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1 Introduction and main results
This paper is concerned with the existence and multiplicity of nontrivial solutions for the
following biharmonic equations in R

N (N ≥ 5):

�2u – �u + V (x)u = f (x, u) in R
N , (1.1)

where �2 is the biharmonic operator, V (x) is a singular potential, and f ∈ C(RN ×R,R).
In recent years, many authors have paid attention to studying the existence of nontrivial

solutions for biharmonic equations (see, e.g., [1–3] and the references therein) since it was
first introduced by Lazer and McKenna [4] to furnish a model for studying the traveling
waves in suspension bridges. Let us mention some recent mathematical studies related
to biharmonic equations. Applying the mountain pass theorem and employing the Morse
theory, the authors in [5, 6] studied the existence of multiple nontrivial solutions for the
following biharmonic equations:

⎧
⎨

⎩

�2u + c�u = f (u) in �,

u = �u = 0 on ∂�,
(1.2)

where � is a smooth bounded domain of RN , and c < λ1, where λ1 is the first eigenvalue
of –� in H1

0 (�). In addition, the existence of infinitely many sign-changing solutions of
problem (1.2) was obtained in [7] via the sign-changing critical point theorem.

On the other hand, there also exist a large number of works on the biharmonic equa-
tions in the entire space R

N . For example, for problem (1.1) Ye and Tang [8] considered
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the existence and multiplicity solutions by using the mountain pass theorem when the po-
tential V (x) is a positive function. Their results unify and sharply improve the results of
Liu, Chen, and Wu [9]. For problem (1.1) with a sign-changing potential, infinitely many
solutions were obtained in [10] via the symmetric mountain pass theorem. Zhang and
Costa [11] investigated the existence of a nontrivial solution by applying the mountain
pass theorem. For other interesting results of biharmonic equations, we refer to [12–17]
and references therein.

Motivated by the papers mentioned, especially by [6, 11], the aim of this paper is to
revisit the existence and multiplicity of nontrivial solutions for problem (1.1) with singular
potential V (x) satisfying the following condition:

(V ) V (x) is a continuous function and satisfies

V (r) + (λ – α)
1
r4 ≥ 0, lim

r→0
r4V (r) = lim

r→∞ r4V (r) = +∞,

where r = |x|, λ = N2(N–4)2

16 , and α > 0 is a constant.
Before stating our main results, we present the assumptions on the nonlinearity f (x, u) =

f (|x|, u) and its primitive F(x, u) =
∫ u

0 f (x, t) dt:
(f 1) f (x, u) ∈ C(RN ×R,R), and lim|u|→∞ |f (x,u)|

|u|p–1 = 0 uniformly in x ∈R
N for 2 < p < 2∗;

(f 2) f (x, u) = o(|u|) as |u| → 0 uniformly in x ∈R
N ;

(f 3) lim|u|→∞ |F(x,u)|
|u|2 = ∞ for a.e. x ∈R

N , and there exists r0 ≥ 0 such that

F(x, u) ≥ 0, ∀(x, u) ∈R
N ×R, |u| ≥ r0;

(f 4) F (x, u) := 1
2 uf (x, u) – F(x, u) ≥ 0, and there exist c2 > 0 and κ > 1 such that

∣
∣F(x, u)

∣
∣κ ≤ c2|u|2κF (x, u), ∀(x, u) ∈R

N ×R, |u| ≥ r0;

(f 5) There exist r1, r2 ≥ 0, c3 > 0, and σ ∈ (1, 2) such that

F(x, u) ≥ c3uσ , ∀(x, u) ∈R
N ×R, r1 ≤ |u| ≤ r2;

(f 6) There exist θ0 ∈ (0, 1) and K ≥ 1 such that

1 – θ2

2
uf (x, u) ≥ F(x, u) – KF(x, θu), ∀(x, u) ∈ R

N ×R, θ ∈ [0, θ0].

Now we can state our main results.

Theorem 1.1 Assume that (V ), (f 1), (f 2), (f 3), (f 4), and (f 5) are satisfied. Then problem
(1.1) has a nontrivial solution.

Theorem 1.2 Assume that (V ), (f 1), (f 2), (f 3), (f 4), and (f 6) are satisfied. Then problem
(1.1) has a ground state solution.

Theorem 1.3 Let f (x, u) be an odd function with respect to u. Assume that (V ), (f 1), (f 2),
(f 3), and (f 4) are satisfied. Then problem (1.1) has infinitely many nontrivial solutions.
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Remark 1.1 The authors in [11] showed that V (x) satisfying condition (V ) is a singular
potential and the function V (r) = | log r|

r4 satisfies condition (V ). This is quite different from
[8, 9] since the potentials in those papers are just positive but not singular.

Remark 1.2 In [11], the existence of a nontrivial solution is obtained under the condition

0 < 2F(s) < sf (s) for all s 	= 0. (1.3)

However, condition (1.3) cannot imply condition (f 4). For example, let

f (x, u) = 3|u|2
∫ u

0
|x|1+sin xx dx + |u|4+sin uu.

Then

F(x, u) = |u|3
∫ u

0
|x|1+sin xx dx.

It is easy to see that f (x, u) satisfies condition (1.3) but does not satisfy (f 4).

Remark 1.3 To the best of our knowledge, condition (f 6), which was first given by Tang
in [18], is weaker than (1.3). For the details, we refer to [18].

Remark 1.4 Take p = 5 and κ = 2. Then by a simple calculation we can easily check that
the function

f (x, u) = a| sin x| · |u|p–2,

where a is a positive constant, satisfies conditions (f 1)-(f 6).

It should be pointed out that our method is quite different from [11], in which the
authors used the mountain pass theorem to verify the existence of nontrivial solutions,
whereas we apply the Morse theory combining it with local linking methods. On the other
hand, we consider the problem with singular potential on the whole space R

N , whereas
the authors in [6] dealt with the problem in a smooth bounded domain � ⊂ R

N . Fortu-
nately, we show that problem (1.1) has at least one nontrivial solution by the Morse theory.
Moreover, the ground state solution and infinitely many nontrivial solutions are obtained
by using variational methods.

The remainder of this paper is organized as follows. In Section 2, we present some pre-
liminaries and the variational setting and give the proofs of the main results in Section 3.

2 Preliminaries and variational setting
Throughout this paper, let C1, C2, . . . are positive constants, which may vary from line to
line. the strong (weak) convergence is denoted by → (⇀). By BR(y) we denote the ball of
radius R and center at y. By X∗ we denote the dual space of EV := X, which is the weighted
Sobolev space defined as the subspace of the radially symmetric function in the completion
of C∞

0 (RN ) with respect to the inner product and norm

〈u, v〉 =
∫

RN

[
�u�v + ∇u∇v + V (r)uv

]
dx and ‖u‖ = 〈u, u〉 1

2 , u, v ∈ EV .
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Recall that the Hardy-Rellich inequality implies that, for all u ∈ C∞
0 (RN ),

∫

RN
|�u|2 dx ≥ λ

∫

RN

u2

r4 dx,

where λ and r are defined in (V ). Denote by Lp(RN ) the space with the norm

‖u‖p =
(∫

RN
up dx

) 1
p

.

Then, proceeding in analogy with [11], we get the following result.

Theorem 2.1 Under condition (V ), EV is continuously embedded into Lp(RN ) for 2 ≤ p ≤
2∗ = 2N

N–4 , that is, there exists rp > 0 such that

‖u‖p ≤ rp‖u‖, u ∈ EV . (2.1)

Furthermore, the embedding from EV into Lp(RN ) is compact for 2 ≤ p < 2∗.

Proof The proof is almost the same as that of Theorem 1.1 in [11]. We omit it here. �

It follows from (f 1) and (f 2) that, for any ε > 0, there exists Cε > 0 such that

∣
∣f (x, u)

∣
∣ ≤ ε|u| + Cε|u|p–1, ∀(x, u) ∈R

N ×R. (2.2)

Then

∣
∣F(x, u)

∣
∣ ≤ ε

2
|u|2 +

Cε

p
|u|p, ∀(x, u) ∈R

N ×R. (2.3)

Thus, a straightforward calculation from (2.1) and (2.3) gives

∫

RN

∣
∣F(x, u)

∣
∣dx ≤ εr2

2
2

‖u‖2 +
Cεrp

p

p
‖u‖p. (2.4)

Now we define the functional I on EV by

I(u) =
1
2

∫

RN

[|�u|2 + |∇u|2 + V (r)u2]dx –
∫

RN
F(x, u) dx, ∀u ∈ EV . (2.5)

Following (2.4), it is clear that I(u) ∈ C1(EV ,R) and

〈
I ′(u), v

〉
=

∫

RN

[
�u�v + ∇u∇v + V (r)uv

]
dx –

∫

RN
f (x, u)v dx, ∀v ∈ EV . (2.6)

Consequently, the critical points of I are weak solutions of problem (1.1).
In what follows, we recall some facts of the Morse theory.
Let X be a real Banach space, I ∈ C1(X,R), and K = {u ∈ X : I ′(u) = 0}. Then the qth

critical group of I at an isolated critical point u ∈ K with I(u) = c is defined by

Cq(I, u) := Hq
(
Ic ∩ U , Ic ∩ U \ {u}), q ∈N := {0, 1, 2, . . .},
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where Ic = {u ∈ X : I(u) ≤ c}, U is any neighborhood of u, and Hq(·, ·) denotes a singular
relative homology group of pair (·, ·) with integer coefficients.

Definition 2.1 The functional I satisfies the Cerami condition at the level c ∈R ((C)c for
short) if any sequence {un} ⊂ X satisfying

I(un) → c and
(
1 + ‖un‖

)∥
∥I ′(un)

∥
∥

X∗ → 0

has a convergent subsequence. Thew functional I satisfies (C) condition if I satisfies (C)c

at any c ∈R.

If I satisfies (C) condition and the critical values of I are bounded from below by some
a < inf I(K), then the critical groups of I at infinity introduced by Bartsch and Li [19] as

Cq(I,∞) := Hq
(
X, Ic), q ∈N,

do not depend on the choice of c.

Remark 2.1 Based on the Morse theory [20, 21], we can easily get that if K = {0}, then
Cq(I,∞) ∼= Cq(I, 0) for all q ∈ N. It follows that if Cq(I,∞) � Cq(I, 0) for some q ∈ N, then
I must have a nontrivial critical point.

We say that u ∈ K is a homological nontrivial critical point of I if at least one of its critical
groups is nontrivial.

Proposition 2.1 ([22]) Assume that I has a critical point u = 0 with I(0) = 0. Suppose that
I has a local linking at 0 with respect to X = V ⊕ W , k = dim V < ∞, that is, there exists
ρ > 0 small enough such that

I(u) ≤ 0, u ∈ V ,‖u‖ ≤ ρ and I(u) > 0, u ∈ W , 0 < ‖u‖ ≤ ρ.

Then Ck(I, 0) � 0. Hence, 0 is a homological nontrivial critical point of I .

Here, we present the following symmetric mountain pass theorem, which will be used
later.

Proposition 2.2 ([20]) Let X be an infinite-dimensional Banach space, X = V ⊕ W , where
V is finite dimensional. Suppose that I ∈ C1(X,R) satisfies (C)c condition for all c > 0, and

(I1) I(0) = 0, I(–u) = –I(u) for all u ∈ X ;
(I2) there exist constants ρ,α > 0 such that I|∂Bρ≥α ;
(I3) for any finite-dimensional subspace X̃ ⊂ X , there is R = R(X̃) > 0 such that I(u) ≤ 0

on X̃\BR.
Then I possesses an unbounded sequence of critical values.

3 Proofs of main results
We begin this section by computing the critical groups of the functional I at infinity and
zero.
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Lemma 3.1 Assume that conditions (V ), (f 1), (f 2), (f 3), and (f 4) hold. Then Cq(I,∞) ∼= 0
for all q ∈N.

Proof Let S := {u ∈ EV : ‖u‖ = 1}. Applying the Fatou lemma and (f 3) yields that

lim
t→∞

∫

RN

F(x, tu)
t2 dx ≥

∫

RN
lim

t→∞
F(x, tu)
|tu|2 |u|2 dx = +∞, ∀u ∈ S,

which, combined with (2.5), implies that

I(tu) =
1
2

t2 –
∫

RN
F(x, tu) dx

≤ t2
[

1
2

–
∫

RN
lim

t→∞
F(x, tu)
|tu|2 |u|2 dx

]

→ –∞, ∀u ∈ S.

Take a < min{inf‖u‖=1 I(u), 0}. Then, for u ∈ S, there exists t0 > 1 such that I(tu) ≤ a for
t ≥ t0. Thus,

1
2

t2 ≤ a +
∫

RN
F(x, tu) dx. (3.1)

From (2.5), (3.1), and (f 4) we deduce that

d
dt

I(tu) =
1
t

[

t2 –
∫

RN
f (x, tu)tu dx

]

≤ 1
t

[

2
∫

RN
F(x, tu) dx –

∫

RN
f (x, tu)tu dx + 2a

]

=
1
t

[

–2
∫

RN
F (x, tu) dx + 2a

]

< 0.

Then by the implicit function theorem there exists a unique T ∈ C(S,R) such that
I(T(u)u) = a. As in [23], we can use the function T to construct a strong deformation
retract from EV \ {0} to Ia. Therefore,

Cq(I,∞) = Hq
(
EV , Ia) = Hq

(
EV , EV \ {0}) = 0, ∀q ∈ N.

The proof is completed. �

We now choose an orthogonal basis {ej} of X := EV and define Xj := span{ej}, j = 1, 2, . . . .
Set

Yk :=
k⊕

j=1

Xj, Zk =
∞⊕

j=k+1

Xj, and Zk = Y ⊥
k , k ∈ Z.

Then X = Yk ⊕ Zk .

Lemma 3.2 Assume that conditions (V ), (f 1), (f 2), and (f 5) hold. Then there exists k ∈N

such that Ck(I, 0) � 0.
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Proof Let V = Yk and W = Zk . Then dim V < ∞. It follows from (2.5) and F(x, u) that
I(0) = 0. On one hand, taking 0 < ε < r–2

2 , by (2.4) and (2.5) we have

I(u) ≥ 1
2
‖u‖2 –

∫

RN

∣
∣F(x, u)

∣
∣dx ≥ C1‖u‖2 – C2‖u‖p, ∀u ∈ W .

Thus, for p > 2, we can choose 0 < ‖u‖ ≤ ρ sufficiently small such that I(u) > 0 for all
u ∈ W .

On the other hand, for any u ∈ V with |u| small, combining (2.5) with (f 5) yields

I(u) ≤ 1
2
‖u‖2 – c3

∫

RN
|u|σ dx. (3.2)

Note that V is a finite-dimensional subspace and all norms on a finite-dimensional space
are equivalent. So, it can be deduced from (3.2) that

I(u) ≤ 1
2
‖u‖2 – C3‖u‖σ , (3.3)

which implies that I(u) ≤ 0, for all u ∈ V with ‖u‖ ≤ ρ small since σ ∈ (1, 2).
Therefore, it follows from Proposition 2.1 that Ck(I, 0) � 0, that is, 0 is a homological

nontrivial critical point of I . The proof is completed. �

Lemma 3.3 If conditions (V ), (f 1), (f 2), (f 3), and (f 4) are satisfied, then the functional I
satisfies (C) condition on EV .

Proof The proof is analogous to that of Lemma 2.4 in [24], but we give it here for com-
pleteness. Let {un} ⊂ EV be a (C) sequence. We divide the proof into two steps.

Step 1. We first show that {un} is bounded. Supposing the contrary, we can assume that

‖un‖ → ∞, I(un) → c, and
〈
I ′(un), un

〉 → 0. (3.4)

Define vn := un
‖un‖ . For n large enough, we deduce from (3.4) and (f 4) that

c + 1 ≥ I(un) –
1
2
〈
I ′(un), un

〉
=

∫

RN
F (x, un) dx. (3.5)

A direct calculation from (2.4) and (3.4) yields

1
2

=
I(un)
‖un‖2 +

1
‖un‖2

∫

RN
F(x, un) dx

≤ lim sup
n→∞

[
I(un)
‖un‖2 +

1
‖un‖2

∫

RN

∣
∣F(x, un)

∣
∣dx

]

= lim sup
n→∞

∫

RN

|F(x, un)|
‖un‖2 dx. (3.6)

For 0 ≤ a < b, let n(a, b) := {x ∈R
N : a ≤ |un(x)| < b}. Going if necessary to a subsequence,

we may assume that vn ⇀ v in EV . Then by Theorem 2.1 we have vn → v in Lq(RN ) for
q ∈ [2, 2∗) and vn → v a.e. on R

N .
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If v = 0, then vn → 0 in Lq(RN ) for q ∈ [2, 2∗) and vn → 0 a.e. on R
N . Hence, it follows

from (2.3) and vn := un
‖un‖ that

∫

n(0,r0)

|F(x, un)|
‖un‖2 dx =

∫

n(0,r0)

|F(x, un)|
|un|2 |vn|2 dx

≤ C4

∫

RN
|vn|2 dx → 0. (3.7)

Set κ ′ = κ/(κ – 1). Then 2κ ′ ∈ (2, 2∗). Hence, a direct calculation from (3.5), (f 4), and the
Hölder inequality shows that

∫

n(r0,∞)

|F(x, un)|
‖un‖2 dx =

∫

n(r0,∞)

|F(x, un)|
|un|2 |vn|2 dx

≤
[∫

n(r0,∞)

( |F(x, un)|
|un|2

)κ

dx
]1/κ[∫

n(r0,∞)
|vn|2κ ′

dx
]1/κ ′

≤ c
1
κ
2

[∫

RN
F (x, un) dx

]1/κ[∫

RN
|vn|2κ ′

dx
]1/κ ′

≤ c
1
κ
2 [c + 1]1/κ

[∫

RN
|vn|2κ ′

dx
]1/κ ′

≤ C5

[∫

RN

(|vn|2κ ′)
dx

]1/κ ′

→ 0. (3.8)

Hence, combining (3.7) with (3.8) yields that

∫

RN

|F(x, un)|
‖un‖2 dx =

∫

n(0,r0)

|F(x, un)|
|un|2 |vn|2 dx +

∫

n(r0,∞)

|F(x, un)|
|un|2 |vn|2 dx → 0,

which contradicts (3.6).
If v 	= 0 and we set A := {x ∈ R

N : v(x) 	= 0}, then meas(A) > 0. For a.e. x ∈ A,
limn→∞ |un(x)| = ∞. Hence A ⊂ n(r0,∞) for n ∈ N large enough. Using (3.4), (3.7), (f 3),
and the Fatou lemma, it is clear that

0 = lim
n→∞

c + o(1)
‖un‖2 = lim

n→∞
I(un)
‖un‖2 = lim

n→∞

[
1
2

–
∫

RN

F(x, un)
‖un‖2 dx

]

= lim
n→∞

[
1
2

–
∫

n(0,r0)

F(x, un)
u2

n
v2

n dx –
∫

n(r0,∞)

F(x, un)
u2

n
v2

n dx
]

≤ 1
2

+ lim sup
n→∞

∫

n(0,r0)

F(x, un)
u2

n
v2

n dx – lim inf
n→∞

∫

n(r0,∞)

F(x, un)
u2

n
v2

n dx

≤ C7 – lim inf
n→∞

∫

n(r0,∞)

F(x, un)
u2

n
v2

n dx

≤ C7 –
∫

RN
lim inf

n→∞
F(x, un)

u2
n

[
χn(r0,∞)(x)

]
v2

n dx → –∞, (3.9)

which is a contradiction. Thus {un} is bounded in EV .
Step 2. We are going to show that {un} has a convergent subsequence in EV . Going if

necessary to a subsequence, we may assume that un ⇀ u in EV since {un} is bounded.
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Then by Theorem 2.1 we have vn → v in Lq(RN ) for q ∈ [2, 2∗). By the same arguments as
in the proof of Lemma 3.11 in [25] it follows from (f 1) and (f 2) that

lim
n→∞

∫

RN

∣
∣f (x, un) – f (x, u)

∣
∣|un – u|dx → 0 as n → ∞. (3.10)

Clearly, from (3.4) we have

〈
I ′(un) – I ′(u), un – u

〉 → 0 as n → ∞. (3.11)

Therefore, applying (3.10) and (3.11), we obtain that

‖un – u‖2 =
〈
I ′(un) – I ′(u), un – u

〉
+

∫

RN

[
f (x, un) – f (x, u)

]
(un – u) dx → 0

as n → ∞. Then clearly un → u in EV . The proof is completed. �

Lemma 3.4 Assume that (V ), (f 1), (f 2), (f 3), and (f 4) hold. Then for any finite-
dimensional subspace X̃ ⊂ EV , we have

I(u) → –∞, ‖u‖ → ∞, u ∈ X̃.

Proof Let V = Yk := X̃. Arguing indirectly, we may assume that for some sequence {un} ⊂
V with ‖u‖ → ∞, there is C > 0 such that I(un) ≥ –C for all n ∈ N. Set vn := un

‖un‖ . Then
‖vn‖ = 1. Passing to a subsequence, we have vn ⇀ v in V . Since V is finite dimensional,
we have vn → v in V and vn(x) → v(x) a.e. on R

N , and so ‖v‖ = 1. Hence we can get a
contradiction by a similar fashion as (3.9). We complete the proof. �

Corollary 3.1 Assume that (V ), (f 1), (f 2), (f 3), and (f 4) hold. Then for any finite-
dimensional subspace X̃ ⊂ EV , there is R = R(X̃) > 0 such that

I(u) ≤ 0, u ∈ X̃,‖u‖ ≥ R.

Lemma 3.5 Assume that (V ), (f 1), (f 2), and (f 3) hold. Then there exist constants ρ,α > 0
such that I|∂Bρ∩Zk ≥ α.

Proof Taking 0 < ε < r–2
2 and using (2.4) and (2.5), we derive that

I(u) ≥ C8‖u‖2 – C9‖u‖p. (3.12)

Set ρ := ( C8
2C9

)
1

p–2 > 0 and ∂Bρ := {u ∈ EV : ‖u‖ = ρ}. Then, for any u ∈ ∂Bρ ∩Zk , we get from
(3.12) that

I(u) ≥ C8

2
ρ2 := α > 0.

Therefore, the proof is completed. �
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Lemma 3.6 ([26]) Let X be a Banach space, let M0 be a closed subspace of the metric space
M, and let �0 ⊂ C(M0, X). Define

� =
{
γ ∈ C(M, X) : γ |M0 ∈ �0

}
.

If J ∈ C1(X,R) satisfies

∞ > b := inf
γ∈�

sup
t∈M

J
(
γ (t)

)
> a := sup

γ0∈�0
sup
t∈M0

J
(
γ0(t)

)
,

then there exists a sequence {un} ⊂ X satisfying

J(un) → b,
∥
∥J ′(un)

∥
∥
(
1 + ‖un‖

) → 0.

Lemma 3.7 Assume that (V ), (f 1), (f 2), and (f 6) are satisfied. Then

I(u) ≥ I(tu) +
1 – t2

2
〈
I ′(u), u

〉
– (K – 1)

∫

RN
F(x, u) dx, ∀u ∈ EV , t ∈ [0, θ0]. (3.13)

Proof For any u ∈ EV and t ∈ [0, θ0], by (2.5), (2.6), and (f 6) we easily get that

I(u) – I(tu) =
1 – t2

2
‖u‖2 +

∫

RN

[
F(x, tu) – F(x, u)

]
dx

=
1 – t2

2
〈
I ′(u), u

〉
+

∫

RN

[
1 – t2

2
f (x, u)u + F(x, tu) – F(x, u)

]

dx

=
1 – t2

2
〈
I ′(u), u

〉
+

∫

RN

[
1 – t2

2
f (x, u)u + KF(x, tu) – F(x, u)

]

dx

–(K – 1)
∫

RN
F(x, u) dx

≥ 1 – t2

2
〈
I ′(u), u

〉
– (K – 1)

∫

RN
F(x, u) dx,

which shows that (3.13) holds. This completes the proof. �

Define

� =
{
γ ∈ C

(
[0, 1], EV

)
: γ (0) = 0, I

(
γ (1)

)
< 0

}

and

b := inf
γ∈�

sup
t∈[0,1]

I
(
γ (t)

)
.

Lemma 3.8 Assume that (V ), (f 1), (f 2), and (f 6) are satisfied. Then there exists a sequence
{un} ⊂ EV satisfying

I(un) → b,
∥
∥I ′(un)

∥
∥
(
1 + ‖un‖

) → 0 as n → ∞. (3.14)
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Proof To prove this lemma, we apply Lemma 3.6. Let M = [0, 1], M0 = {0, 1}, and

�0 =
{
γ0 : M0 → EV |γ0(0) = 0, I

(
γ0(t)

)
< 0

}
.

For any 0 < ε < r–2
2 , a direct calculation from (2.4) and (2.5) gives that

I(u) ≥ 1
2
‖u‖2 –

∫

RN

[
ε

2
|u|2 +

Cε

p
|u|p

]

dx

≥ 1
2
‖u‖2 –

εr2
2

2
‖u‖2 +

Cεrp
p

p
‖u‖p

=
1
2
(
1 – εr2

2
)‖u‖2 +

Cεrp
p

p
‖u‖p,

which implies that there exists τ > 0 such that

max
‖u‖≥τ

I(u) = 0, inf‖u‖=τ
I(u) > 0.

Thus, we have

b ≥ inf‖u‖=τ
I(u) > 0 = sup

γ0∈�0
sup
t∈M0

I
(
γ0(t)

)
.

By Lemma 3.6 there exists a sequence {un} ∈ EV satisfying (3.14). We complete the
proof. �

Lemma 3.9 Assume that (V ), (f 1), (f 2), (f 3), (f 4), and (f 6) are satisfied. Then any se-
quence {un} ∈ EV satisfying (3.14) is bounded.

Proof To prove the lemma, arguing by contradiction, suppose that ‖un‖ → ∞. Set wn :=
un/‖un‖. Then ‖wn‖ = 1. Up to a subsequence, we can assume that wn ⇀ w in EV , wn → w
in Lp(RN ), 2 ≤ p < 2∗, and wn → w almost everywhere on R

N . Let

δ := lim sup
n→∞

sup
y∈RN

∫

B1(y)
|wn|p dx. (3.15)

If δ = 0, then Lions’ concentration compactness principle [25] implies that

wn → 0 in Lp(
R

N)
, 2 < p < 2∗. (3.16)

Take ε = (4Kr2
2)–1 > 0 in (2.3) and note that ‖wn‖ = 1. Then it follows from (2.3) and (3.16)

that

lim sup
n→∞

∫

RN
F(x, Rwn) dx ≤ lim sup

n→∞

∫

RN

[
ε|Rwn|2 + Cε|Rwn|p

]
dx

≤ εR2‖wn‖2
2 + CεRp lim

n→∞‖wn‖p
p

≤ εR2r2
2 + CεRp lim

n→∞‖wn‖p
p

=
R2

4K
. (3.17)
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In view of ‖un‖ → ∞, we can see that R
‖un‖ ∈ [0, θ0] for large n ∈ N. Fix R = [4(b + 1)] 1

2 .
Using (3.14), (3.17), and Lemma 3.7 gives

b + o(1) = I(wn) ≥ I(Rwn) +
(

1
2

–
R2

2‖wn‖2

)
〈
I ′(wn), wn

〉
– (K – 1)

∫

RN
F(x, Rwn) dx

=
R2

2
– K

∫

RN
F(x, Rwn) dx +

(
1
2

–
R2

2‖wn‖2

)
〈
I ′(wn), wn

〉

≥ R2

2
–

R2

4
+ o(1)

≥ b + 1 + o(1),

which is a contradiction. So, δ > 0. This means that w 	= 0. Then by a similar fashion as
(3.9) we get a contradiction. Hence, {un} is bounded in EV . �

Lemma 3.10 Assume that (V ), (f 1), (f 2), (f 3), (f 4), and (f 6) are satisfied. Then problem
(1.1) has a nontrivial solution, that is, M 	= ∅, where M := {u ∈ EV : I ′(u) = 0, u 	= 0}.

Proof Lemma 3.8 and Lemma 3.9 show that there exists a bounded sequence {un} ∈ EV

satisfying (3.14). So, we can assume that un ⇀ u in EV . Then by Theorem 2.1 we have
vn → v in Lq(RN ) for q ∈ [2, 2∗). Set

δ̄ := lim sup
n→∞

sup
y∈RN

∫

B1(y)
|un|p dx = 0.

Then we can easily get that δ̄ > 0 by the similar argument as proving that δ > 0, where δ is
defined in (3.15). This means that u 	= 0. As in Step 2 in Lemma 3.3, for every w ∈ C∞

0 (RN ),
we have

〈
I ′(u), w

〉
= lim

n→∞
〈
I ′(un), w

〉
= 0. (3.18)

Therefore, I ′(u) = 0, which shows that u ∈M is a nontrivial solution of problem (1.1). This
ends the proof. �

Now, we give the proofs of Theorems 1.1, 1.2, and 1.3.

Proof of Theorem 1.1 From Lemma 3.1 and Lemma 3.2, for some k ∈ N, we have
Ck(I,∞) � Ck(I, 0). Then Theorem 1.1 follows from Lemma 3.3 and Remark 2.1. �

Proof of Theorem 1.2 Lemma 3.10 shows that M 	= ∅. So, we can let

c0 = inf
M

Iλ(u).

By Lemma 3.7 we have I(u) ≥ I(0) = 0 for all u ∈ M. Hence, c0 ≥ 0. On the other hand,
Lemma 3.8 and Lemma 3.9 show that there exists a bounded sequence {un} ∈ EV satisfying
(3.14). So we can assume that un ⇀ u in EV . Then by Theorem 2.1 we have vn → v in
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Lq(RN ) for q ∈ [2, 2∗). A direct calculation from (2.5), (2.6), (f 4), and Fatou’s lemma yields
that

c0 = lim
n→∞

[

I(un) –
1
2
〈
I ′(un), un

〉
]

= lim
n→∞

∫

RN

[
1
2

f (x, un)un – F(x, un)
]

dx

≥
∫

RN
lim

n→∞

[
1
2

f (x, un)un – F(x, un)
]

dx

=
∫

RN

[
1
2

f (x, u)u – F(x, u)
]

dx

= I(u) –
1
2
〈
I ′(u), u

〉

= I(u),

which shows that I(u) ≤ c0.
Therefore, I(u) = c0 = infM Iλ(u), which means that u is the ground state solution of

problem (1.1). The proof is completed. �

Proof of Theorem 1.3 Let V := Yk and W := Zk . By (2.5), the definition of F(x, u), and the
fact that f (x, u) is an odd function with respect to u we have that (I1) of Proposition 2.2
holds. By Lemma 3.3 the functional I satisfies (C)c condition. Corollary 3.1 and Lemma 3.5
show that conditions (I2) and (I3) of Proposition 2.2 are satisfied. Hence, we complete the
proof of Theorem 1.2. �

4 Conclusions
In this paper, we established some existence results for a class of biharmonic equations
with singular potentials in whole space by employing the Morse theory and variational
methods. We significantly extended and complemented some results from the previous
literature.
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