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Abstract
In this paper, we consider a p-Laplacian singular Rayleigh equation with
time-dependent deviating argument

(ϕp(x
′(t)))′ + f (t, x′(t)) + g(t, x(t – σ (t))) = e(t),

where g has an attractive singularity at x = 0. Using the Manásevich–Mawhin
continuation theorem, we prove that the equation has at least one T -periodic
solution.
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1 Introduction
In the past years, researchers paid much attention to investigating the problem of periodic
solutions for second-order equations with singularities (see [1–16]). Among those studies,
the study of properties of repulsive singularities can be traced back to 1996. Zhang [1]
discussed the existence of positive periodic solutions of the following Liénard equation
with singularity:

x′′(t) + f
(
x(t)

)
x′(t) + g

(
t, x(t)

)
= 0, (1.1)

where g(t, x(t)) may be unbounded as x → 0+. Equation (1.1) is of repulsive type (resp.
attractive type) if g(t, x(t)) → –∞ (resp. g(t, x(t)) → +∞) as x → 0+. Using Mawhin’s con-
tinuation theorem, the author proved that Eq. (1.1) has at least one T-periodic solution.

Zhang’s work has attracted much attention of many specialists in differential equations.
In 2014, Wang [2] investigated the existence of positive periodic solutions of the following
Liénard equation with singularity and deviating argument:

x′′(t) + f
(
x(t)

)
x′(t) + g

(
t, x(t – σ )

)
= 0, (1.2)
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where g satisfies the same conditions as in Eq. (1.1), and σ is a constant such that 0 ≤ σ < T .
In 2017, Lu [3] considered the existence of positive periodic solutions of the following
Liénard equation with singularity:

x′′(t) + f
(
x(t)

)
x′(t) – g

(
x(t)

)
+ ϕ(t)x(t) = h(t),

where g(x) is singular at x = 0, and ϕ and h are T-periodic functions. The authors found a
new method for estimating a lower a priori bounds of the periodic solutions to the given
equation. Besides, many articles have been published about Liénard equation with repul-
sive singularity (see [4–13]).

Recently, some good deal of works have been performed on the existence of periodic
solutions of Rayleigh equations with singularity (see [14–16]). Wang and Ma [16] in 2015
studied the Rayleigh equation with repulsive singularity

x′′(t) + f
(
t, x′(t)

)
+ g

(
x(t)

)
= p(t),

where g has a repulsive singularity at the origin. The authors obtained that the given equa-
tion has at least one 2π-periodic solution.

All the aforementioned results are related to equations with repulsive singularity or
equations with time-independent deviating argument. Naturally, a new question arises:
how the Rayleigh equation with attractive singularity works on time-dependent deviating
argument? Besides practical interests, the topic has obvious intrinsic theoretical signifi-
cance. To answer this question, in this paper, applying the Manásevich–Mawhin contin-
uation theorem, we consider the existence of positive periodic solutions for the following
Rayleigh equation with attractive singularity and time-dependent deviating argument:

(
ϕp

(
x′(t)

))′ + f
(
t, x′(t)

)
+ g

(
t, x

(
t – σ (t)

))
= e(t), (1.3)

where ϕp : R → R is given by ϕp(s) = |s|p–2s with constant p > 1, f ∈ C(R × R,R),
e ∈ C(R,R), f (t, x′(t)) and e(t) are T-periodic with respect to variable t,

∫ T
0 e(t) dt = 0,

g(t, x) = g0(x) + g1(t, x) with g0 ∈ C((0,∞);R) and an L2-Carathéodory function g1, g0 has
an attractive singularity at x = 0, that is,

∫ 1

0
g0(x) dx = +∞, (1.4)

and σ ∈ C1(R,R) is a T-periodic function such that σ ′(t) < 1. Obviously, the attractiv-
ity condition limx→0+

∫ 1
x g0(s) ds = +∞ contradicts the repulsive singularity. Therefore, the

methods of [1, 2, 16] are no longer applicable to prove the existence of periodic solutions
for Eq. (1.3) with attractive singularity. So we need to find a new method to get over it.

In this paper, we give a new condition for g(t, x) in Eq. (1.3) with attractive singularity,
namely, –g(t, x) ≤ axp–1 + b, where a, b are positive constants. Therefore, by estimating a
priori bounds of periodic solutions and the Manásevich–Mawhin continuation theorem
we prove that Eq. (1.3) has at least one T-periodic solution.
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2 Periodic solution for Eq. (1.3)
We consider the T-periodic boundary value problem

(
ϕp

(
x′(t)

))′ = f̃
(
t, x(t), x′(t)

)
, (2.1)

where f̃ : [0, T] ×R×R →R is assumed to be Carathéodory.

Lemma 2.1 (Manásevich–Mawhin [17]) Let � be an open bounded set in C1
T := {x ∈

C1(R,R) : x(t + T) – x(t) ≡ 0}. Suppose that:
(i) For each λ ∈ (0, 1), the problem

(
ϕp

(
x′(t)

))′ = λf̃
(
t, x(t), x′(t)

)
, x(0) = x(T), x′(0) = x′(T),

has no solution on ∂�.
(ii) The equation

F(a) :=
1
T

∫ T

0
f̃ (t, a, 0) dt = 0

has no solution on ∂� ∩R.
(iii) The Brouwer degree

deg{F ,� ∩R, 0} 	= 0.

Then the periodic boundary value problem (2.1) has at least one T-periodic solution on �̄.

Next, applying the Manśevich–Mawhin continuation theorem, we prove the following
theorems. Define

‖x‖ := max
t∈[0,T]

∣∣x(t)
∣∣,

∥∥x′∥∥ := max
t∈[0,T]

∣∣x′(t)
∣∣.

Theorem 2.1 Assume that the following conditions are satisfied:
(H1) f (t, 0) = 0, and there exists a constant K > 0 such that |f (t, u)| ≤ K for (t, u) ∈ R×R.
(H2) There exists positive constants D1 and D2 with 0 < D2 < D1 such that g(t, x) < –K for

(t, x) ∈R× (D1, +∞) and g(t, x) > K for (t, x) ∈R× (0, D2).
(H3) There exist positive constants a and b such that

–g(t, x) ≤ axp–1 + b for (t, x) ∈R× (0, +∞).

Then Eq. (1.3) has at least one solution with period T if 2aTp < 1.

Proof Consider the equation

(
ϕp

(
x′(t)

))′ + λf
(
t, x′(t)

)
+ λg

(
t, x

(
t – σ (t)

))
= λe(t). (2.2)

Firstly, we will claim that the set of all T-periodic solution of Eq. (2.2) is bounded. Let
x ∈ CT := {x ∈ C(R,R) : x(t + T) – x(t) ≡ 0} be an arbitrary T-periodic solution of Eq. (2.2).
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Integrating both sides of Eq. (2.2) over [0, T], we have

∫ T

0

(
ϕp

(
x′(t)

))′ dt + λ

∫ T

0
f
(
t, x′(t)

)
dt + λ

∫ T

0
g
(
t, x

(
t – σ (t)

))
dt = λ

∫ T

0
e(t) dt.

Since
∫ T

0 (ϕp(x′(t)))′ dt = 0 and
∫ T

0 e(t) dt = 0, we have

∫ T

0

(
f
(
t, x′(t)

)
+ g

(
t, x

(
t – σ (t)

)))
dt = 0. (2.3)

From Eq. (2.3) and condition (H1) we have

–KT <
∫ T

0
g
(
t, x

(
t – σ (t)

))
dt < KT .

Then by condition (H2) we know that there exist two points ξ1,η1 ∈ [0, T] such that

x(ξ1) ≤ D1, x
(
η1 – σ (η1)

)
> D2.

Since ‖x‖ ≤ x(ξ1) + T
1
q (

∫ T
0 |x′(t)|p dt)

1
p , we have

‖x‖ ≤ D1 + T
1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) 1
p

. (2.4)

Multiplying both sides of Eq. (2.2) by x(t) and integrating over the interval [0, T], we get

∫ T

0

(
ϕp

(
x′(t)

))′x(t) dt + λ

∫ T

0
f
(
t, x′(t)

)
x(t) dt + λ

∫ T

0
g
(
t, x

(
t – σ (t)

))
x(t) dt

= λ

∫ T

0
e(t)x(t) dt. (2.5)

Substituting
∫ T

0 (ϕp(x′(t)))′x(t) dt = –
∫ T

0 |x′(t)|p dt into Eq. (2.5), we have

–
∫ T

0

∣∣x′(t)
∣∣p dt = –λ

∫ T

0
f
(
t, x′(t)

)
x(t) dt – λ

∫ T

0
g
(
t, x

(
t – σ (t)

))
x(t) dt

+ λ

∫ T

0
e(t)x(t) dt.

Thus we have

∫ T

0

∣∣x′(t)
∣∣p dt ≤ λ

∫ T

0

∣∣f
(
t, x′(t)

)∣∣∣∣x(t)
∣∣dt + λ

∫ T

0

∣∣g
(
t, x

(
t – σ (t)

))∣∣∣∣x(t)
∣∣dt

+ λ

∫ T

0

∣∣e(t)
∣∣∣∣x(t)

∣∣dt

≤ KT‖x‖ + ‖x‖
∫ T

0

∣
∣g

(
t, x

(
t – σ (t)

))∣∣dt + ‖x‖
∫ T

0

∣
∣e(t)

∣
∣dt. (2.6)
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From Eq. (2.3) and condition (H3) we have

∫ T

0

∣∣g
(
t, x

(
t – σ (t)

))∣∣dt

=
∫

g(t,x(t–σ (t)))>0
g+(

t, x
(
t – σ (t)

))
dt –

∫

g(t,x(t–σ (t)))≤0
g–(

t, x
(
t – σ (t)

))
dt

= –2
∫

g(t,x(t–σ (t)))≤0
g–(

t, x
(
t – σ (t)

))
dt +

∫ T

0
f
(
t, x′(t)

)
dt

≤ 2
∫ T

0

(
axp–1(t) + b

)
dt +

∫ T

0

∣
∣f

(
t, x′(t)

)∣∣dt

≤ 2aT‖x‖p–1 + 2bT + KT , (2.7)

where g– := min{g(t, x(t – σ (t))), 0}. Substituting Eq. (2.7) into Eq. (2.6), we have

∫ T

0

∣∣x′(t)
∣∣p dt ≤ 2aT‖x‖p + ‖x‖(2KT + 2bT + ‖e‖T

)
. (2.8)

Substituting Eq. (2.4) into Eq. (2.8), we get

∫ T

0

∣∣x′(t)
∣∣p dt ≤ 2aT

(
D1 + T

1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) 1
p
)p

+
(
2bT + ‖e‖T + 2KT

)(
D1 + T

1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p
)

≤ 2aT
(

T
p
q

∫ T

0

∣∣x′(t)
∣∣p dt + (1 + p)D1T

p–1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) p–1
p

)

+
(
2bT + ‖e‖T + 2KT

)
D1

+
(
2bT + ‖e‖T + 2KT

)
T

1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p

= 2aT
p+q

q

∫ T

0

∣∣x′(t)
∣∣p dt + 2aT

p+q–1
q (1 + p)D1

(∫ T

0

∣∣x′(t)
∣∣p dt

) p–1
p

+
(
2bT + ‖e‖T + 2KT

)
D1

+
(
2bT + ‖e‖T + 2KT

)
T

1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) 1
p

, (2.9)

since (1 + x)p ≤ 1 + (1 + p)x for x ∈ [0, δ], where δ is a given positive constant depending
only on p > 0. Thus we have

(
D1 + T

1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p
)p

≤ T
p
q

∫ T

0

∣∣x′(t)
∣∣p dt + (1 + p)D1T

p–1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) p–1
p

.
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Since 1
p + 1

q = 1, we get 2aT
p+q

q = 2aTp < 1. It is easy to see that there exists a constant
M′

1 > 0 (independent of λ) such that

∫ T

0

∣∣x′(t)
∣∣p dt ≤ M′

1. (2.10)

From Eq. (2.4) and Eq. (2.10) we have

‖x‖ ≤ D1 + T
1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) 1
p

≤ D1 + T
1
q
(
M′

1
) 1

p := M1. (2.11)

Since x(t) is T-periodic, there exists a point t0 ∈ (0, T) such that x′(t0) = 0, whereas
ϕp(0) = 0. Hence, from Eq. (2.7) and Eq. (2.11) we have that

∣∣ϕp
(
x′(t)

)∣∣ =
∣∣∣
∣

∫ t

t0

(
ϕp

(
x′(s)

))′ ds
∣∣∣
∣

≤ λ

∫ T

0

∣
∣f

(
t, x′(t)

)∣∣dt + λ

∫ T

0

∣
∣g

(
t, x

(
t – σ (t)

))∣∣dt + λ

∫ T

0

∣
∣e(t)

∣
∣dt

≤ 2KT + 2aTMp–1
1 + 2bT + T‖e‖ := M′

2. (2.12)

Next, we claim that there exists a positive constant M2 > M′
2 + 1 such that, for all t ∈R, we

have

∥
∥x′∥∥ ≤ M2. (2.13)

In fact, if x′(t) is not bounded, then there exists a positive constant M′′
2 such that ‖x′‖ > M′′

2

for some x′(t) ∈ R, and therefore we have ‖ϕp(x′)‖ = ‖x′‖p–1 ≥ (M′′
2)p–1, a contradiction,

and so Eq. (2.13) holds.
From Eq. (2.3) and Eq. (2.13) we know that there is a point t1 ∈ [0, T] such that x(t1 –

σ (t1)) ≥ γ1. Let η1 = t1, where η1 is as in Eq. (2.3). Then we have

x
(
η1 – σ (η1)

) ≥ γ1,

where γ1 < M1 is a positive constant independent of λ ∈ (0, 1]. Meanwhile, we show that
for any t ∈ [0, T], there exits a constant γ ′

1 ∈ (0,γ1) such that each positive T-periodic
solution of Eq. (1.3) satisfies

x
(
t – σ (t)

)
> γ ′

1.

On the other hand, we consider the interval [η1, t] ⊂ [0, T] and x(η1 – σ (η1)) > D2. Mul-
tiplying both sides of Eq. (2.2) by x′(t – σ (t))(1 – σ ′(t)) and integrating on [η1, t], we get

∫ t

η1

(
ϕp

(
x′(s)

))′x′(s – σ (s)
)(

1 – σ ′(s)
)

ds

+ λ

∫ t

η1

f
(
s, x′(s)

)
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds
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+ λ

∫ t

η1

g0
(
x
(
s – σ (s)

))
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds

+ λ

∫ t

η1

g1
(
s, x

(
s – σ (s)

))
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds

= λ

∫ t

η1

e(s)x′(s – σ (s)
)(

1 – σ ′(s)
)

ds.

Furthermore, we have

∣
∣∣
∣λ

∫ x(t–σ (t))

x(η1–σ (η1))
g0(v) dv

∣
∣∣
∣

= λ

∣∣∣
∣

∫ t

η1

g0
(
x
(
s – σ (s)

))
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds

∣∣∣
∣

≤
∣∣
∣∣

∫ t

η1

(
ϕp

(
x′(s)

))′x′(s – σ (s)
)(

1 – σ ′(s)
)

ds
∣∣
∣∣

+ λ

∣
∣∣
∣

∫ t

η1

f
(
s, x′(s)

)
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds

∣
∣∣
∣

+ λ

∣∣
∣∣

∫ t

η1

g1
(
s, x

(
s – σ (s)

))
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds

∣∣
∣∣

+ λ

∣∣
∣∣

∫ t

η1

e(s)x′(s – σ (s)
)(

1 – σ ′(s)
)

ds
∣∣
∣∣. (2.14)

By Eq.(2.2) and condition (H1) we obtain

∣∣∣
∣

∫ t

η1

(
ϕp

(
x′(s)

))′x′(s – σ (s)
)(

1 – σ ′(s)
)

ds
∣∣∣
∣

≤
∫ t

η1

∣
∣(ϕp

(
x′(s)

))′∣∣∣∣x′(s – σ (s)
)∣∣

∣
∣(1 – σ ′(s)

)∣∣ds

≤ (
1 + σ 1

0
)∥∥x′∥∥λ

∫ T

0

∣∣–f
(
s, x′(s)

)
– g

(
s, x

(
s, s – σ (s)

))
+ e(s)

∣∣ds

≤ λ
(
1 + σ 1

0
)
M2

(
2KT + 2aT(M1)p–1 + 2bT + ‖e‖T

)
,

where σ 1
0 := maxt∈[0,T](–σ ′(t)). Meanwhile, we have

λ

∣∣
∣∣

∫ t

η1

f
(
s, x′(s)

)
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds

∣∣
∣∣ ≤ λ

(
1 + σ 1

0
)
M2KT ,

λ

∣∣
∣∣

∫ t

η1

g1
(
s, x

(
s – σ (s)

))
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds

∣∣
∣∣ ≤ λ

(
1 + σ 1

0
)
M2‖g1M1‖T ,

where ‖g1M1‖ := max0<x<M1 |g1(t, x(t – σ (t)))|, and

λ

∣∣
∣∣

∫ t

η1

e(s)x′(s – σ (s)
)(

1 – σ ′(s)
)

ds
∣∣
∣∣ ≤ λ

(
1 + σ 1

0
)
M2‖e‖T .
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From these inequalities and Eq. (2.14) we derive

∣∣
∣∣

∫ x(t–σ (t))

x(η1–σ (η1))
g0(v) dv

∣∣
∣∣ ≤ (

1 + σ 1
0
)
M2

(
3KT + 2aT(M1)p–1 + 2bT + 2‖e‖T + ‖g1M1‖T

)

:= M3. (2.15)

In view of the attractive condition (1.4) and x(η1 –σ (η1)) ≥ γ1, there exists γ ′
1 ∈ (0,γ1) such

that
∫ γ1
γ ′

1
g0(v) dv > M3. Thus, if there is a point η∗

1 ∈ [η1, t] such that x(η∗
1 –σ (η∗

1)) ≤ γ ′
1, then

∣∣
∣∣

∫ x(η1–σ (η1))

x(η∗
1 –σ (η∗

1))
g0(v) dv

∣∣
∣∣ ≥

∫ γ1

γ ′
1

g0(v) dv > M3,

which contradicts Eq. (2.15). Therefore, we obtain that x(t – σ (t)) > γ ′
1 for all t ∈ [0, T].

In the case t ∈ [0,η1] (i.e., x(t – σ (t)) ∈ [–σ (0),η1 – σ (η1)]), we can handle similarly.
Define

� =
{

x ∈ C1
T (R,R)|E1 ≤ x(t) ≤ E2,

∥
∥x′∥∥ ≤ M2,∀t ∈ [0, T]

}
,

where 0 < E1 < min(D2,γ ′
1), E2 > max(M1, D1). We know that Eq. (2.2) has no solution on

∂� as λ ∈ (0, 1), and when x(t) ∈ ∂� ∩ R, x(t) = E2 or x(t) = E1. From Eq. (2.4) we know
that E2 > D1 and E1 < D2. So, from condition (ii) of Lemma 2.1 we see that

1
T

∫ T

0
g(t, E2) dt < 0

and

1
T

∫ T

0
g(t, E1) dt > 0.

Obviously, we get

deg{F ,� ∩R, 0} = deg

{
1
T

∫ T

0
g(t, x) dt,� ∩R, 0

}

= deg{x,� ∩R, 0} 	= 0,

and so condition (iii) of Lemma 2.1 is satisfied. In view of Theorem 2.1, Eq. (1.3) has at
least one T-periodic solution. �

Theorem 2.2 Suppose that condition (H3) holds. Assume that the following conditions are
satisfied:

(H4) f (t, 0) = 0, and there exist positive constants m, n such that 0 ≤ f (t, u) ≤ m|u|p–1 + n
for (t, u) ∈R×R.

(H5) There exist constants D3 and D4 with 0 < D4 < D3 such that g(t, x) < –‖e‖ for (t, x) ∈
R× (D3, +∞) and g(t, x) > ‖e‖ for (t, x) ∈ R× (0, D4).

Then Eq. (1.3) has at least one solution with period T if 2mT + 2aTp < 1.
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Proof Consider the homotopic equation

(
ϕp

(
x′(t)

))′ + λf
(
t, x′(t)

)
+ λg

(
t, x

(
t – σ (t)

))
= λe(t). (2.16)

We follow the same strategy and notation as in the proof of Theorem 2.1. Let t∗ and t∗
be the global maximum point and global minimum point. Since x(t) is T-periodic, we get
that x′(t∗) = 0 and x′(t∗) = 0. From

∫ T
0 (ϕp(x′(t)))′ dt = 0 we obtain

(
ϕp

(
x′(t∗)))′ ≤ 0 and

(
ϕp

(
x′(t∗)

))′ ≥ 0.

In fact, if (ϕp(x′(t∗)))′ ≥ 0 does not hold, then there exists a constant ε > 0 such that
(ϕp(x′(t∗)))′ < 0 for all t ∈ (t∗ – ε, t∗ + ε). Therefore, ϕp(x′(t∗)) is strictly decreasing for
(t∗ – ε, t∗ + ε), and we know that x′(t) is strictly decreasing for (t∗ – ε, t∗ + ε). This con-
tradicts the definition of t∗. Thus, we obtain that (ϕp(x′(t∗)))′ ≥ 0 is true. From f (t, 0) = 0
and Eq. (2.16) we have

g
(
t∗, x

(
t∗ – σ (t∗)

))
– e(t∗) ≤ 0.

Then, from condition (H5) we get that there exists a point η2 ∈ [0, T] such that

x
(
η2 – σ (η2)

) ≥ D4.

Similarly, we have

g
(
t∗, x

(
t∗ – σ

(
t∗))) – e

(
t∗) ≥ 0.

Then we get that there exists a point ξ2 ∈ [0, T] such that

x(ξ2) ≤ D3.

Therefore, from ‖x‖ ≤ x(ξ2) + T
1
q (

∫ T
0 |x′(t)|p dt)

1
p we get

‖x‖ ≤ D3 + T
1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p

. (2.17)

From Eq. (2.3) and from conditions (H3) and (H4) we obtain

∫ T

0

∣
∣g

(
t, x

(
t – σ (t)

))∣∣dt

=
∫

g(t,x(t–σ (t)))>0
g+(

t, x
(
t – σ (t)

))
dt –

∫

g(t,x(t–σ (t)))≤0
g–(

t, x
(
t – σ (t)

))
dt

= –2
∫

g(t,x(t–σ (t)))≤0
g–(

t, x
(
t – σ (t)

))
dt +

∫ T

0
f
(
t, x′(t)

)
dt

≤ 2
∫ T

0

(
axp–1 + b

)
dt +

∫ T

0

∣∣f
(
t, x′(t)

)∣∣dt

≤ 2aT‖x‖p–1 + 2bT + m
∫ T

0

∣
∣x′(t)

∣
∣p–1 dt + nT . (2.18)
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Then from the Hölder inequality, Eq. (2.6), and Eq. (2.18) we get

∫ T

0

∣∣x′(t)
∣∣p dt ≤ 2aT‖x‖p + 2‖x‖m

∫ T

0

∣∣x′(t)
∣∣p–1 dt + ‖x‖(2nT + 2bT + ‖e‖T

)

≤ 2aT‖x‖p + 2‖x‖mT
1
p

(∫ T

0

∣∣x′(t)
∣∣p dt

) p–1
p

+ ‖x‖(2nT + 2bT + ‖e‖T
)
. (2.19)

Substituting Eq. (2.17) into Eq. (2.19), we have

∫ T

0

∣
∣x′(t)

∣
∣p dt ≤ 2aT

(
D3 + T

1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p
)p

+
(

D3 + T
1
q

(∫ T

0

∣∣x′(t)
∣∣p dt

) 1
p
)

(
2nT + 2bT + ‖e‖T

)

+ 2
(

D3 + T
1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p
)

mT
1
p

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) p–1
p

≤ (
2mT + 2aTp)

∫ T

0

∣∣x′(t)
∣∣p dt

+
(
2mD3T

1
p + 2a(1 + p)D3T

p+q–1
q

)
(∫ T

0

∣∣x′(t)
∣∣p dt

) p–1
p

+
(
2bT + 2nT + ‖e‖T

)
T

1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p

+
(
2bT + 2nT + ‖e‖T

)
D3.

Since 2mT + 2aTp < 1, it is easy to see that there exists a constant N ′
1 > 0 (independent

of λ) such that

∫ T

0

∣
∣x′(t)

∣
∣p dt ≤ N ′

1, (2.20)

and hence from Eq. (2.20) we have

‖x‖ ≤ D3 + T
1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p

≤ D3 + T
1
q
(
N ′

1
) 1

p := N1.

By condition (H4) and Eq. (2.12) there exists a constant N ′
2 > 0such that

∣∣ϕp
(
x′(t)

)∣∣ =
∣
∣∣
∣

∫ t

t0

(
ϕp

(
x′(s)

))′ ds
∣
∣∣
∣

≤ λ

∫ T

0

∣
∣f

(
t, x′(t)

)∣∣dt + λ

∫ T

0

∣
∣g

(
t, x

(
t – σ (t)

))∣∣dt + λ

∫ T

0

∣
∣e(t)

∣
∣dt

≤ 2mT
1
p
(
N ′

1
) p–1

p + 2nT + 2aTNp–1
1 + 2bT + T‖e‖ := N ′

2. (2.21)
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Thus, we obtain that there exists a constant N2 > 0 such that, for all t ∈R,

∥∥x′∥∥ ≤ N2. (2.22)

From Eq. (2.3) and Eq. (2.22) we know that there is a point t2 ∈ [0, T] such that x(t2 –
σ (t2)) ≥ γ2. Letting η2 = t2, we have

x
(
η2 – σ (η2)

) ≥ γ2,

where γ2 < N1 is a positive constant independent of λ ∈ (0, 1]. Meanwhile, we show that,
for any t ∈ [0, T], there exits a constant γ ′

2 ∈ (0,γ2) such that each positive T-periodic
solution of Eq. (1.3) satisfies

x
(
t – σ (t)

)
> γ ′

2.

On the other hand, by Eq. (2.2) and condition (H4) we obtain

∣
∣∣
∣

∫ t

η2

(
ϕp

(
x′(s)

))′x′(s – σ (s)
)(

1 – σ ′(s)
)

ds
∣
∣∣
∣

≤
∫ t

η2

∣∣(ϕp
(
x′(s)

))′∣∣∣∣x′(s – σ (s)
)∣∣∣∣(1 – σ ′(s)

)∣∣ds

≤ (
1 + σ 1

0
)∥∥x′∥∥λ

∫ T

0

∣
∣–f

(
s, x′(s)

)
– g

(
s, x

(
s, s – σ (s)

))
+ e(s)

∣
∣ds

≤ λ
(
1 + σ 1

0
)
N2

(
2mT

1
p
(
N ′

1
) p–1

p + 2nT + 2aT(N1)p–1 + 2bT + ‖e‖T
)
.

Meanwhile, we have

λ

∣∣
∣∣

∫ t

η2

f
(
s, x′(s)

)
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds

∣∣
∣∣ ≤ λ

(
1 + σ 1

0
)
N2

(
mT

1
p
(
N ′

1
) p–1

p + nT
)
,

λ

∣
∣∣
∣

∫ t

η2

g1
(
s, x

(
s – σ (s)

))
x′(s – σ (s)

)(
1 – σ ′(s)

)
ds

∣
∣∣
∣ ≤ λ

(
1 + σ 1

0
)
N2‖g1N1‖T ,

where ‖g1N1‖ := max0<x<N1 |g1(t, x(t – σ (t)))|, and

λ

∣∣
∣∣

∫ t

η2

e(s)x′(s – σ (s)
)(

1 – σ ′(s)
)

ds
∣∣
∣∣ ≤ λ

(
1 + σ 1

0
)
N2‖e‖T .

From those inequalities and Eq. (2.14) we derive

∣∣
∣∣

∫ x(t–σ (t))

x(η2–σ (η2))
g0(v) dv

∣∣
∣∣ ≤ (

1 + σ 1
0
)
N2

(
3mT

1
p
(
N ′

1
) p–1

p + 3nT + 2aT(N1)p–1

+ 2bT + 2‖e‖T + ‖g1N1‖T
)

:= N3. (2.23)

In view of the attractive condition (1.4) and x(η2 – σ (η2)) ≥ γ2, there exists γ ′
2 ∈ (0,γ2)

such that
∫ γ2
γ ′

2
g0(v) dv > N3. Thus, if there is a point η∗

2 ∈ [η2, t] such that x(η∗
2 –σ (η∗

2)) ≤ γ ′
2,
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then

∣∣∣
∣

∫ x(η2–σ (η2))

x(η∗
2 –σ (η∗

2))
g0(v) dv

∣∣∣
∣ ≥

∫ γ2

γ ′
2

g0(v) dv > N3,

which contradicts Eq. (2.23). Therefore we obtain that x(t – σ (t)) > γ ′
2 for all t ∈

[0, T].
In the case t ∈ [0,η2] (i.e., x(t – σ (t)) ∈ [–σ (0),η2 – σ (η2)]), we can handle similarly.
This proves the claim, and the rest of the proof of the theorem is identical to that of

Theorem 2.1. �

Example 2.1 Consider the following p-Laplacian singular Rayleigh equation with attrac-
tive singularity and time-dependent deviating argument:

(
ϕp

(
x′(t)

))′ + cos2(8t) sin
(
x′(t)

)
–

((
1
2

cos2(4t) +
1
2

)
x5

(
t –

cos(8t)
11

))

+
1

xμ(t – cos(8t)
11 )

= sin(8t), (2.24)

where p = 6, and μ ≥ 1 is a constant.
Comparing Eq. (2.24) to Eq. (1.3), it is easy to see that f (t, x′(t)) = cos2(8t) sin(x′(t)), so

there exists K = 1 such that |f (t, x′(t))| ≤ 1, and it is obvious that condition (H1) holds;
g(t, x(t –σ (t))) = –(( 1

2 cos2(4t) + 1
2 )x5(t – cos(8t)

11 )) + 1
xμ(t– cos(8t)

11 )
, σ (t) = cos(8t)

11 , σ ′(t) = – 8 sin(8t)
11 <

1, T = π
4 . Since 1

p + 1
q = 1, we have q = 6

5 . Consider g(t, x(t – σ (t))) = –(( 1
2 cos2(4t) + 1

2 )x5(t –
cos(8t)

11 )) + 1
xμ(t– cos(8t)

11 )
. Then we have

∫ 1
0

1
xμ dx = +∞ and –g(t, x(t – σ (t))) ≤ x5(t – cos(8t)

11 ) + 1,
where a = b = 1. So condition (H3) is satisfied. Next, we consider the condition

2aTp = 2 × 1 ×
(

π

4

)6

≈ 0.4694.

Therefore, by Theorem 2.1 we get that Eq. (2.24) has at least one positive π
4 -periodic

solution.

Example 2.2 Consider the following p-Laplacian singular Rayleigh equation with attrac-
tive singularity and time-dependent deviating argument:

(
ϕp

(
x′(t)

))′ +
1

7π

(
sin(12t) + 1

)(
x′(t)

)7 –
((

1
5

sin2(6t) +
1
5

)
x7

(
t –

sin(12t)
18

))

+
1

xμ(t – sin(12t)
18 )

= cos(12t), (2.25)

where p = 8, and μ ≥ 1 is a constant.
Comparing Eq. (2.25) to Eq. (1.3), it is easy to see that f (t, u) = 1

7π
(sin(12t) + 1)u7, so we

can choose m = 2
7π

and n = 1, so that condition (H4) holds; g(t, x(t –σ (t))) = –(( 1
5 sin2(6t) +

1
5 )x7(t – sin(12t)

18 )) + 1
xμ(t– sin(12t)

18 )
, σ (t) = sin(12t)

18 , σ ′(t) = 2 cos(12t)
3 < 1, T = π

6 . Since 1
p + 1

q = 1, we

have q = 8
7 ; –g(t, x(t –σ (t))) ≤ 2

5 x7(t – sin(12t)
18 ) + 1, where a = 2

5 and b = 1. So, condition (H3)
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is satisfied. Next, we consider the condition

2aTp + 2mT = 2 × 2
5

×
(

π

6

)8

+ 2 × 2
7π

× π

6
=

4
5

×
(

π

6

)8

+
2

21
≈ 0.1.

Therefore, by Theorem 2.2 we see that Eq.(2.25) has at least one positive π
6 -periodic

solution.

3 Conclusions
In Summary, by Theorems 2.1 and 2.2 we have certified that Eq. (1.3) has at least one
T-periodic solution. Comparing Theorem 2.1 to Theorem 2.2, the condition |f (t, u)| ≤
a|u|p–1 + b in Theorem 2.2 is weaker than the condition |f (t, u)| ≤ K in Theorem 2.1.
Moreover, in view of the mathematical points, the results satisfying conditions of attrac-
tive singularity and time-dependent deviating argument are valuable to understand the
periodic solutions for Rayleigh equations.
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