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1 Introduction
We consider a nonlinear Schrödinger equation (NLS) with Dirac distribution defect [1–4]

iut +
1
2

uxx + qδau + g
(|u|2)u = 0 in � ×R+, (1)

where � ⊂ R, u = u(x, t) is the unknown solution maps � × R+ into C, δa is the Dirac
distribution at the point a ∈ �, namely, 〈δa, v〉 = v(a) for v ∈ H1(�), and q ∈ R represents
its intensity parameter. Such distribution is introduced in order to model physically the
defect at the point x = a (see [3–6]). The function g represents a generalization of the
classical nonlinear Schrödinger equation (see for example [7–9]).

This specific model (1) is of recent research from a physical point of view in nonlinear
optics plasma physics, water wave, quantum mechanics, hydrodynamics; see for exam-
ple [10–15].

In nonlinear optics, equation (1) models a soliton propagating in a medium with a point
defect [4, 16] or a wide soliton with a much narrower one in a bimodal fiber [17]. In the
case when a = 0 and g(s) = s, this model coincides with the Gross–Pitaevskii equation; see,
for instance [1, 2, 4, 18, 19] and the references therein. See also [6, 20, 21] for some recent
results dealing with NLS models.

The well-posedness of the solutions of the NLS equation (1) has been studied in the
literature. In the case when q = 0 and � = R, the global existence in H1(R) and in L2(R)
were proved in [22–24]. For bounded � ⊂ R and with the standard boundary conditions
(Dirichlet, Neumann and periodic), NLS equation (1) possesses a unique global solution
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in H1(�), as was proved in [7]. In the last case q �= 0 and g(s) = s, in [4] the well-posedness
in H1(R) of the solution of NLS equation (1) was proved.

The aim of this paper is to investigate the NLS equation (1) with Dirac interaction defect
(q �= 0) in the case of a half-line in R. We consider for example � = ]–∞, 0[ (the same
calculations remain true for a positive half-line choice of �). The equation is endowed
with a non-standard boundary condition at the point 0 in order to avoid the perturbations
of the solutions caused by the boundary {0}. The condition is actually necessary to achieve
numerical solutions of the equation, as was demonstrated in [25–27]. The initial data is
then supposed of a compact support in �. Our main results that have been proved entail
that the NLS equation (1) has a unique solution in H1(�). The demonstration is based
on the Galerkin method. The continuous dependence of the solutions with regard to the
initial data is also looked into.

The remainder of this paper is organized as follows. In Section 2, we provide some prob-
lem formulation and necessary technical results. In Section 3, we demonstrate the global
well-posedness of the NLS equation in H1(�). A few concluding remarks are given in Sec-
tion 4.

2 Problem formulation and preliminaries
We discuss the nonlinear Schrödinger equation (NLS)

iut +
1
2

uxx + qδau + g
(|u|2)u = 0 in � ×R+, (2)

where � = ]–∞, 0[, a < 0 and δa is a Dirac interaction defect at point a. The smooth func-
tional g ∈ C1([0, +∞[,R) verifies the following conditions: There exist constants C ≥ 0,
α1 > 0, α2 > 0 and θ ∈ [0, 2[ such that

⎧
⎪⎪⎨

⎪⎪⎩

g(r) ≤ α1(1 + rθ ) for r ≥ 0,

G(r) =
∫ r

0 g(s) ds and |G(r)| ≤ α2r(1 + rθ ) for r ≥ 0,

|g ′(r)| ≤ C for r ≥ 0.

(3)

We associate with equation (2) a non-standard boundary condition at the point x = 0,

∂nu(0, t) +
√

2e–iπ/4eiV(0,t)∂1/2
t

(
e–iV(0,t)u(0, t)

)
= 0 for t ∈ R+, (4)

where the operator ∂n is the normal derivative, the phase function V defined by V(x, t) =
∫ t

0 g(|u(x, s)|2) ds and operator ∂1/2
t represent a 1

2 order Riemann–Liouville fractional
derivative defined by

∂1/2
t

(
h(t)

)
=

1√
π

∂t

(∫ t

0

h(s)√
t – s

ds
)

. (5)

This result (4) is obtained by [25–27] with an initial data that has compact support in �,
it represents an artificial boundary condition on x = 0 to the NLS equation (2) with q = 0.
This condition is added in order to avoid the perturbation effect on the solutions resulting
from the reflection at the limit point {0}.
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We consider u0 ∈ H1(�) to be an initial data, such that its support is compact in �

(see [25–27])

u(x, 0) = u0(x) for x ∈ �. (6)

Next, using the method applied in [28], we obtain our first technical result.

Lemma 1 Consider the initial value problem in C
m

⎧
⎨

⎩
H ′(t) = M∂1/2

t H(t) + P(H(t)),

H(0) = H0,
(7)

where M is a square matrix of order m, P represents a polynomial function of Cm, H0 ∈C
m

is a constant vector. Then the problem (7) has a unique local solution H ∈ L∞(0, T ;Cm).

Proof We integrate (7) between 0 and t, to get

H(t) = H0 +
1√
π

M
∫ t

0

H(τ )√
t – τ

dτ – M
[
I1/2

t H(t)
]

t=0 +
∫ t

0
P
(
H(s)

)
ds, (8)

where I1/2
t represents the Riemann–Liouville fractional integral operator of 1

2 order de-
fined by

I1/2
t

(
h(t)

)
=

1√
π

∫ t

0

h(s)√
t – s

ds.

Since H ∈ L∞(0, T ;Cm) we have [I1/2
t H(t)]t=0 = 0. Then equation (8) becomes

H(t) = H0 +
1√
π

M
∫ t

0

H(τ )√
t – τ

dτ +
∫ t

0
P
(
H(s)

)
ds. (9)

We show that there exists a unique function H verifying equation (9) by applying the Ba-
nach fixed-point theorem. Let T > 0, we denote

XT = L∞(
0, T ,Cm)

and ‖H‖XT = sup
t∈[0,T]

∥
∥H(t)

∥
∥

2,

where ‖ · ‖2 is the Euclidean norm in C
m. We are looking for a fixed point of the functional

	
(
H(t)

)
= H0 +

1√
π

M
∫ t

0

H(τ )√
t – τ

dτ +
∫ t

0
P
(
H(s)

)
ds. (10)

	 sends the closed ball BXT (0, R) into itself. Let R = 2‖H0‖2 and let H ∈ XT such that
‖H‖XT ≤ R. Using (9), there exists a constant C1(R) > 0 such that

∥
∥	(H)

∥
∥

2 ≤ ‖H0‖2 +
2√
π

‖M‖2
√

TR + C1(R)T

≤ R
2

+
(

2‖M‖2
√

T√
π

+
C1(R)T

R

)
R,
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where ‖M‖2 = sup‖Y‖2=1 ‖MY‖2. If you choose T such that ( 2‖M‖2
√

T√
π

+ C1(R)T
R ) ≤ 1

2 we see
that the functional 	 sends the closed ball BXT (0, R) into itself.

	 is a contraction mapping in BXT (0, R). Let H , L ∈ BXT (0, R) such that ‖H‖XT ≤ R and
‖L‖XT ≤ R. Let t < T where T satisfies ( 2‖M‖2

√
T√

π
+ C1(R)T

R ) ≤ 1
2 . We have

∥∥	(H) – 	(L)
∥∥

2 ≤ 2‖M‖2
√

T√
π

‖H – L‖XT +
∫ t

0

∣∣P
(
H(s)

)
– P

(
L(s)

)∣∣ds.

Since P is a polynomial function and BXT (0, R) is bounded, P has Lipschitz continuity in
BXT (0, R). This shows that there exists a constant C2(R) > 0 such that

∥∥	(H) – 	(L)
∥∥

2 ≤ 2‖M‖2
√

T√
π

‖H – L‖XT + C2(R)T‖H – L‖XT

≤
(

2‖M‖2
√

T√
π

+ C2(R)T
)

‖H – L‖XT .

By choosing C(R) = min( C1(R)
R , C2(R)), there exists T > 0 such that ( 2‖M‖2

√
T√

π
+ C1(R)T

R ) ≤ 1
2

and ( 2‖M‖2
√

T√
π

+C2(R)T) ≤ 1
2 < 1. This shows that the functional 	 is a contraction mapping

in BXT (0, R). By applying the Banach fixed-point theorem, there exists a unique function
H verifying equation (9). �

The following lemma was proved in [9, 29].

Lemma 2 Let φ ∈ H1/4(0, T) and ψ ∈ H3/4(0, T), such that ψ(0) = 0, be two functions ex-
tended by zero outside [0, T]. Then we have the following inequalities:

(i) Re

(
eiπ/4

∫ +∞

0
φ∂1/2

t φ dt
)

≥ 0;

(ii) Re

(
e–iπ/4

∫ +∞

0
ψt∂

1/2
t ψ dt

)
≥ 0.

Remark 1 Let φ ∈ H1/4(t1, t2) be a function extended by zero outside [t1, t2]; we have

Re

(
eiπ/4

∫ t2

t1

φ∂1/2
t φ dt

)
≥ 0.

We state that the following lemma proved in [9].

Lemma 3 Let the complex function w ∈ H1(�) be defined in � = ]–∞, 0[. Then we have

∣∣w(0)
∣∣2 ≤ 2‖w‖L2(�)‖wx‖L2(�).

We introduce our technical result.

Lemma 4 Let � = ]–∞, 0[, we assume that the sequence (λm)m of H1(�) is such that
‖λm‖H1(�) ≤ C and λm −→ 0 in L2(�) when m −→ +∞. Then λm(0) −→ 0 when m −→ +∞.
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Proof Since λm ∈ H1(�), by using Lemma 3, we have

∣∣λm(0)
∣∣2 ≤ 2‖λmx‖L2(�)‖λm‖L2(�)

≤ 2C‖λm‖L2(�).

Hence the result. �

Finally, we state the last lemma, which has been proved in [30].

Lemma 5 Let K×]0, T[ be an open bounded subset of Rx × Rt , gμ and g are functions in
Lq(K×]0, T[), 1 < q < ∞, such that

‖gμ‖Lq(K×]0,T[) ≤ C and gμ −→ g a.e in K×]0, T[.

Then gμ ⇀ g in the weak topology of Lq(K×]0, T[).

3 Well-posedness of NLS equation
In this section, we are able to announce and prove our main result.

Theorem 1 Let u0 ∈ H1(�) be an initial data with compact support in �. Then there exists
a unique function u ∈ C0([0, +∞[; H1(�))∩C1([0, +∞[; [H1(�)]′) solution to the NLS equa-
tion (2)–(4)–(6), where Ck(I; E) represents the space of k times continuously differentiable
functions on I in E, [H1(�)]′ is the dual of H1(�).

Remark 2 If u is a solution of the NLS equation (2)–(4)–(6), then ũ : (x, t) �−→ u(–x, t) is
also a solution of the following NLS equation:

⎧
⎪⎪⎨

⎪⎪⎩

iũt + 1
2 ũxx + qδ–aũ + g(|ũ|2)ũ = 0 in �̃ ×R+

∂nũ(0, t) +
√

2e–iπ/4eiṼ(0,t)∂1/2
t (e–iṼ(0,t)ũ(0, t)) = 0, t ∈R+,

ũ(x, 0) = u0(–x), x ∈ �,

(11)

where �̃ = ]0, +∞[ and Ṽ(x, t) =
∫ t

0 g(|ũ(x, s)|2) ds.

The remainder of this section contains the proof of Theorem 1.
For the sake of simplicity, we make a change of the unknown solution to the nonlinear

equation (2)–(4)–(6),

v(x, t) = exp
(
–iV(0, t)

)
u(x, t). (12)

Therefore, the NLS equation (2)–(4)–(6) is rewritten in the form

⎧
⎪⎪⎨

⎪⎪⎩

ivt + 1
2 vxx + qδav + (g(|v(x, t)|2) – g(|v(0, t)|2))v = 0 in � ×R+,

∂nv(0, t) +
√

2e–iπ/4∂1/2
t (v(0, t)) = 0, t ∈R+,

v(x, 0) = u0(x), x ∈ �.

(13)

Remark 3 From (12), we have the following properties:
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(i) |v(x, t)| = |u(x, t)|,
(ii) u(x, t) = exp(i

∫ t
0 g(|v(0, s)|2) ds)v(x, t),

(iii) ‖v(t)‖Hm(�) = ‖u(t)‖Hm(�) for all m ≥ 0.

We use the Galerkin method to show that there exists a solution v ∈ C0([0, +∞[; H1(�))∩
C1([0, +∞[; [H1(�)]′) of the NLS equation (13). This method is divided into three steps
as shown below. Also, we prove the uniqueness of this solution in the last subsec-
tion. As a result, by Remark 3 there exists a unique function u ∈ C0([0, +∞[; H1(�)) ∩
C1([0, +∞[; [H1(�)]′), a solution of (2)–(4)–(6).

3.1 First step: approximate problem
Let (ϕk)k be an orthonormal basis of functions in H1(�). For m ≥ 1, we set Hm =
Span(ϕ1, . . . ,ϕm) and we define the orthogonal projection operator Pm by

Pm : H1(�) →Hm

v �→ Pm(v) =
m∑

k=1

〈v,ϕk〉H1(�)ϕk ,
(14)

where 〈·, ·〉H1(�) is the scalar product in H1(�). For m ≥ 1, we shall approximate v in (13)
by

vm(t) =
m∑

k=1

hkm(t)ϕk , (15)

which satisfies, for all k ∈ {1, 2, . . . , m},

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d
dt 〈ivm,ϕk〉L2(�),L2(�) – 1

2 〈vmx,ϕkx〉L2(�),L2(�)

–
√

2e–iπ/4

2 ∂1/2
t (vm(0, t))ϕk(0) + q〈δavm,ϕk〉[H1(�)]′ ,H1(�)

+ 〈g(|vm|2)vm,ϕk〉L2(�),L2(�) – g(|vm(0, t)|2)〈vm,ϕk〉L2(�),L2(�) = 0,

vm(0) = Pm(u0).

(16)

We get the system

iAH ′
m(t) –

√
2e–iπ/4

2
B∂1/2

t Hm(t) = F
(
Hm(t)

)
, (17)

where F is a polynomial function, A and B are square matrices of order m defined by

A =
(〈ϕj,ϕk〉L2(�),L2(�)

)
k,j, B =

(
ϕj(0)ϕk(0)

)
k,j

and

Hm(t) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

h1m(t)
·
·
·

hmm(t)

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

∈C
m,
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such that at t = 0 the components of Hm(0) are

hmk(0) = kth element of um0. (18)

The matrix A is Hermitian and positive-definite, then it is invertible. Therefore

H ′
m(t) +

√
2eiπ/4

2
A–1B∂1/2

t Hm(t) = –iA–1F
(
Hm(t)

)
. (19)

We set

M = –
√

2eiπ/4

2
A–1B

and

P
(
Hm(t)

)
= –iA–1F

(
Hm(t)

)
.

The system (19) becomes

⎧
⎨

⎩
H ′

m(t) = M∂1/2
t Hm(t) + P(Hm(t)),

Hm(0) = Hm0,
(20)

where P is a polynomial function of Cm. By using Lemma 1, we see that the system (20) has
a unique local solution. Then we obtain a unique function Hm = (h1m, . . . , hmm) in [0, Tm],
a solution of (17) with the initial condition (18). As a result, the approximate problem (16)
has a unique solution vm such that vm : [0, Tm] →Hm. The existence of a maximal solution
vm (defined on [0, Tmax[) is obtained by iterating m, where Tmax is the maximum time of
the existence such that vm : [0, Tmax[→Hm. Then we have Tmax < +∞ and limt→Tmax |vm| =
+∞, or Tmax = +∞.

3.2 Second step: a priori estimates
3.2.1 Estimate in L2(�)
We multiply (13) by –iv and we integrate in space domain �. We then integrate by parts
the second term and consider the real part, to get

d
dt

∥∥v(t)
∥∥2

L2(�) = Re
(
iv(0, t)∂nv(0, t)

)
. (21)

We integrate this equality between 0 and t with t ∈ [0, +∞[, to get

∥∥v(t)
∥∥2

L2(�) – ‖u0‖2
L2(�) =

∫ t

0
Re

(
iv(0, s)∂nv(0, s)

)
ds.

By using the boundary condition for (13) and Lemma 2, we show that
∫ t

0 Re(iv(0, s)∂nv(0,
s)) ds ≤ 0. Hence

For t ≥ 0,
∥∥v(t)

∥∥2
L2(�) ≤ ‖u0‖2

L2(�).
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This gives the a priori estimate in L2(�)

sup
m

sup
t∈[0,+∞[

∥∥vm(t)
∥∥

L2(�) ≤ ‖u0‖L2(�) = K0. (22)

3.2.2 Estimate in H1(�)
We multiply the first equality of (13) by vt and we integrate in �. By considering the real
part, we obtain

d
dt

�
(
v(t)

)
= 2Re

(
vt(0, t)∂nv(0, t)

)
– 2g

(∣∣v(0, t)
∣∣2) d

dt
‖v‖2

L2(�), (23)

where

�
(
v(t)

)
= ‖vx‖2

L2(�) – 2q
∣∣v(a, t)

∣∣2 – 2
∫

�

G
(|v|2)dx, (24)

with G is defined by (3).
From the following, we set that K can be any positive constant depending only on q, α1,

α2, θ and K0.
We have

∣∣
∣∣–g

(∣∣v(0, t)
∣
∣2) d

dt
‖v‖2

L2(�)

∣∣
∣∣ =

∣
∣g

(∣∣v(0, t)
∣
∣2)∣∣ d

dt
(
λ(t)‖v‖2

L2(�)
)
, (25)

where λ(t) = sign( d
dt ‖v‖2

L2(�)). By using (3), (25) and equality (23), we obtain

d
dt

�
(
v(t)

) ≤ 2Re
(
vt(0, t)∂nv(0, t)

)
+ 2α1

(
1 +

∣
∣v(0, t)

∣
∣2θ ) d

dt
(
λ(t)‖v‖2

L2(�)
)
.

Therefore

d
dt

(
�

(
v(t)

)
– 2α1λ(t)‖v‖2

L2(�)
) ≤ 2Re

(
vt(0, t)∂nv(0, t)

)

+ 2α1
∣∣v(0, t)

∣∣2θ d
dt

(
λ(t)‖v‖2

L2(�)
)
. (26)

We use Lemma 3 and (22), to get

d
dt

(
�

(
v(t)

)
– 2α1λ(t)‖v‖2

L2(�)
)

≤ 2Re
(
vt(0, t)∂nv(0, t)

)
+ K

∥∥vx(t)
∥∥θ

L2(�)
d
dt

(
λ(t)‖v‖2

L2(�)
)

≤ 2Re
(
vt(0, t)∂nv(0, t)

)
+ K sup

s∈[0,Tmax[

(∥∥vx(s)
∥
∥θ

L2(�)

) d
dt

(
λ(t)‖v‖2

L2(�)
)
,

where Tmax > 0 is the maximum time of existence of (vm)m, which gives

d
dt

(
�

(
v(t)

)
– 2α1λ(t)‖v‖2

L2(�) – K sup
s∈[0,T]

(∥∥vx(s)
∥∥θ

L2(�)

)
λ(t)

∥∥v(t)
∥∥2

L2(�)

)

≤ 2Re
(
vt(0, t)∂nv(0, t)

)
. (27)
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Integrating the equality (27) between 0 and t, we get

�
(
v(t)

)
– 2α1λ(t)‖v‖2

L2(�) – K sup
s∈[0,T]

(∥∥vx(s)
∥
∥θ

L2(�)

)
λ(t)

∥
∥v(t)

∥
∥2

L2(�)

≤ �(u0) + 2α1‖u0‖2
L2(�) + K‖u0‖2

L2(�) sup
s∈[0,Tmax[

(∥∥vx(s)
∥
∥θ

L2(�)

)

– 2
√

2Re

(
e–iπ/4

∫ t

0
vt(0, t)∂1/2

t v(0, t)
)

.

Using Lemma 2, we obtain

�
(
v(t)

) ≤ �(u0) + K + K sup
s∈[0,Tmax[

(∥∥vx(s)
∥
∥θ

L2(�)

)
.

Using equation (24) of �(v(t)), we have

∥∥vx(t)
∥∥2

L2(�) ≤ K sup
s∈[0,Tmax[

(∥∥vx(s)
∥∥θ

L2(�)

)
+ 2q

∣∣v(a, t)
∣∣2

+ 2
∫

�

G
(|v|2)dx + �(u0) + K . (28)

We will majorize the second member of (28).
By using the Young inequality, we get

K sup
s∈[0,Tmax[

(∥∥vx(s)
∥
∥θ

L2(�)

) ≤ 1
4

sup
s∈[0,Tmax[

∥
∥vx(s)

∥
∥2

L2(�) + K . (29)

We apply the Agmon and Young inequalities using (22), and we have

2q
∣∣v(a, t)

∣∣2 ≤ 2|q|‖v‖L2(�)‖vx‖L2(�) ≤ 2|q|K0‖vx‖L2(�) ≤ 1
4
‖vx‖2

L2(�) + K . (30)

By considering (3) and by using the Gagliardo–Nirenberg and the Young inequalities, we
have

2
∫

�

G
(∣∣v(x, t)

∣
∣2)dx ≤ 2α2

∥
∥v(t)

∥
∥

L2(�) + 2α2

∫

�

∣
∣v(x, t)

∣
∣2(θ+1) dx

≤ 2α2K2
0 + 2α2C

∥∥v(t)
∥∥2+θ

L2(�)

∥∥vx(t)
∥∥θ

L2(�)

≤ K + K
∥∥vx(t)

∥∥θ

L2(�)

≤ 1
4
∥∥vx(t)

∥∥2
L2(�) + K . (31)

Then, by using (28), (29), (30) and (31), we obtain

1
2
∥
∥vx(t)

∥
∥2

L2(�) ≤ 1
4

sup
s∈[0,Tmax[

∥
∥vx(s)

∥
∥2

L2(�) + K + �(u0).

By taking the supremum on the left side of this inequality, we obtain

sup
t∈[0,Tmax[

∥∥vx(t)
∥∥2

L2(�) ≤ K + 4�(u0).
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Then Tmax = +∞ and the sequence (vm)m remains bounded in Cb([0, +∞[; H1(�)). Hence,
there exists K1 > 0, which is dependent on the equation data, such that

sup
m

sup
t∈[0,+∞[

∥
∥vm(t)

∥
∥

H1(�) ≤ K1. (32)

We now specify the space where (v′
m)m remains bounded. By (16), we see that

iv′
m = P∗

m

(
–

1
2

vmxx – qδavm – g
(|vm|2)vm + g

(∣∣vm(0, t)
∣
∣2)vm

)
,

where P∗
m is the operator of [H1(�)]′ in Hm defined by ∀η ∈ [H1(�)]′, ∀ω ∈ H1(�),

〈P∗
mη,ω〉H1(�),[H1(�)]′ = 〈η, Pmω〉[H1(�)]′ ,H1(�). We see that P∗

m is a bounded operator on
[H1(�)]′. The operator ∂2

x : H1(�) −→ [H1(�)]′ is continuous, then (P∗
m(vmxx))m is a

bounded sequence in [H1(�)]′. On the other hand, the sequence (δavm)m remains
bounded in [H 3

4 (�)]′ and the sequences P∗
m(g(|vm|2)vm)m and P∗

m(g(|vm(0, t)|2)vm)m remain
bounded in H1(�). Hence, we see that (v′

m)m remains bounded in Cb([0, +∞[; [H1(�)]′).

3.2.3 Estimate of xv(t) in L2(�)
In order to pass to the limit in the nonlinear term, we require the inclusion of the ap-
proximated solution vm in H1(�) ∩ L2(�; (1 + x2) dx). The reason behind this necessity
is the well-known compact injection: H1(�) ∩ L2(�; (1 + x2) dx) in L2(�). We have al-
ready proved the estimate of vm in H1(�) and so this section shows the estimate of vm in
L2(�; (1 + x2) dx).

We multiply (13) by –ix2v and we integrate in �. By using integration by parts and by
considering the real part, we get

1
2

d
dt

∥
∥xv(t)

∥
∥2

L2(�) = –
1
2
Re

[
ix2vx(x, t)v(x, t)

]0
–∞ – Re

(
i
∫

�

xvxv dx
)

.

Since v ∈ H1(�) we have 1
2 Re[ix2vx(x, t)v(x, t)]0

–∞ = 0. Then, by using the Cauchy–
Schwarz inequality and (32), we have

d
dt

∥∥xv(t)
∥∥2

L2(�) = –2Re

(
i
∫

�

xvxv dx
)

≤ 2
∥∥vx(t)

∥∥
L2(�)

∥∥xv(t)
∥∥

L2(�)

≤ 2K1
∥∥xv(t)

∥∥
L2(�).

By applying the Young inequality, we get

d
dt

∥∥xv(t)
∥∥2

L2(�) – ε
∥∥xv(t)

∥∥2
L2(�) ≤ K ,

with ε > 0. By applying the Gronwall lemma, for all T ∈ ]0, +∞[ we have

∀t ∈ [0, T]
∥∥xv(t)

∥∥2
L2(�) ≤ eεT‖xu0‖2

L2(�) +
K
ε

(
eεT – 1

)
.

Since u0 is with compact support in �, we have ‖xu0‖2
L2(�) ≤ K .
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Hence, there exists a constant K(T) > 0 such that

∀t ∈ [0, T]
∥
∥xv(t)

∥
∥2

L2(�) ≤ K(T).

This gives the sequence

(vm)m remains bounded in Cb
(
[0, T]; H1(�) ∩ L2(�;

(
1 + x2)dx

))
. (33)

3.3 Third step: passing to the limit
Since the sequence (vm)m remains bounded in Cb([0, +∞[; H1(�)), for ∀T > 0, (vm)m is
bounded in L∞(0, T; H1(�)). By the Banach–Alaoglu theorem, we deduce that (vm)m ad-
mits a subsequence still denoted (vm)m such that

vm ⇀ v weakly � in L∞(
0, T; H1(�)

)
. (34)

By using (33) and since the embedding H1(�)∩L2(�; (1 + x2) dx) ↪→ L2(�) is compact, we
have

∀t ∈ [0, T] vm(t) −→ v(t) strongly in L2(�). (35)

On the other hand, the sequence ( dvm
dt )m is bounded in L∞(0, T; [H1(�)]′). Then it admits

a subsequence which converges weakly � to h ∈ L∞(0, T; [H1(�)]′). We have h = dv
dt . In-

deed, we have dvm
dt −→ h in D′((0, T) × �). Otherwise, using (34) we obtain dvm

dt −→ dv
dt in

D′((0, T) × �). By the uniqueness of the limit in D′((0, T) × �), we obtain h = du
dt . This

implies that

dvm

dt
⇀

dv
dt

weakly � in L∞(
0, T;

[
H1(�)

]′). (36)

Now, we consider ω ∈D([0, T]) such that ω(T) = 0. We pass to the limit in each term in
the equation

∫ T

0

〈
iv′

m +
1
2

vmxx + qδavm +
[
g
(|vm|2) – g

(∣∣vm(0, t)
∣
∣2)]vm,ω(t)ϕk

〉
dt = 0, (37)

where 〈·, ·〉 = 〈·, ·〉[H1(�)]′ ,H1(�).
Passing to the limit for the term Im =

∫ T
0 〈iv′

m,ω(t)ϕk〉[H1(�)]′ ,H1(�) dt: By integration by
parts with respect to time, we get

Im = –
〈
ivm(0),ω(0)ϕk

〉
L2(�),L2(�) –

∫ T

0

〈
ivm,ω′(t)ϕk

〉
H1(�),[H1(�)]′ dt.

By using (34), we obtain

lim
m→+∞ Im = –

〈
iu0,ω(0)ϕk

〉
L2(�),L2(�) –

∫ T

0

〈
iv,ω′(t)ϕk

〉
H1(�),[H1(�)]′ dt. (38)
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Passing to the limit for the term Jm =
∫ T

0 〈vmxx,ω(t)ϕk〉[H1(�)]′ ,H1(�) dt: Applying the Green
formula, we have

Jm =
∫ T

0
∂nvm(0, t)ϕk(0)ω(t) dt –

∫ T

0

〈
vmx,ω(t)ϕkx

〉
L2(�),L2(�) dt.

By using (34) we have

lim
m→+∞

∫ T

0

〈
vmx,ω(t)ϕkx

〉
L2(�),L2(�) dt

=
∫ T

0

〈
vx,ω(t)ϕkx

〉
L2(�),L2(�) dt.

It remains to demonstrate

lim
m→+∞

∫ T

0
∂nvm(0, t)ϕk(0)ω(t) dt

=
∫ T

0
∂nv(0, t)ϕk(0)ω(t) dt. (39)

Indeed,

∫ T

0
∂n

(
vm(0, t) – v(0, t)

)
ϕk(0)ω(t) dt

= –
√

2e–iπ/4ϕk(0)
∫ T

0
∂1/2

t
(
vm(0, t) – v(0, t)

)
ω(t) dt

= –
√

2e–iπ/4ϕk(0)√
π

∫ T

0
∂t

(∫ t

0

vm(0, s) – v(0, s)√
t – s

ds
)

ω(t) dt

=
√

2e–iπ/4ϕk(0)√
π

∫ T

0
ω′(t)

(∫ t

0

vm(0, s) – v(0, s)√
t – s

ds
)

dt.

By using (35) and by applying Lemma 4, we then obtain (39). This gives

lim
m→+∞ Jm =

∫ T

0
∂nv(0, t)ϕk(0)ω(t) dt –

∫ T

0

〈
vx,ω(t)ϕkx

〉
L2(�),L2(�) dt

=
∫ T

0

〈
vxx,ω(t)ϕk

〉
[H1(�)]′ ,H1(�) dt. (40)

Passing to the limit for the term Lm =
∫ T

0 〈g(|vm|2)vm,ω(t)ϕk〉[H1(�)]′ ,H1(�) dt: By us-
ing (34), (35) and (36), we have vm −→ v strongly in C0([0, T]; L2(�)). Let K be a compact of
�, since vmg(|vm|2) belongs to a bounded set of L∞(0, T, L2(K)) we extract a subsequence
of (vm)m (noted again (vm)m) such that vmg(|vm|2) ⇀ w weakly � in L∞(0, T, L2(K)). By
using Lemma 5, we have g(|vm|2)vm −→ g(|v|2)v strongly in C0([0, T]; L2(�)). Hence

lim
m→+∞ Lm =

∫ T

0

〈
g
(|v|2)v,ω(t)ϕk

〉
[H1(�)]′ ,H1(�) dt. (41)
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Passing to the limit for the term Km =
∫ T

0 g(|vm(0, t)|2)〈vm,ω(t)ϕk〉[H1(�)]′ ,H1(�) dt: We
have

∫ T

0

〈
g
(∣∣vm(0, t)

∣
∣2)vm – g

(∣∣v(0, t)
∣
∣2)v,ω(t)ϕk

〉
[H1(�)]′ ,H1(�) dt

=
∫ T

0

[
g
(∣∣vm(0, t)

∣∣2) – g
(∣∣v(0, t)

∣∣2)]〈vm,ω(t)ϕk
〉
[H1(�)]′ ,H1(�) dt

+
∫ T

0

〈
vm – v, g

(∣∣v(0, t)
∣
∣2)

ω(t)ϕk
〉
[H1(�)]′ ,H1(�) dt.

Since g is continuous and by using Lemma 4, we have

lim
m→+∞ g

(∣∣vm(0, t)
∣
∣2) = g

(∣∣v(0, t)
∣
∣2).

By using the fact that (vm)m is bounded in Cb([0, T]; H1(�)), we get

lim
m→+∞

∫ T

0

[
g
(∣∣vm(0, t)

∣∣2) – g
(∣∣v(0, t)

∣∣2)]〈vm,ω(t)ϕk
〉
[H1(�)]′ ,H1(�) dt = 0.

Using the weak convergence � of (vm)m to v in L∞(0, T; H1(�)) and g(|v(0, ·)|2) ∈ L∞(0, T),
we obtain

lim
m→+∞

∫ T

0

〈
vm – v, g

(∣∣v(0, t)
∣
∣2)

ω(t)ϕk
〉
[H1(�)]′ ,H1(�) dt = 0.

This gives

lim
m→+∞ Km =

∫ T

0

〈
g
(∣∣v(0, t)

∣∣2)v,ω(t)ϕk
〉
[H1(�)]′ ,H1(�) dt. (42)

Passing to the limit for the term Dm =
∫ T

0 〈δavm,ω(t)ϕk〉[H1(�)]′ ,H1(�) dt: For all ε > 0, we
have δa ∈ [H 1

2 +ε(�)]′. Then the sequence (δavm(t))m is bounded in [H 1
2 +ε(�)]′; in particular

in [H 3
4 (�)]′. Indeed,

‖δavm‖
[H

3
4 (�)]′

= sup
‖ϕ‖

H
3
4 (�)

=1

∣∣vm(a)ϕ(a)
∣∣

=
∣
∣vm(a)

∣
∣ sup
‖ϕ‖

H
3
4 (�)

=1

∣
∣ϕ(a)

∣
∣

=
∣∣vm(a)

∣∣‖δa‖[H
3
4 (�)]′

.

By using Agmon’s inequality, we have

‖δavm‖
[H

3
4 (�)]′

≤ ‖δa‖
[H

3
4 (�)]′

‖vm‖1/2
L2(�)‖vmx‖1/2

L2(�)

≤ ‖δa‖
[H

3
4 (�)]′

‖vm‖H1(�). (43)
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We use the Banach–Alaoglu theorem to obtain

δavm ⇀ ξ weakly � in L∞(
0, T;

[
H

3
4 (�)

]′).

Therefore ∀ψ ∈ L1(0, T; H3/4(�)) we have

lim
m→+∞

∫ T

0
〈δavm,ψ〉[H3/4(�)]′ ,H3/4(�) dt =

∫ T

0
〈ξ ,ψ〉[H3/4(�)]′ ,H3/4(�) dt.

In particular ∀ψ ∈ L1(0, T; H1(�)) we have

lim
m→+∞

∫ T

0
〈δavm,ψ〉[H1(�)]′ ,H1(�) dt =

∫ T

0
〈ξ ,ψ〉[H1(�)]′ ,H1(�) dt.

We just justify that ξ = δav. Note that δav ∈ [H 3
4 (�)]′. Using (43) we have

‖δavm – δav‖
[H

3
4 (�)]′

≤ ‖δa‖[H
3
4 (�)]′

‖vm – v‖1/2
L2(�)‖vmx – vx‖1/2

L2(�).

We know that vm −→ v strongly in C([0, T]; L2
loc(�)) and (vm)m is bounded in C0([0, T];

H1(�)). Then, for all K compact on �, we have

δavm −→ δav strongly in C0([0, T];
[
H

3
4 (K)

]′).

Otherwise, we have

δavm −→ ξ in D′((0, T) × �
)
.

By using the uniqueness of the limit in D′, we get ξ = δau. This implies that

lim
m→+∞ Dm =

∫ T

0

〈
δav,ω(t)ϕk

〉
[H1(�)]′ ,H1(�) dt. (44)

Passing to the limit for equation (37): By using (37), (38), (40), (41), (42) and (44), we
deduce that, for all ϕ ∈ H1(�),

–
〈
iu0,ω(0)ϕ

〉
L2(�),L2(�) –

∫ T

0

〈
iv,ω′(t)ϕ

〉
H1(�),[H1(�)]′ dt

+
1
2

∫ T

0

〈
vxx,ω(t)ϕ

〉
[H1(�)]′ ,H1(�) dt + q

∫ T

0

〈
δav,ω(t)ϕ

〉
[H1(�)]′ ,H1(�) dt

+
∫ T

0

〈[
g
(|v|2) – g

(∣∣v(0, t)
∣
∣2)]v,ω(t)ϕ

〉
[H1(�)]′ ,H1(�) dt = 0. (45)

For ω ∈D(0, T), we see that v obeys

∫ T

0

〈
iv′ +

1
2

vxx + qδav +
[
g
(|v|2) – g

(∣∣v(0, t)
∣∣2)]v,ϕ

〉

[H1(�)]′ ,H1(�)
ω(t) dt = 0.
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We just justify that for all ϕ ∈ H1(�) we have

〈
iv′ +

1
2

vxx + qδav +
[
g
(|v|2) – g

(∣∣v(0, t)
∣∣2)]v,ϕ

〉

[H1(�)]′ ,H1(�)
= 0. (46)

Then v satisfies the initial condition v(0) = u0. We consider ω ∈ D([0, T]); ω(T) = 0, and
multiply equation (46) by ω(t). We integrate between 0 and T to obtain

–
〈
iv(0),ω(0)ϕ

〉
L2(�),L2(�) –

∫ T

0

〈
iv,ω′(t)ϕ

〉
H1(�),[H1(�)]′ dt

+
1
2

∫ T

0

〈
vxx,ω(t)ϕ

〉
[H1(�)]′ ,H1(�) dt + q

∫ T

0

〈
δav,ω(t)ϕ

〉
[H1(�)]′ ,H1(�) dt

+
∫ T

0

〈[
g
(|v|2) – g

(∣∣v(0, t)
∣∣2)]v,ω(t)ϕ

〉
[H1(�)]′ ,H1(�) dt = 0. (47)

Combining (45) and (47), we get

∀ϕ ∈ H1(�),
〈
iu0,ω(0)ϕ

〉
L2(�),L2(�) =

〈
iv(0),ω(0)ϕ

〉
L2(�),L2(�).

By choosing ω(0) = 1, we deduce that v(0) = u0. We then justify that

v ∈ C0([0, +∞[; H1(�)
) ∩ C1([0, +∞[;

[
H1(�)

]′),

and this satisfies the problem (13).

3.4 Uniqueness and continuous dependence of the solutions
Let v(t) and v̂(t) be two solutions satisfying the problem (13) which follow, respectively,
from the initial data u0 and û0. We set w(t) = v(t) – v̂(t) with the initial condition w(0) =
u0 – û0. Then we obtain

iwt +
1
2

wxx + qδaw + g
(|v|2)u – g

(|̂v|2)v̂ – g
(∣∣v(0, t)

∣
∣2)u + g

(∣∣̂v(0, t)
∣
∣2)v̂ = 0, (48)

with the boundary condition

∂nw(0, t) +
√

2e–iπ/4∂1/2
t

(
w(0, t)

)
= 0, t ∈R+. (49)

We multiply (48) by w and we take the imaginary part, to obtain

1
2

d
dt

‖w‖L2(�) = – Im
(
∂nw(0, t)w(0, t)

)
– Im

(∫

�

(
g
(|v|2)v – g

(|̂v|2)v̂
)
w dx

)

+ Im

(∫

�

(
g
(∣∣v(0, t)

∣∣2)u – g
(∣∣̂v(0, t)

∣∣2)v̂
)
w dx

)
. (50)

By using (49), we have

–Im
(
∂nw(0, t)w(0, t)

)
= Re

(
i∂nw(0, t)w(0, t)

)

= –
√

2Re
(
eiπ/4w(0, t)∂1/2

t
(
w(0, t)

))
.
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The other right terms of (50) are shown to be bounded by applying the Cauchy–Schwarz
inequality and the fact that the injection of H1(�) in L∞(�) is continuous, and by using (3),
we have

–Im

(∫

�

(
g
(|v|2)v – g

(|̂v|2)v̂
)
w dx

)
≤ K

∥∥w(t)
∥∥2

L2(�),

and by applying Lemma 3, we have

Im

(∫

�

(
g
(∣∣v(0, t)

∣
∣2)u – g

(∣∣̂v(0, t)
∣
∣2)v̂

)
w dx

)
≤ K

∥
∥w(t)

∥
∥2

L2(�).

From the above inequalities, we obtain

d
dt

∥∥w(t)
∥∥2

L2(�) ≤ K
∥∥w(t)

∥∥2
L2(�) –

√
2Re

(
eiπ/4w(0, t)∂1/2

t
(
w(0, t)

))
.

We apply Gronwall’s lemma and Lemma 2, to obtain

∥∥w(t)
∥∥2

L2(�) ≤ eKt∥∥w(0)
∥∥2

L2(�) ≤ eKt‖u0 – û0‖2
L2(�). (51)

Therefore the uniqueness of the solution of (13) follows immediately.
Finally, from Remark 3, there exists a unique function u ∈ C0([0, +∞[; H1(�)) ∩

C1([0, +∞[; [H1(�)]′) solution of the NLS equation (2)–(4)–(6) such that

u(x, t) = exp

(
i
∫ t

0
g
(∣∣v(0, s)

∣∣)ds
)

v(x, t).

Moreover, the following proposition shows that the continuous dependence of the solu-
tions of the NLS equation (2)–(4)–(6).

Proposition 1 The map

H1(�) −→ H1(�)

u0 �→ u(t),
(52)

is continuous on bounded subsets of H1(�) for the strong topology of L2(�).

Proof Let u(t) and û(t) be two solutions of NLS equation (2)–(4)–(6) which are issued,
respectively, from the initial data u0 and û0. By using Remark 3, we have

u(t) – û(t) = exp

(
i
∫ t

0
g
(∣∣v(0, s)

∣
∣2)ds

)
v(x, t) – exp

(
i
∫ t

0
g
(∣∣̂v(0, s)

∣
∣2)ds

)
v̂(x, t).

Then we have

∥∥u(t) – û(t)
∥∥

L2(�) ≤ ∥∥v(t) – v̂(t)
∥∥

L2(�) +
∥∥̂v(t)

∥∥
L2(�)

∫ t

0

∣∣g
(∣∣v(0, s)

∣∣2) – g
(∣∣̂v(0, s)

∣∣2)∣∣ds.
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By applying the mean value theorem and (3) and by using Lemma 3, we get

∥
∥u(t) – û(t)

∥
∥

L2(�) ≤ sup
t∈[0,T]

[∥∥w(t)
∥
∥

L2(�) + K
∥
∥w(t)

∥
∥

1
2
L2(�)

] ≤ K sup
t∈[0,T]

[∥∥w(t)
∥
∥

1
2
L2(�)

]
,

where T > 0. Finally, by taking the supremum on the left side of the last inequality and by
applying (51), we get

sup
t∈[0,T]

[∥∥u(t) – û(t)
∥
∥

L2(�)

] ≤ K sup
t∈[0,T]

[
e

K–γ
4 t]‖u0 – û0‖

1
2
L2(�),

which gives the result. �

Remark 4 The choice of the negative half-line � does not affect the well-posedness of the
NLS equation. In fact, according to Remark 2, we deduce that if � = ]0, +∞[, a > 0 and u0

has a compact support in �, then the NLS equation

⎧
⎪⎪⎨

⎪⎪⎩

iut + 1
2 uxx + qδau + g(|u|2)u = 0 in � ×R+

∂nu(0, t) +
√

2e–iπ/4eiV(0,t)∂1/2
t (e–iV(0,t)u(0, t)) = 0, t ∈R+,

u(x, 0) = u0(x), x ∈ �

has a unique solution u ∈ C0([0, +∞[; H1(�)) ∩ C1([0, +∞[; [H1(�)]′). Moreover, the map
u0 �→ u(t) is continuous on bounded subsets of H1(�) for the strong topology of L2(�).

4 Conclusion
In this paper, we have studied a nonlinear Schrödinger equation with Dirac distribution
in a half-line domain of R. For this purpose, a non-standard boundary condition was con-
sidered in order to demonstrate the well-posedness of the solution. Then, by using the
Galerkin method, we have shown that this equation can have a unique solution in H1(�).

The remaining question is to investigate the nonlinear Schrödinger equation with the
Dirac distribution on a bounded domain of R or R2 with non-standard boundary condi-
tions. This is a delicate issue which needs future research.
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