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Abstract
In this paper, identifying the initial value for high dimension heat equation with
inhomogeneous source on a spherical symmetric domain is investigated. The
truncation regularization method is a powerful technique for solving this inverse
problem. We prove the convergence estimates between the regularization solution
and the exact solution under the prior and the posterior regularization parameter
choice rulers. A numerical example is presented to validate the effectiveness of this
method.
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1 Introduction
The initial value problem is one of the backward heat conduction problems (BHCPs).
These problems have been studied over several decades due to their significance in many
engineering problems and practical application problems, such as in welding of iron and
steel, quenching of solids in liquids and testing of new thermal protective material.

In this paper, we consider an inhomogeneous heat equation on a symmetric domain as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – 2
r ur – urr = f (r, t), 0 < t < T , 0 < r < r0,

u(r, 0) = ϕ(r), 0 ≤ r ≤ r0,

u(r0, t) = 0, 0 ≤ t ≤ T ,

limr→0 u(r, t) is bounded, 0 < t < T , 0 < r < r0,

u(r, T) = g(r), 0 ≤ r ≤ r0,

(1.1)

where r0 is the radius, ϕ(r) is the initial value. We use the additional condition u(r, T) = g(r)
and f (r, t) to determine the initial value ϕ(r). The measured data of g(r) and f (r, t) are gδ(r)
and f δ(r, t), which satisfy

∥
∥gδ(·) – g(·)∥∥L2[0,r0;r2] ≤ δ;

∥
∥f δ(·, t) – f (·, t)

∥
∥

L∞(0,T ;L2[0,r0;r2]) ≤ δ. (1.2)
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The initial value problem is one of the backward heat conduction problems (BHCPs).
A BHCP is severely ill-posed problem [1]. To overcome this difficulty, many scholars pro-
posed some regularization techniques for the BHCP, such as the kernel-based method [2],
the mollification method [3], the Fourier regularization method [4], optimal filtering
method [5], the iterative method [6], the quasi-reversibility method [7–9], the central dif-
ference method [10], the filter regularization method [11], the method of fundamental so-
lutions [12, 13], the boundary element method [14, 15], the group preserving scheme [16],
modified Tikhonov regularization method [17], Quasi-boundary value method [18] and
so on. But these references about BHCP, there are some drawbacks as follows: firstly, the
regularization parameter is a prior choice rule, according to this choice rule, the parame-
ter depends on the prior bound of the exact solution. But in practice we cannot obtain the
exact solution, and the inaccurate prior bound may lead to the bad regularized solution.
Secondly, they only considered the one dimensional BHCP; however, about high dimen-
sional BHCP, there is little research results. In [19–21], the authors ever considered the
high dimensional BHCP, but the regularization parameter is a prior choice. Thirdly, the
equation is homogeneous and the measurement data is only one.

The truncation regularization method has been used to solve several inverse problems.
In [22, 23], the authors used the truncation method to solve BHCP. In [24–26], the authors
used the truncation method to solve a cauchy problem for the Helmholtz equation and
the modified Helmholtz equation. In [27–30], the authors used the truncation method to
identify the unknown source. In this paper, we mainly use the truncation regularization
method to identify the initial value under two parameter choice rules. Moreover, we give
an example to show the effectiveness of this method. We also compare the effectiveness
between the posterior choice rule and the prior choice rule.

Using the separation of variables, we obtain the solution of the problem (1.1) as follows:

u(r, t) =
∞∑

n=1

(

e–( nπ
r0

)2t
ϕn +

∫ t

0
e–( nπ

r0
)2(t–τ )fn(τ ) dτ

)

ωn(r), (1.3)

where

ωn(r) :=
√

2nπ
√

r3
0

sin(nπr/r0)
(nπr/r0)

(1.4)

is the orthonormal eigenfunction system with weight r2 on [0, r0]. It is also a complete
system in L2[0, r0; r2]. Now let ϕn = (ϕ(r),ωn(r)), fn(τ ) = (f (r, t),ωn(r)) and gn = (g(r),ωn(r)),
hn = ϕn +

∫ T
0 e( nπ

r0
)2τ fn(τ ) dτ . Using u(r, T) = g(r), we have

g(r) =
∞∑

n=1

(

e–( nπ
r0

)2T
ϕn +

∫ T

0
e–( nπ

r0
)2(T–τ )fn(τ ) dτ

)

ωn(r), (1.5)

gn = e–( nπ
r0

)2T
ϕn +

∫ T

0
e–( nπ

r0
)2(T–τ )fn(τ ) dτ . (1.6)

Define operator K : h(r) → g(r), then

g(r) = Kh(r) =
∞∑

n=1

e–( nπ
r0

)2T
(

ϕn +
∫ T

0
e( nπ

r0
)2τ fn(τ ) dτ

)

ωn(r). (1.7)
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The operator K is a linear self-adjoint compact operator, and

kn = e–( nπ
r0

)2T (1.8)

is for the singular values of K . Using (1.4), (1.6) and equation (1.7) can be rewritten as

(
g(r),ωn(r)

)
=

(
h(r),ωn(r)

)
e–( nπ

r0
)2T . (1.9)

So

ϕ(r) =
∞∑

n=1

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T
ωn(r). (1.10)

We give a prior bound on the initial value, i.e.,

∥
∥ϕ(·)∥∥p ≤ E, p > 0, (1.11)

where E > 0 is a constant and ‖ · ‖p denotes the norm in Sobolev space which is defined as
follows:

∥
∥ϕ(·)∥∥p :=

( ∞∑

n=1

(
1 + n2)p∣∣

(
ϕ(·),ωn(·))∣∣2

) 1
2

. (1.12)

This article is organized as follows. Section 2 presents some preliminaries results. Sec-
tion 3 presents the convergence estimates under two parameter choice rules. In Section 4,
a numerical example is proposed to show the effectiveness of this method. In Section 5,
a brief conclusion is given.

2 Some auxiliary results
Throughout this paper, L2[0, r0; r2] denotes the Hilbert space of Lebesgue measurable
function ϕ with weight r2 on [0, r0]. (·, ·) and ‖·, ·‖ denote the inner and norm on
L2[0, r0; r2], respectively, with the norm

‖ϕ‖ =
(∫ r0

0
r2∣∣ϕ(r)

∣
∣2 dr

) 1
2

. (2.1)

Lemma 2.1 ([31, 32]) For any n ≥ 1, we have

C1

nπ
≤ e–( nπ

r0
)2T ≤ C2

nπ
, (2.2)

where C1, C2 are constants.

Lemma 2.2 Suppose f ∈ L∞(0, T ; L2[0, r0; r2]), then there exists a positive M such that

∥
∥
∥
∥gn –

∫ T

0
e–( nπ

r0
)2

fn(τ ) dτ

∥
∥
∥
∥ ≤

√
2
(‖g‖2

L2[0,r0;r2] + M‖F‖2
L∞(0,T ;L2[0,r0;r2])

)
, (2.3)

where M := T
2 ( r0

π
)2(1 – e( π

r0
)2

).
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Proof For t ∈ [0, T],

∣
∣fn(t)

∣
∣2 ≤

∞∑

n=1

∣
∣
(
f (·, t),ωn

)∣
∣2 ≤ ‖f ‖2

L∞(0,T ;L2[0,r0;r2]).

Thus

∥
∥
∥
∥gn –

∫ T

0
e–( nπ

r0
)2(T–τ )fn(τ ) dτ

∥
∥
∥
∥

2

=
∞∑

n=1

(

gn –
∫ T

0
e–( nπ

r0
)2(T–τ )fn(τ ) dτ

)2

≤ 2
∞∑

n=1

g2
n + 2

∞∑

n=1

∣
∣
∣
∣

∫ T

0
e–( nπ

r0
)2(T–τ )fn(τ ) dτ

∣
∣
∣
∣

2

≤ 2
∞∑

n=1

g2
n + 2

∞∑

n=1

∫ T

0
e–2( nπ

r0
)2(T–τ ) dτ

∫ T

0
f 2
n (τ ) dτ

≤ 2
(‖g‖2

L2[0,r0;r2] + M‖f ‖2
L∞(0,T ;L2[0,r0;r2])

)
,

where M := T supn∈N(
∫ T

0 e–2( nπ
r0

)2(T–τ ) dτ ) = T
2 ( r0

π
)2(1 – e( π

r0
)2

). �

3 Regularization method and convergence estimate
It is obvious that the instability arises in the components of large n in the solution. It is
natural to imagine that we should replace e( nπ

r0
)2T by a bounded approximation or eliminate

the noise in the input data. In this paper, we eliminate all the components of large n from
the solution and define the truncation regularized solution as follows:

ϕN ,δ(r) =
N∑

n=1

gδ
n –

∫ T
0 e–( nπ

r0
)2(T–τ )f δ

n (τ ) dτ

e–( nπ
r0

)2T
ωn(r). (3.1)

3.1 Error estimate under a prior parameter choice rule
Theorem 3.1 Let ϕ(r) given by (1.10) be the exact solution of problem (1.1). Let ϕN ,δ(r)
given by (3.1) be the regularization solution. Choosing the regularization parameter N =
[γ ], where γ = ( E

δ
)

1
p+1 , then we obtain the following estimate:

∥
∥ϕN ,δ(·) – ϕ(·)∥∥ ≤

(√
2(M + 1)π

C1
+ 1

)

E
1

p+1 δ
p

p+1 , (3.2)

where [γ ] denotes the largest integer less than or equal to γ .

Proof By the triangle inequality, we have

∥
∥ϕN ,δ(·) – ϕ(·)∥∥ ≤ ∥

∥ϕN ,δ(·) – ϕN (·)∥∥ +
∥
∥ϕN (·) – ϕ(·)∥∥. (3.3)

We firstly give an estimate for the first term. From (1.2) and (2.2), we can get

∥
∥ϕN ,δ(·) – ϕN (·)∥∥2

=

∥
∥
∥
∥
∥

N∑

n=1

gδ
n –

∫ T
0 e–( nπ

r0
)2(T–τ )f δ

n (τ ) dτ

e–( nπ
r0

)2T
ωn(r) –

N∑

n=1

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T
ωn(r)

∥
∥
∥
∥
∥

2
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=

∥
∥
∥
∥
∥

N∑

n=1

(gδ
n – gn) –

∫ T
0 e–( nπ

r0
)2(T–τ )(f δ

n (τ ) – fn(τ )) dτ

e–( nπ
r0

)2T
ωn(r)

∥
∥
∥
∥
∥

2

=
N∑

n=1

( (gδ
n – gn) – | ∫ T

0 e–( nπ
r0

)2(T–τ )(f δ
n (τ ) – fn(τ )) dτ |

e–( nπ
r0

)2T

)2

≤ 2
N∑

n=1

(
gδ

n – gn

e–( nπ
r0

)2T

)2

+ 2
N∑

n=1

| ∫ T
0 e–( nπ

r0
)2(T–τ )(f δ

n (τ ) – fn(τ )) dτ |2
(e–( nπ

r0
)2T )2

≤ 2 max
n≤N

(
nπ

C1

)2 ∞∑

n=1

(
gδ

n – gn
)2 + 2M max

n≤N

(
nπ

C1

)2 ∞∑

n=1

(
f δ
n (τ ) – fn(τ )

)2

≤ 2
N2π2δ2

C2
1

+ 2M
N2π2δ2

C2
1

= 2(M + 1)
N2π2δ2

C2
1

.

Thus

∥
∥ϕN ,δ(·) – ϕN (·)∥∥ ≤ √

2(M + 1)
Nπδ

C1
. (3.4)

Applying conditions (1.12) and (2.2), we obtain

∥
∥ϕ(·) – ϕN (·)∥∥2

=

∥
∥
∥
∥
∥

∞∑

n=1

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T
ωn(r)

–
N∑

n=1

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T
ωn(r)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

∞∑

n=N+1

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T
ωn(r)

∥
∥
∥
∥
∥

2

=
∞∑

n=N+1

(gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T

)2

=
∞∑

n=N+1

(
(
1 + n2)

–p
2
(
1 + n2)

p
2

(gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T

))2

≤ max
n>N

(
(n + 1)–2p)

∞∑

n=1

(
(
1 + n2)

p
2

(gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T

))2

≤ (N + 1)–2pE2.

Hence

∥
∥ϕN ,δ(·) – ϕ(·)∥∥ ≤ √

2(M + 1)
Nπδ

C1
+ (N + 1)–pE. (3.5)
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Choosing the regularization parameter N = [( E
δ

)
1

p+1 ], we obtain

∥
∥ϕN ,δ(·) – ϕ(·)∥∥ ≤

(√
2(M + 1)π

C1
+ 1

)

E
1

p+1 δ
p

p+1 . (3.6)

Theorem 3.1 is proved. �

3.2 Error estimate under a posterior parameter choice rule
Choose |gδ(r) –

∫ T
0 e–( nπ

r0
)2(T–τ )f δ(r, τ ) dτ | > τδ. Let ψ(r) := gδ(r) –

∫ T
0 e–( nπ

r0
)2(T–τ )f δ(r, τ ) dτ .

Applying a discrepancy principle, we choose a posterior regularization parameter N that
satisfies

∥
∥(I – PN )ψ(r)

∥
∥ ≤ τδ ≤ ∥

∥(I – PN–1)ψ(r)
∥
∥, (3.7)

where PN : L2[0, r0; r2] → spanωn|n≤N is an orthogonal projective operator. I is an identity
operator.

Lemma 3.1 Let d(N) = ‖(I – PN )(gδ(r) –
∫ T

0 e–( nπ
r0

)2(T–τ )f δ(r, τ ) dτ )‖, then we have the fol-
lowing conclusions:

(a) d(N) is a continuous function;
(b) limN→∞ d(N) = 0;
(c) limN→0 d(N) = ‖gδ(r) –

∫ T
0 e–( nπ

r0
)2(T–τ )f δ(r, τ ) dτ‖;

(d) d(N) is a strictly decreasing function, for any N ∈ [1,∞).

Lemma 3.2 If conditions (1.2) and (1.11) hold. Suppose τ >
√

2(M + 1). N is chosen by a
posterior choice rule, thus we have

N ≤
(

C2

π

) 1
p+1

(
E

(τ –
√

2(M + 1))δ

) 1
p+1

. (3.8)

Proof Due to (3.5), we obtain

∥
∥
∥
∥(I – PN–1)

(

g(r) –
∫ T

0
e–( nπ

r0
)2(T–τ )f (r, τ ) dτ

)∥
∥
∥
∥

2

=
∞∑

n=N

∣
∣
∣
∣gn –

∫ T

0
e–( nπ

r0
)2(T–τ )fn(τ ) dτ

∣
∣
∣
∣

2

=
∞∑

n=N

(
1 + n2)–p(1 + n2)pe–2( nπ

r0
)2T

(gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T

)2

≤ max
n≥N

(

n–2p
(

C2

nπ

)2) ∞∑

n=1

(
(
1 + n2)

p
2

(gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T

))2

≤ C2
2

π2 N–2(p+1)E2.

Thus we obtain
∥
∥
∥
∥(I – PN–1)

(

g(r) –
∫ T

0
e–( nπ

r0
)2(T–τ )f (r, τ ) dτ

)∥
∥
∥
∥

2

≤ C2
2

π2 N–2(p+1)E2. (3.9)
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On the other hand,
∥
∥
∥
∥(I – PN–1)

(

g(r) –
∫ T

0
e–( nπ

r0
)2(T–τ )f (r, τ ) dτ

)∥
∥
∥
∥

≥
∥
∥
∥
∥(I – PN–1)

(

gδ(r) –
∫ T

0
e–( nπ

r0
)2(T–τ )f δ(r, τ ) dτ

)∥
∥
∥
∥

–
∥
∥
∥
∥(I – PN–1)

(
gδ(r) – g(r)

)
–

∫ T

0
e–( nπ

r0
)2(T–τ )(f δ(r, τ ) – f (r, τ )

)
dτ

∥
∥
∥
∥

≥ τδ –
√

2(M + 1)δ =
(
τ –

√
2(M + 1)

)
δ,

i.e.,
∥
∥
∥
∥(I – PN–1)

(

g(r) –
∫ T

0
e–( nπ

r0
)2(T–τ )f (r, τ ) dτ

)∥
∥
∥
∥ ≥ (

τ –
√

2(M + 1)
)
δ. (3.10)

Combining (3.9) with (3.10), we obtain

(
τ –

√
2(M + 1)

)
δ ≤ C2(π )–1N–(p+1)E.

So

N ≤
(

C2

π

) 1
p+1

(
E

(τ –
√

2(M + 1))δ

) 1
p+1

. (3.11)
�

Theorem 3.2 Let ϕ(r) given by (1.10) be the exact solution of problem (1.1). Let ϕN ,δ(r)
given by (3.1) be the regularization solution. The regularization parameter N is chosen in
(3.7). Then we obtain

∥
∥ϕN ,δ(·) – ϕ(·)∥∥ ≤ (C3 + C4)E

1
p+1 δ

p
p+1 , (3.12)

where C3 := ( π (τ+
√

2(M+1))
C1

)
p

p+1 , C4 :=
√

2(M+1)
C1

( C2
(τ–

√
2(M+1)) )

1
p+1 π

p
p+1 .

Proof According to (3.3), we have

∥
∥ϕN ,δ(·) – ϕ(·)∥∥ ≤ ∥

∥ϕN ,δ(·) – ϕN (·)∥∥ +
∥
∥ϕN (·) – ϕ(·)∥∥. (3.13)

We first estimate the second term of (3.13). Using (1.12) and Lemma 2.1, we have

∥
∥ϕN (·) – ϕ(·)∥∥2

=

∥
∥
∥
∥
∥

∞∑

n=1

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T
ωn(r) –

N∑

n=1

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T
ωn(r)

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

∞∑

n=N+1

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T
ωn(r)

∥
∥
∥
∥
∥

2

=
∞∑

n=N+1

(gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T

)2
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=
∞∑

n=N+1

(
(
e–( nπ

r0
)2T)–p(1 + n2)– p

2
(
1 + n2)

p
2

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T

) 2
p+1

×
(

gn –
∫ T

0
e–( nπ

r0
)2(T–τ )fn(τ ) dτ

) 2p
p+1

≤
( ∞∑

n>N

(
(
e–( nπ

r0
)2T) –2p

p+1
(
1 + n2)– p

p+1
(
1 + n2)

p
p+1

×
(gn –

∫ T
0 e–( nπ

r0
)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T

) 2
p+1

) p+1
2

) 2
p+1

×
( ∞∑

n>N

((

gn –
∫ T

0
e–( nπ

r0
)2(T–τ )fn(τ ) dτ

) 2p
p+1

) p+1
2p

) 2p
p+1

≤ max
n>N

((
C1

nπ

)–p

n–p
) 2

p+1 ∞∑

n=1

(
(
1 + n2)

p
2

(gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T

)) 2
p+1

×
(

(I – PN )
(

gn –
∫ T

0
e–( nπ

r0
)2(T–τ )fn(τ ) dτ

)) 2p
p+2

≤
(

π

C1

) 2p
p+1

E
2

p+1

(∥
∥
∥
∥(I – PN–1)

(

gδ(r) –
∫ T

0
e–( nπ

r0
)2(T–τ )f δ(r, τ ) dτ

)∥
∥
∥
∥

+
∥
∥
∥
∥(I – PN–1)

(
gδ(r) – g(r)

)
–

∫ T

0
e–( nπ

r0
)2(T–τ )(f δ(r, τ ) – f (r, τ )

)
dτ

∥
∥
∥
∥

) 2p
p+1

≤
(

π (τ +
√

2(M + 1))
C1

) 2p
p+1

E
2

p+1 δ
2p

p+1 .

Thus we obtain

∥
∥ϕN (·) – ϕ(·)∥∥ ≤

(
π (τ +

√
2(M + 1))

C1

) p
p+1

E
1

p+1 δ
p

p+1 . (3.14)

Then we estimate the first term of (3.13). Using (3.1), we obtain

∥
∥ϕN ,δ(·) – ϕN (·)∥∥2

=

∥
∥
∥
∥
∥

N∑

n=1

gδ
n –

∫ T
0 e–( nπ

r0
)2(T–τ f δ

n (τ ) dτ

e–( nπ
r0

)2T
ωn(r) –

N∑

n=1

gn –
∫ T

0 e–( nπ
r0

)2(T–τ )fn(τ ) dτ

e–( nπ
r0

)2T
ωn(r)

∥
∥
∥
∥
∥

2

≤ 2
N∑

n=1

(
gδ

n – gn

e–( nπ
r0

)2T

)2

+ 2
N∑

n=1

| ∫ T
0 e–( nπ

r0
)2(T–τ )(f δ

n (τ ) – fn(τ )) dτ |2
(e–( nπ

r0
)2T )2

≤ 2 max
n≤N

(
nπ

C1

)2 ∞∑

n=1

(
gδ

n – gn
)2 + 2M max

n≤N

(
nπ

C1

)2 ∞∑

n=1

(
f δ
n (τ ) – fn(τ )

)2

≤ 2
N2π2δ2

C2
1

+ 2M
N2π2δ2

C2
1

= 2(M + 1)
N2π2δ2

C2
1

.
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Using (3.8), we have

∥
∥ϕN ,δ(·) – ϕN (·)∥∥ ≤

√
2(M + 1)

C1

(
C2

(τ –
√

2(M + 1))

) 1
p+1

π
p

p+1 E
1

p+1 δ
p

p+1 . (3.15)

Combining (3.14) with (3.15), we obtain

∥
∥ϕN ,δ(·) – ϕ(·)∥∥ ≤ (C3 + C4)E

1
p+1 δ

p
p+1 , (3.16)

where C3 := ( π (τ+
√

2(M+1))
C1

)
p

p+1 , C4 :=
√

2(M+1)
C1

( C2
(τ–

√
2(M+1)) )

1
p+1 π

p
p+1 .

Theorem 3.2 is proved. �

4 Numerical implementation and numerical example
In this section, we present numerical experiment for above regularization method. The
exact solution of problem (3.1) is difficult to obtain. So we use a given ϕ(r) to solve the
positive problem. We have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – 2
r ur – urr = f (r, t), 0 < t < T , 0 < r < r0,

u(r, 0) = ϕ(r), 0 ≤ r ≤ r0,

u(r0, t) = 0, 0 ≤ t ≤ T ,

limr→0 u(r, t) is bounded, 0 < t < T , 0 < r < r0.

(4.1)

Let T = 1, r0 = π . Using (1.5), we have

g(r) =
∞∑

n=1

(

ϕne–n2
+

∫ 1

0
e–n2(1–τ )fn(τ ) dτ

)

wn(r)

=
∞∑

n=1

(
(
ϕ(r), wn(r)

)
e–n2

wn(r) +
∫ 1

0
e–n2(1–τ )(f (r, τ ), wn(r)

)
wn(r) dτ

)

=
∞∑

n=1

(

e–n2
∫ π

0
s2ϕ(s)

√
2
π

sin(ns)
s

ds
√

2
π

sin(nr)
r

+
∫ 1

0
e–n2(1–τ )

∫ π

0
s2f (s, τ )

√
2
π

sin(ns)
s

ds dτ

√
2
π

sin(ns)
s

)

.

Using (3.1), we have

ϕN ,δ(r) =
N∑

n=1

1
e–n2

(

gδ
n –

∫ 1

0
e–n2(1–τ )f δ

n (τ ) dτ

)

wn(r)

=
N∑

n=1

1
e–n2

(
(
gδ(r), wn(r)

)
wn(r) –

∫ 1

0
e–n2(1–τ )(f δ(r, τ ), wn(r)

)
dτwn(r)

)

=
N∑

n=1

1
e–n2

(∫ π

0
s2gδ(s)

√
2
π

sin(ns)
s

ds
√

2
π

sin(nr)
r

–
∫ 1

0
e–n2(1–τ )

∫ π

0
s2f δ(s, τ )

√
2
π

sin(ns)
s

ds dτ

√
2
π

sin(nr)
r

)

.
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Time and space of grid step size are 	t = 1
P and 	r = π

M . A grid point on the time interval
[0, T] is tq = q–1

P (q = 1, 2, . . . , P + 1). ri = i–1
M π (i = 1, 2, . . . , M + 1) is a grid point on the space

interval. We have

g(rj) =
N∑

n=1

2

(

e–n2
M+1∑

i=1

r2
i ϕ(ri)

sin(nri)
ri

sin(nrj)
rj

ωi

+
P+1∑

q=1

e–n2(1–tq)
M+1∑

i=1

r2
i f (ri, tq)

sin(nri)
ri

ωiyq
sin(nrj)

rj

)

,

ϕδ
N (rj) =

N∑

n=1

2
e–n2

(M+1∑

i=1

r2
i gδ(ri)

sin(nri)
ri

sin(nrj)
rj

ωi

–
P+1∑

q=1

e–n2(1–tq)
M+1∑

i=1

r2
i f δ(ri, tq)

sin(nri)
ri

ωiy(q)
sin(nrj)

rj

)

,

where

ϕ(ri) =
(
ϕ(r1),ϕ(r2), . . . ,ϕ(rM+1)

)
,

ϕδ(ri) =
(
ϕδ(r1),ϕδ(r2), . . . ,ϕδ(rM+1)

)
,

g(rj) =
(
g(r1), g(r2), . . . , g(rM+1)

)
,

gδ(rj) =
(
gδ(r1), gδ(r2), . . . , gδ(rM+1)

)
,

f (ri, tq) =
(
f (ri, t1), f (ri, t2), . . . , f (ri, tP+1)

)
,

f δ(ri, tq) =
(
f δ(ri, t1), f δ(ri, t2), . . . , f δ(ri, tP+1)

)
,

wi =

⎧
⎪⎪⎨

⎪⎪⎩

1
3M , i = 1, M + 1,

4
3M , i = 2, 4, . . . , M,

2
3M , i = 3, 5, . . . , M – 1;

(4.2)

yq =

⎧
⎪⎪⎨

⎪⎪⎩

1
3y , i = 1, y + 1,
4
3y , i = 2, 4, . . . ,
2
3y , i = 3, 5, . . . , y – 1.

(4.3)

Noise data is generated by adding a random perturbation, that is,

gδ(·) = g(·) + ε · g(·) · (2 rand(·) – 1
)
,

f δ(·, ·) = f (·, ·) + ε · f (·, ·) · (2 rand(·, ·) – 1
)
,

where ε is relative error level. In the computational procedure, we take the source function
f (r, t) = t sin(r).

Example 1 Take initial function ϕ(r) = sin(r).
Figure 1 shows the comparisons of the numerical effects between the exact solution

and its regularization solution for the prior and posterior regularization parameter choice
rules. We can find that the smaller ε, the better the computed approximation is. Moreover,
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Figure 1 The comparison of numerical effects between the exact solution and its regularized solution
for Example 1.

we can also easily find that the posterior parameter choice rule works better than the prior
parameter choice rule. This is consistent with our theoretical analysis.

5 Conclusion
We consider an inverse problem to determine an initial date for heat equation with inho-
mogeneous source on a columnar symmetric domain. Using the truncation method, we
construct the regularization solution. Moreover, we obtain the Hölder type error estimate
under prior and posterior parameter choice rules. Finally, an example is given to show the
effectiveness of the truncation method.
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