1) has a pointwise unique solution u such that

u € L*(S;L°°(0, T; H*(D) N Hy(D))) N L*(; C([0, TT; Hy (D))
and

u; € L*(5L°(0, T; Hy (D)) N L*(2 C([0, T L*(D))).
3 Blow-up result

In this section, we prove our main result for p > g. For this purpose, we give defined re-
strictions on o (x, t) and the relaxation function / such that

Y > rp-2)
E/o /Da (x,t) dxdt < o0, /0 h(s)ds < w12 (3.1)

Now, we define an energy function

1 2 1
F0) = 5 @] + 5 Vo]

1 t 2 1 1
. _(1_ /0 h(s)ds) [Vato)* + 5010 Vi - uto

: ’ (32)

where
! 2
(hoVu)(t) = / h(t —s) ||Vu(t) - Vu(s)” ds.
0
For each N, stopping time ty is given as
oy =inf{t>0: [ Vu(®)|* = N},

where 7y is increasing in N, and 7o, = limy_, o Ty. In order to prove our blow-up result,
we rewrite (1.1) as an equivalent Ito’s system

du = vdt,

1 t
d( [v|°v — AV) = <Au —/ h(t —s)Au(s)ds — [v|T2%v + |u|”_2u> dt
p+1 0

reolndW,(n D), (6f)eD x (0,T), (3.3)

ulx,t)=0, (x,t)€dDx(0,7),

u(x,0) = uo(x), v(x,0) = vo(x) = u1(x), x€D,
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where (1o, u1) € H) (D) x L?(D). Then the energy function F(¢) becomes

F(¢) =

1 1
ol 51Vl

1 g 1 1
) <1 —/0 h(s) ds) |Vu)|” + 5 (o Vi(®) - 5 |lu@]}- (3.4)

Lemma 3.1 Let (u,v) be a solution of Eq. (3.3) with the initial data (uo,vo) € H} (D) x
L*(D). Then we have

iEF(t) = —E||V(t) ||q + i iE/ rie2(x)o2(x, £) dx
dt 25 b 7 ’
~E(-H o Vu)(©) - SHOE|Va)|

2
< —E||v(t)||Z + % ZE/ Ajel.z(x)az(x, t)dx, (3.5)
1 7P

and

E(u(t), L |v(t)|pv(t) - Av(t))
p+1

t
=(uo, ! |u1|”u1—Au1)—/EHW(S>H2ds
p+1 0

- /Ot E(u(s),

+E/0 /(; h(s — 7)(Vu(r), Vuls)) dt ds

—2 ¢
v(s)|q V(s))ds+/0 E||u(s)||§ds

1 t +2 t 2
+ p+1Ef0 ||V(S)||Z+2 ds+E]0 || V(s) || ds. (3.6)

Proof By multiplying Eq. (3.3) by v(¢) and using Ito’s formula, we deduce (3.5). Also,
multiplying Eq. (3.3) by u(¢) and integrating by parts over (0, T'), we arrive at (3.6) (see
[24]). d

Let
2 t
G(t):%;E /0 /D Aje} (x)o > (x, 5) dx ds. (3.7)

Due to (3.1), we deduce

e2 o 0
G(o0) = 5 ZE/; Dk/ef(x)az(x,s) dxds
=1

2 00
< % Tr(Q)E / / o2(x,s) dxds = E; < 0. (3.8)
0 D
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We set
H(t) = G(¢) - E[F(9)].
Then (3.5) implies that
! ! d
H()=G(t) - EE[F(t)] = E|v@)]7 = 0. (3.9)

Lemma 3.2 Let (u,v) be a solution of Eq. (3.3). Then there exists a positive constant C such
that

E|u®]} < C[6(®) - H® - E|ve)|";

p+2

—E|w@)|” + E|u@|} - EGro Vi)®)], 2<s<p. (3.10)

Proof If ||ull, <1, then [ul5, < |lu|> < C|[Vu|* by the Sobolev embedding theorem.
If lull, > 1, then [lull, < l|||. Thus there exists a constant C > 0 such that Ellully, <
C(E|Vu|*+E ||M||Z). Therefore, combining with the definition of energy function, we get
(3.10). 0

Theorem 3.1 Assume that (H1)-(H3) and (3.1) hold. Let (u,v) be a solution of Eq. (3.3)
with the initial data (uo,vo) € Hy(D) x L*(D) satisfying

F(0) < —(1+ B)Ey, (3.11)

where B > 0 is an arbitrary constant and E; is defined in (3.8). If p > {q, p + 2}, then the
solution (u,v) and the lifespan t, defined above are either
(1) P(teo <00) >0, that is, || Vu(t)|| blows up in finite time with positive probability, or
(2) there exists a positive time T* € [0, Ty such that

lim E[F(t)] = +00, (3.12)
t—>T*
where
l-«o
Ty

" aKL-)(0)’ 613)
3.13

1
L(0) = H'™*(0) + 8E<uo,
p+1

luq )P 1y — Au1> >0,

and a, K are given later.

Proof For the lifespan 7., of the solution {u(t) : £ > 0} of Eq. (3.3) with H}(D) norm, we
treat the case when P(7, = +00) < 1. Then, for sufficiently large T > 0, by (3.9) and (3.11),
we obtain

0<(1+pB)E; <-F(0)=H(0) <H(t) < G(#t) + ;E”u(t)Hﬁ <Ei+ I%E”u(t) ||§. (3.14)
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Define
L) = H" () + 8E<u(t), 1 lv(@®)| v(e) - Av(t)),
p+1
where
0<a<min{l,p_2,p_q, 1 —1} (3.15)
2 2p pg p+2 p
and § is a very small constant to be determined later.
Using (3.6) and (3.9), we deduce
L'(t)=(1-)H @OH'(t) + 8 [—E” Vu(®)|? - E(ue), [v(6)|*u(e))
+ E|| u(t) ||§ + E/t h(t - r)(Vu(T), Vu(t)) dr
0
1 +
+ Bl Elvvo
= (1-a)H*(QE|v(0)|] + 8p[H(t) - G(t) + EF(2)]
— SE|[Vu(®)])” - 8E(u(e), [v®)| " v(®) + SE u(®) |
t ) .
+8E /0 (e =) (Vo). Vul) dr + —— CE[vo)] o+ SE[ V(o)
> (1= ) H*E V@) + spH(2)
p 1 0+2
+a(p b 1>EHv(t)| P2
. a(g - 1)E|| vu®)|’
+ 5(%’ + 1)15”%@)”2 — SE(u(e), |v(e)|v(®)
+ SE/th(t - t)(Vu(r), Vu(t)) dr
0
+ 5_PE(h o Vu)(t) - o ¢ / th(r)dt |Vu@)|” - spG. (3.16)
2 27 ),
On the other hand, we have
SE/t h(t - t)(Vu(r), Vu(t)) dr
0
= (SE/th(t - r)(Vu(t) —Vu(t), Vu(t)) dr
0
+SE f th(r)dr |Vu@)|?, (3.17)
0
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and by Holder’s inequality, we get

SE/th(t - r)(Vu(r) — Vu(t), Vu(t)) dr
0

8 § "
> —?pE(h o Vu)(t) - 3 E /0 h(z)dr | V().

Inserting (3.17) and (3.18) into (3.16), we obtain

L'(0) = (1-a)H *(O)E|v(2) ||Z +8pH(t)

+5( r_, 1 >E||v(t)||gj§

p+2 p+1

" a(g - 1>EHVu(t)H2

2

" 5(’3 ¥ 1)EHVV(t)H2 — SE(u(o), [v(8)| " v(e)

pZ +1 t 9
—8pG(t)+5(1— o )E/o h(t)drHVu(t)” .

Page 9 of 15

(3.18)

(3.19)

For g < p, by E||lu(t)|7 < cE||lu(#)|} and Hélder’s inequality, we deduce the following esti-

mate (see [23]):

E(u(t),

v |"n0) < (ElOLD) T (Euto)2)

q-1
q

= (vl

< C(Evo9) T (E|u)]?)

< CE]) T Eu@]?)? E]u)]?)?

and Young’s inequality

q-1 1 — 1-q
(Elo2) 7 Elu])* = 2 uE ol " Eluc

q

where 1 is a constant to be determined later. In view of (3.14), we get

E|u(@)|}; = p(H(®) - GO) = BH(®),

(E[Ju@ 1)

=

(3.20)

(3.21)

(3.22)

where p = pB/(1 + B). With the assumption of H(0) > 1, (3.21), (3.22), and (3.15) imply that

ST

L 11 1
(EJ2)PF <540
Combining with (3.20), (3.21), and (3.23), we arrive at

E(ule), [0 r(0)| < T2

(3.23)

1-
HE[v(©)|H (1) + ax “—q5|| )| H W), (3:24)
q q
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1 1
where a; = Cpr~ 4. Hence, substituting (3.24) for (3.19), we get

q; 1 M(S)H“(t)E“ W(0)|? + spH(2)

p 1 0+2
+8(p+2 + —,0+1>EHV(t)’f’*2

¥ 5(‘; - 1>E|| vu()|’

L/(t) > (1 - —a;

+ 5(%7 + 1)E||Vv(t)||2 — 5pG(t)

2 t
+5(1_p2;1)/0 h(t)dTE|Vu(®)|

/Lliq Py
. E|u(®)|[,H™(0). (3.25)

— 8611

Using Lemma 3.2 with s = p and (3.25), we have

- ! MS)H‘“(t)E” W) |7 + pH()

p 1 p+2
+8(p ) + —p N 1>EHV(t)||er2

. a(g _ 1>EHVu(t)H2

L'(t)> <l—a—a1q

+8 (g ¥ 1)E|| vu(o)|* - 5pG(e)

p2 +1 t 2
+8(1 - o )E/O h(t)dt ”Vu(t) ”

~ Sar [ Glt) - H() - E|[v(e) |2

—E| V@) + E|u@ |} - EGro Vi) (0)]

v

(1 —a —alq; ! /MS)H‘“(t)E”V(t)”Z
+8(p + ayp ") H(t) - 8(p + ay' ) G(t)

14 1 - 2
+3(p+2 e q)guv(t)”g;

o2t )EVO - s ]

+8ayu ME(h o Vu)(t)
2 1 t
+a[§ 14 (1_"2; )/0 h(r)dr}fsnwu)

where a; = CaiH*(0)/q.

2
)

(3.26)
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Note that
H(t) = G(t) + Enu )2 - —EH Ol
- 5E||vV(t) I°-3 L vu)? - 5Jg(h o Vu)(t)
with

a3:€—1+(1—p +1>/ h(t)dt >0,
2 2p

we write p = 2a4 + (p — 2a4) with a4 = min{a,, as}, then estimate (3.26) yields

L= (1 I MS)H‘“(t)E”v(t)”Z

+ 8(p —2a4 + agul’q)H(t) — 8(p —2a4 + agul’q)G(t)

1-q p+2
,0+2 ,0+2 PP )E”V(t)”mz

+ 5(%9 as +1+aut” q)E”Vv(t) ||

From (3.8) and (3.14), we deduce

(p—2a4 + a9 G(t) < (p - 2a4 + ayp' ™) E,

-2 1-q
<p ag + da L

1+ 5 H(t).

Substituting (3.30) with (3.29), we get

L= (1 ca-a 1l MS)H‘“(t)E”v(t)HZ

+ 8(19 —2a4 + azul_q) . fﬁ

P —_ 2ﬂ4 1 1-g p+2
+8(p+2 p+2+p+1+a2u >}5||v(t)||p+2

%7 —as+1+ azulq)E”Vv(t) ||2

+
(=2}

(azul_q - a4)E(h o Vu)(t) + 8(as — m)EH Vu(t) ||2

Page 11 of 15

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)



Kim et al. Boundary Value Problems (2018) 2018:14 Page 12 of 15

Next, we can choose p large enough so that (3.31) becomes

') > (1 —a—a q; 1 M(S)H“(t)EHv(t)HZ +8y (H@®) + E|[v®)|°72 + E|Vve) |

P42

+E|u@ |+ E(ro Vi) (@) + E| Vi) |), (332)

where

. n B p 2ay 1 _
y:mln{(p_2a4+dwl q)1+/3,,0+2_p+2+ p+1 +d2M1 K

2a
g —ag+ 1+ ap —ayp ™+ 2 g — ag,as - a4} > 0.
p
Once u is fixed, we pick § small enough so that

1
ué > 0.

l-o- ay 1-
Using this, (3.32) takes the form

L'(t) = 8y (H®) + E|v®)| "2 + E| Vv |*

p+2

+ E|u(®); + E(h o Vu)(t) + E|| Vult )[%).- (3.33)

Thus, we see that

1
L(t) > L(0) = H™%(0) + 8E(u0, ! lug|Puy — Aul) >0, Vi>D0. (3.34)
o+
Consequently, we get
L(t)>L(0)>0, Vt>0. (3.35)

Since

£ [ ol oo as

< E[[v(e) [ (e

||p+2

p+2

< CE|vo) |, ]
we have

%

‘ / WO v ds] < E|vo] £ E|uo)] 7
< C[(E|o]222) 7507 + (E[uo]) ), (336)

where %+ 3 = 1. By choosing ¢ = Mb 1), we have (19_a) = 2[(1_a)(£:§)_(p+1)] <£.And
with (3. 15) (3.36) becomes

1

1

CLE|WO 15 + (Euto)]}) Trtamoem |

|E /D ()| v()u(e) dx|
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Using Lemma 3.2 with s = WM, we obtain

1
I-a
< C[H®) +E|ve)[ 775 + E[ vv(e)]®

‘E /D |[v(&)|"v(E)u(t) dax

+ EHu(t)Hi +E(hoVu)(t) + E”Vu(t) Hz]
Therefore, we deduce, for all £ > 0,

8
p+1

1) = (1) 2 [ W0l voutdr oF [ 90 Vuds)
D D

< C[H@® +Ev)|"7; + E| o) |*
+E|u@|} + E(ro Vi)(®) + E|| Vau(t) I”] (3.37)
Combining (3.33) and (3.37)

L'(t) > KLT%(t), Vt>0

with a positive constant K depending on C and §y, it follows that

l-«o

LT (f) > : .
(1-a)L" 172 (0) — aKt

Let

l-«
To=——5—.
oKL« (0)

Then L(¢) — oo as t — Tp. This means that there exists a positive time T* € (0, Tp] such
that

lim E[P(t)] = +00.

t—>T*
As for the case when P(7o, = +00) < 1 (i.e., P(To < +00) > 0), then || Vu(t)|| blows up in finite
time T™* € (0, 7o) with positive probability. Thus, the proof of Theorem 3.1 is completed. [J

4 Global existence
In this section, we show that the solution of (1.1) is global if g > p. We use the Borel-
Cantelli lemma to prove the existence of a global solution. For this goal, we introduce an
energy function
+2 2 2

e(u(t)) = ”ut(t) ”Z& + ”Vu(t) ” + ”Vut(t)H + Hu(t) Hi + (ho Vu)(2). (4.1)
Theorem 4.1 Assume that (uo, u1) € HA(D) x L*(D), EfOT llo (8)]|% dt < 0o, and condition
(2.1) holds. If g > p, u(t) is a solution of (1.1) with the initial data (u,u;) € Hi(D) x L*(D)
according to Definition 2.1 on the interval [0, T'], then for any T > 0, we have

E sup e(u(t)) < 00. (4.2)

0<t<T
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Proof For any T > 0, we will show that uy(£) = u(t A ) — u(t) (a.e.) as N — oo for any
t < T, so that the local solution becomes a global solution where 7y is a stopping time
which is defined in Section 3. Similarly to Theorem 12 of [23], we can derive the proof of
the theorem. O
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