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Abstract
In this paper, we concern with the following Schrödinger-Poisson system:

⎧
⎪⎨

⎪⎩

–�u + φu = f (x,u), x ∈ �,

–�φ = u2, x ∈ �,

u = φ = 0, x ∈ ∂�,

where � is a smooth bounded domain in R
3. Under more appropriate assumptions

on f , we obtain new results on the existence of nontrivial solutions and infinitely many
solutions by using the mountain pass theorem and the symmetric mountain pass
theorem, respectively. We extend and improve some recent results in the literature.
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1 Introduction and preliminaries
Consider the the following Schrödinger-Poisson system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + φu = f (x, u), x ∈ �,

–�φ = u2, x ∈ �,

u = φ = 0, x ∈ ∂�,

(1.1)

where � is a smooth bounded domain in R
3, and f ∈ C(� ×R,R).

System (1.1) is related to the stationary analogue of the nonlinear parabolic Schrödinger-
Poisson system

⎧
⎪⎪⎨

⎪⎪⎩

–i ∂ψ

∂t = –�ψ + φ(x)ψ – |ψ |p–2ψ in �,

–�φ = |ψ |2 in �,

ψ = φ = 0 on ∂�.

(1.2)
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The first equation in (1.2) is called the Schrödinger equation, which describes quantum
particles interacting with the electromagnetic field generated by the motion. An interest-
ing class of Schrödinger equations is the case where the potential φ(x) is determined by the
charge of the wave function itself, that is, when the second equation in (1.2) (Poisson equa-
tion) holds. For more details as regards the physical relevance of the Schrödinger-Poisson
system, we refer to [1–4].

Recently, Schrödinger-Poisson systems on unbounded domains or on the whole space
R

N have attracted a lot of attention. Many solvability conditions on the nonlinearity have
been given to obtain the existence and multiplicity of solutions for Schrödinger-Poisson
systems in R

N , we refer the readers to [4–23] and references therein.
Compared with the whole space case, there are few works concerning the Schrödinger-

Poisson system on a bounded domain; see, for instance, [20, 24–31]. Ruiz and Siciliano [26]
studied the following system:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + λφu = f (x, u) in �,

–�φ = u2, x ∈ �,

u = φ = 0, x ∈ ∂�,

(1.3)

where λ > 0 is a parameter. Using variational methods, the authors investigate the exis-
tence, nonexistence, and multiplicity of solutions when f (x, u) = |u|p–1u with p ∈ (1, 5).
Alves and Souto [29] studied system (1.3) when f has a subcritical growth. They obtained
the existence of least-energy nodal solution by means of variational methods. Siciliano [25]
studied system (1.3) with f (x, u) = |u|p–2u, p ∈ (2, 6). By means of Ljusternik-Schnirelmann
theory the author proved that problem (1.3) has at least cat�(�) + 1 solutions for p near
the critical Sobolev exponent 6, where cat denotes the Ljusternik-Schnirelmann category.
Using a new sign-changing version of the symmetric mountain pass theorem, Batkam [27]
proved the existence of infinitely many sign changing solutions for the following class of
Schrödinger-Poisson systems:

⎧
⎪⎪⎨

⎪⎪⎩

–�u + λφu = f (x, u) + λu5 in �,

–�φ = u2, x ∈ �,

u = φ = 0, x ∈ ∂�,

(1.4)

where λ ≥ 0 is a parameter, and f ∈ C(� × R,R) satisfies the well-known Ambrosetti-
Rabinowitz condition, that is, there exists μ > 4 such that

0 < μF(x, u) ≤ uf (x, u), ∀u �= 0, (1.5)

where F(x, u) =
∫ u

0 f (x, s) ds. Ba and He [28] considered system (1.1) with a general 4-
superlinear nonlinearity f . They proved the existence of ground state solution for system
(1.1) by the aid of the Nehari manifold. Moreover, they also obtained the existence of in-
finitely many solutions for system (1.1)

Before we state the main results of this paper, we first introduce the variational frame-
work of problem (1.1).
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Let H := H1
0 (�) be the Sobolev space equipped with the inner product and norm

(u, v) =
∫

�

∇u · ∇v dx, ‖u‖ = (u, u)
1
2 .

We denote by | · |p the usual Lp-norm. Since � is a bounded domain, H ↪→ Lp(�) con-
tinuously for p ∈ [1, 6] and compactly for p ∈ [1, 6), and for every p ∈ [1, 6], there exists
γp > 0 such that

|u|p ≤ γp‖u‖, ∀u ∈ H . (1.6)

Recall that a function u ∈ H is called a weak solution of (1.1) if

∫

�

∇u∇v +
∫

�

φuv dx =
∫

�

f (x, u)v dx, ∀v ∈ H . (1.7)

We have the following lemma from [1, 20].

Lemma 1.1 For each u ∈ H , there exists a unique element φu ∈ H such that –�φu = u2;
moreover, φu has the following properties:

(1) there exists a > 0 such that ‖φu‖ ≤ a‖u‖2 and

∫

�

|∇φu|2 dx =
∫

�

φuu2 dx ≤ a‖u‖4, ∀u ∈ H ; (1.8)

(2) φu ≥ 0, ∀u ∈ H ;
(3) φtu = t2φu, ∀t > 0 and u ∈ H ;
(4) if un ⇀ u in H , then φun ⇀ φu in H , and

lim
n→+∞

∫

�

φun u2
n dx =

∫

�

φuu2 dx. (1.9)

By the lemma we have that (u,φ) ∈ H × H is a solution of (1.1) if and only if φ = φu and
u ∈ H is a solution of the following nonlocal problem:

⎧
⎨

⎩

–�u + φuu = f (x, u) in �,

u = 0 on ∂�.

We define the functional I : H → R by

I(u) =
1
2

∫

�

|∇u|2 dx +
1
4

∫

�

φuu2 dx –
∫

�

F(x, u) dx. (1.10)

Using (F1) and the Sobolev embedding theorem, we can prove easily that I ∈ C1(H ,R)
with

I ′(u)v =
∫

�

∇u∇v dx +
∫

�

φuuv dx –
∫

�

f (x, u)v dx, ∀u, v ∈ H . (1.11)
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Consider the following eigenvalue problems:

⎧
⎨

⎩

–�u = λu in �,

u = 0 on ∂�,
(1.12)

and

⎧
⎨

⎩

–‖u‖2�u = μu3 in �,

u = 0 on ∂�.
(1.13)

Denote by 0 < λ1 < λ2 < · · · the distinct eigenvalues of the problem (1.12). It is well known
that λ1 can be characterized as

λ1 = inf
{‖u‖2 : u ∈ H , |u|2 = 1

}
,

and λ1 is achieved by the first eigenfunction ϕ1 > 0.
We say that μ is an eigenvalue of problem (1.13) if there is a nonzero u ∈ H such that

‖u‖2
∫

�

∇u∇v dx = μ

∫

�

u3v dx, v ∈ H ,

and u is called an eigenvector corresponding to the eigenvalue μ. Denote by 0 < μ1 < μ2 <
· · · all distinct eigenvalues of problem (1.13). Furthermore, μ1 can be characterized as

μ1 := inf
{‖u‖4 : u ∈ H , |u|4 = 1

}
, (1.14)

and μ1 can be achieved by some function ψ1 with ψ1 > 0 in � (see [32, 33]).
Motivated by the works mentioned, in this paper, we study the existence of nontrivial

state solutions of problem (1.1) by means of the mountain pass theorem. Moreover, es-
tablish the existence of infinitely many solutions by using the symmetric mountain pass
theorem. To state the main results of this paper, we impose the following assumptions on
f and its primitive F :

(F1) There exist p ∈ (2, 6) and a positive constant C such that

∣
∣f (x, u)

∣
∣ ≤ C

(
1 + |u|p–1);

(F2) lim supt→0
2F(x,t)

t2 < λ1 uniformly in x ∈ �;
(F3) lim inf|t|→∞ 4F(x,t)

at4 > μ1 uniformly in x ∈ �, where a is the constant defined in
Lemma 1.1(1);

(F4) There exist ρ ∈ (0,λ1) and a constant L � 1 such that

4F(x, t) ≤ f (x, t)t + ρ|t|δ , ∀x ∈ �, |t| ≥ L,

where δ ∈ [1, 2].
(F5) f (x, –t) = –f (x, t) for all (x, t) ∈ � ×R.
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The main results of this paper are the following:

Theorem 1.2 Assume that (F1)-(F4) hold. Then system (1.1) has at least one nontrivial
solution.

Theorem 1.3 Assume that (F1)-(F5) hold. Then, system (1.1) possesses an unbounded se-
quence of nontrivial solutions {(uk ,φk)} ∈ H × H such that

1
2

∫

�

|∇uk|2 dx +
1
4

∫

�

φku2
k dx –

∫

�

F(x, uk) dx → +∞

as k → ∞.

Remark 1.4
(1) In this paper, we do not need the well-known Ambrosetti-Rabinowitz condition

(1.5), which plays a very important role in proving the boundedness of the
Palais-Smale sequence. Moreover, it is easy to prove that (AR) condition implies that

lim
t→∞

F(x, t)
t4 = +∞.

Therefore, Theorem 1.3 extends and sharply improves Theorem 1.1 in [27].
(2) Our assumptions (F2)-(F3) are weaker than the following assumptions:

(F ′
2) limt→0

f (x,t)
t = 0 uniformly in x ∈ �;

(F ′
3) lim|t|→∞ F(x,t)

t4 = +∞ uniformly in x ∈ �.
On the other hand, noting that the variant Nehari monotonicity condition,

(VNC) f (x,u)
|u|3 is nondecreasing on (–∞, 0) ∪ (0, +∞),

implies that

4F(x, u) ≤ f (x, u)u, ∀u ∈R.

Then, assumption (F4) it is also weaker than (VNC). Consequently, our results
generalize and improve the results of Ba and He [28].

(3) As a function f satisfying (F1)-(F5), set

F(x, s) =
a
4
μ2s4 +

λ1

4
s2, s ∈R.

Then by a simple computation we obtain

f (x, s) = aμ2s3 +
λ1

2
s.

So, it is easy to check that f satisfies (F1), (F2), (F3), and (F5). Furthermore, we have

f (x, u)u – 4F(x, u) = –
λ1

2
u2,

which implies that f satisfies (F4). On the other hand, for μ > 4 and u > 1, we have

f (x, u)u – μF(x, u) = –
(

μ

4
– 1

)

aμ2u4 –
λ1

2

(
μ

2
– 1

)

u2 → –∞ as u → ∞.



Almuaalemi et al. Boundary Value Problems  (2018) 2018:18 Page 6 of 12

Hence f does not satisfy (AR) condition. Moreover, it is clear that f does not satisfy
(F ′

2)-(F ′
3).

This paper is organized as follows. Using the mountain pass theorem, we prove The-
orem 1.2 in Section 2. In Section 3, by using the symmetric mountain pass theorem we
prove Theorem 1.3.

2 Proof of Theorem 1.2
First, we introduce the mountain pass theorem, which is the main tool to prove Theo-
rem 1.2.

Definition 2.1 The functional I satisfies the Palais-Smale condition at level c ∈ R, denoted
by (PS)c, if every sequence {un} ⊂ H such that

I(un) → c and I ′(un) → 0 (2.1)

as n → +∞ possesses a strongly convergent subsequence.

Proposition 2.2 ([34], mountain pass theorem) Let E be a real Banach space, and let
I ∈ C1(E, R) with I(0) = 0 satisfying the (PS) condition. Suppose that

(I1) there exist two constants r,α > 0 such that I|∂Br ≥ α.
(I2) there exists e ∈ E \ Br such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α, which can be characterized as

c = inf
γ∈�

max
t∈[0,1]

I
(
γ (t)

)
, (2.2)

where � = {γ ∈ C([0, 1], E) : γ (0) = 0,γ (1) = e}.

Lemma 2.3 Under assumptions (F1) and (F4), I satisfies the (PS) condition.

Proof Let un ⊂ H be such that

I(un) → c and I ′(un) → 0 as n → ∞. (2.3)

We claim that un is bounded in H . Otherwise, we can assume that ‖un‖ → ∞. For large
n, set �n = {x ∈ � : |un(x)| ≥ L} and H(x, un) = f (x, un)un – 4F(x, un). Then, for large n, it
follows from (2.3) and (F4) that there exists a constant C1 > 0 such that

1 + c + ‖un‖ ≥ I(un) –
1
4

I ′(un)un

=
1
4
‖un‖2 +

1
4

∫

�

H(x, un) dx

=
1
4
‖un‖2 +

1
4

∫

�n

H(x, un) dx +
1
4

∫

�\�n

H(x, un) dx

≥ 1
4
‖un‖2 –

ρ

4

∫

�n

∣
∣un(x)

∣
∣δ dx – C1

≥ 1
4
‖un‖2 –

ρ

4

∫

�n

∣
∣un(x)

∣
∣2 dx – C1
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≥ 1
4
‖un‖2 –

ρ

4λ1
‖un‖2 – C1

=
λ1 – ρ

4λ1
‖un‖2 – C1,

which is a contradiction since ρ ∈ (0,λ1). Therefore {un} is bounded in H . Since {un} is
bounded in Hm we may assume that there exists u ∈ H such that

un ⇀ u in H ,

un → u in Lp(�), p ∈ [1, 6),

un(x) → u for a.e. x ∈ �.

(2.4)

Hence, by (F1) we know that there is C1 > 0 such that

∫

�

f (x, un)(u – un) dx ≤
(∫

�

∣
∣f (x, un)

∣
∣

p
p–1 dx

) p–1
p

(∫

�

|u – un|p dx
) 1

p

≤ 2C
[∫

�

(|un|p + 1
)

dx
] p–1

p
|u – un|p

≤ C1|u – un|p → 0, as n → ∞. (2.5)

On the other hand, by Lemma 1.1, (2.7), and the Hölder inequality we have

∫

�

φun un(un – u) dx ≤
∫

�

|φun ||un||un – u|dx

≤ |φun |6|un|3|un – u|2
≤ γ6‖φun‖γ3‖un‖|un – u|2
≤ C‖un‖3|un – u|2 → 0 (2.6)

as n → ∞. Therefore it follows from (2.1), (2.7), (2.8), and (2.9) that

‖un‖2 – (un, u) +
∫

�

φun un(un – u) dx –
∫

�

f (x, un)(u – un) dx

= I ′(un)(un – u) → 0 as n → ∞,

which implies that

‖un‖ → ‖u‖ as n → ∞.

Hence, un → u in H due to the uniform convexity of H . Consequently, {un} has a con-
vergent subsequence in H , and then I satisfies the (PS) condition. The proof is com-
pleted. �

Lemma 2.4 Suppose that (F1), (F2), and (F3) hold. Then the functional I satisfies conditions
(I1)-(I2) in Proposition 2.2.
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Proof We first claim that there exist r,α > 0 such that I(u) ≥ α for all u ∈ H with ‖u‖ = r.
Indeed, for small ε > 0, by (F1)-(F2) there exists a constant C2 > 0 such that

F(x, u) ≤ 1
2

(λ1 – ε)u2 + C2|u|p. (2.7)

Therefore (1.6) and (2.7) imply that

I(u) ≥ 1
2
‖u‖2 +

1
4

∫

φuu2 dx –
1
2

(λ1 – ε)
∫

�

|u|2 dx – C2

∫

�

|u|p dx

≥ 1
2

(

1 –
λ1 – ε

λ1

)

‖u‖2 – C2γ
p
p ‖u‖p. (2.8)

Since 2 < p < 6, we can choose small r > 0 such that

I(u) ≥ 1
2

(

1 –
λ1 – ε

λ1
– C2γ

p
p rp–2

)

r2 := α > 0

whenever u ∈ H with ‖u‖ = r.
Next, we prove that there exists e ∈ H with ‖e‖ > r such that I(e) < 0. Indeed, for small

ε > 0, by the definition of μ1 we can choose v ∈ H , |v|4 = 1, satisfying

‖v‖4 ≤ μ1 +
ε

2
. (2.9)

It follows from (F1) and (F3) that there exists a constant M > 0 such that

F(x, t) ≥ a
4

(μ1 + ε)t4 – M. (2.10)

Hence, combining (2.9) and (2.10) with Lemma 1.1(1), we get

I(tv) =
1
2

t2‖v‖2 +
1
4

t4
∫

�

φvv2 dx –
∫

�

F(x, tv) dx

≤ 1
2

t2‖v‖2 +
a
4

t4‖v‖4 –
a
4

(μ1 + ε)t4 + M|�|

≤ 1
2

t2‖v‖2 +
a
4

t4
(

μ1 +
ε

2

)

–
a
4

(μ1 + ε)t4 + M|�|

≤ –
a
8
εt4 +

1
2

t2‖v‖2 + M|�|,

which implies that

I(tv) → –∞ as |t| → ∞.

Hence we conclude that there exists a sufficiently large t∗ > 0 such that t∗v > ρ and I(t∗v) <
0. The conclusion follows by taking e = t∗v. �

Proof of Theorem 1.2 Under the conditions of Theorem 1.2, we have that I ∈ C1(E,R) with
I(0) = 0 and I satisfies the (PS) condition due to Lemma 2.3. Moreover, by Lemma 2.4, I
satisfies conditions (I1)-(I2) in Proposition 2.2. Then I has at least one critical point u ∈ H
such that I(u) ≥ α. Thus system (1.1) has at least one nontrivial solution. �
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3 Proof of Theorem 1.3
In this section, we prove Theorem 1.3 by using the following symmetric mountain pass
theorem.

Proposition 3.1 ([35]) Let E be an infinite-dimensional Banach space, and let I ∈ C1(E, R)
be even and satisfy the (PS) condition and I(0) = 0. Let X = Y ⊕ Z, where Y is finite-
dimensional, and I satisfies

(H1) there exist two constants r,α > 0 such that I|∂Br∩Z ≥ α;
(H2) for each finite-dimensional subspace Ẽ ⊂ E, there exists R = R(̃E) > 0 such that I ≤ 0

on Ẽ \ BR.
Then I possesses an unbounded sequence of critical values.

Let {ei} be an orthonormal basis of H and define Xi = Rei,

Yk =
k⊕

i=1

Xi, Zk =
∞⊕

i=k

Xi, k ∈ Z. (3.1)

Lemma 3.2 Assume that (F1) and (F2) hold. Then, there exist constants r,α > 0 and m ∈N

such that I|∂Br∩Zm ≥ α.

Proof Set

βk(p) = sup
u∈Zk ,‖u‖=1

|u|p, ∀k ∈N, 1 ≤ p < 6. (3.2)

Since H is compactly embedded into Lp(�) for 1 ≤ p < 6, we know from [34, Lemma 3.8]
that

βk(p) → 0 as k → ∞. (3.3)

Combining (1.10) and (2.7) with (3.2) we have

I(u) ≥ 1
2
‖u‖2 +

1
4

∫

φuu2 dx –
1
2

(λ1 – ε)
∫

�

|u|2 dx – C2

∫

�

|u|p dx

≥ 1
2
‖u‖2 –

1
2

(λ1 – ε)β2
k (2)‖u‖2 – C2β

p
k (p)‖u‖p. (3.4)

It follows from (3.3) that there exist a large positive integer m ∈N such that

β2
k (2) ≤ 1

2(λ1 – ε)
and β

p
k (p) ≤ 1

4C2
, ∀k ≥ m.

Then, we conclude from (3.4) that

I(u) ≥ 1
4
(‖u‖2 – ‖u‖p).

Hence, since p > 2, there exist r ∈ (0, 1) such that

I(u) ≥ 1
4

r2(1 – rp–2) = α > 0, ∀u ∈ Zm,‖u‖ = r.

The proof is completed. �
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Lemma 3.3 Assume that (F1), (F2), and (F3) hold. Then, for any finite-dimensional sub-
space H̃ ⊂ H , there exists R = R(H̃) > 0 such that

I(u) ≤ 0, ∀u ∈ H̃ \ BR.

Proof Let H̃ ⊂ H be a finite-dimensional subspace. By the equivalence of norms in finite-
dimensional spaces, there exists a constant bp > 0 such that

|u|p ≥ bp‖u‖, ∀u ∈ H̃ , p ∈ [2, 6). (3.5)

Therefore, combining (1.10), (2.10), (3.5), and Lemma 1.1(1), we have

I(u) =
1
2
‖u‖2 +

1
4

∫

�

φuu2 dx –
∫

�

F(x, u) dx

≤ 1
2
‖u‖2 +

a
4
‖u‖4 –

a
4

(μ1 + ε)
∫

�

|u|4 dx + M|�|

≤ 1
2
‖u‖2 +

a
4
(
1 – μ1b4

4 – εb4
4
)‖u‖4 + M|�|.

Choosing ε = 1
b4

4
, it follows from the last inequality that

I(u) ≤ 1
2
‖u‖2 –

a
4
μ1b4

4‖u‖4 + M|�|, ∀u ∈ H̃ .

Hence there exists R = R(H̃) > 0 large enough such that I|H̃\BR ≤ 0. This completes the
proof. �

Proof of Theorem 1.3 Clearly, I ∈ C1(E,R), I(0) = 0, and I is even by (F5). Lemma 2.3 im-
plies that I satisfies the (PS) condition. On the other hand, Lemmas 3.2 and 3.3 imply that
I satisfies conditions (H1)-(H2) of Proposition 3.1. Hence I has a sequence of nontrivial
critical points {(uk ,φk)} ⊂ H × H such that

lim
k→∞

I(uk) =
1
2

∫

�

|∇uk|2 dx +
1
4

∫

�

φuk u2
k dx –

∫

�

F(x, uk) dx = +∞.

Thus problem (1.1) possesses infinitely many nontrivial solutions. �

4 Conclusions
In this paper, we have established two results on the existence of nontrivial solutions and
infinitely many solutions. Moreover, compared with the existing results on this problem,
we have introduced somewhat weaker assumptions on the nonlinearity f . Therefore, our
results extend and improve some recent results in the literature.
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