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Abstract
In this paper, we are concerned with a homogeneous reaction–diffusion Atkinson
oscillator system subject to homogeneous Neumann boundary conditions on a
bounded spatial domain. Using the comparison principle and the techniques of
invariant rectangle, we prove the existence of the attraction region of the solutions.
We thus prove that under certain conditions, the solutions of the PDE system
converge to the unique positive equilibrium solutions. We also derive precise
conditions such that the system does not have nonconstant positive steady-state
solutions. Finally, we use the bifurcation technique to show the existence of Turing
patterns. The results provide a clearer understanding of the mechanism of formations
of patterns.
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1 Introduction
In 1952, Turing [1] proposed a famous idea of “diffusion-induced instability,” which says
that the destabilization of otherwise stable constant steady state will lead to the emer-
gence of stable nonuniform spatial structures, which are usually called Turing patterns.
Over the years, Turing’s idea has attracted the attention of a great number of investigators
and was successfully developed on theoretical backgrounds. In 1990, De Kepper et al. [2, 3]
discovered the formation of stationary three-dimensional (but almost two-dimensional)
structures with characteristic wavelengths of 0.2 mm, which is the first experimental ev-
idence to the Turing patterns nearly 40 years after the publication of [1]. Since then, the
research of Turing patterns in chemistry has sprung up (see [4–13] and the references
therein).

In this paper, we are concerned with the pattern formations of a kind of diffusive Atkin-
son oscillator model, which is used to characterize the mechanism of pattern formations
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of the oscillators [14]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du
dt = w – u,
dv
dt = β4(s – v),
dw
dt = β1(λ1(1 + α1

vn1
1+vn1 ) – w),

ds
dt = β3( λ2

1+u (1 + α2
(v/a)n2

1+(v/a)n2 ) – s).

To analyze the generation mechanism of periodic solutions, it is assumed that RNA
transcripts are fast process, that is, we assume that dw/dt = ds/dt = 0. Then the system
can be simplified to the second-order planar system:

du
dt

= λ1

(

1 + α1
vn1

1 + vn1

)

– u,
dv
dt

=
λ2

1 + u

(

1 + α2
(v/a)n2

1 + (v/a)n2

)

– v. (1.1)

Since the chemical reaction obeys a diffusion process, it is natural to add diffusion to the
model (1.1), which leads to the following reaction–diffusion system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u
∂t – d1�u = λ1(1 + α1

vn1
1+vn1 ) – u, t > 0, x ∈ �,

∂v
∂t – d2�v = λ2

1+u (1 + α2
(v/a)n2

1+(v/a)n2 ) – v, t > 0, x ∈ �,

∂vu = ∂vu = 0, t ≥ 0, x ∈ ∂�,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ �.

(1.2)

The model has been studied extensively by several authors, but most of the research
focuses on the corresponding ODE system (1.1). To the best of knowledge, there are
few works in the existing literature studying the dynamical behavior and bifurcations of
the corresponding reaction–diffusion equations. In this paper, we attempt to study the
Atkinson PDE model. We are concerned with the global existence, boundedness of time-
independent solutions, the asymptotical behavior of the constant steady states, and the
bifurcations from the positive steady-state solutions. In particular, we derive precise con-
ditions under which system (1.2) does not have Turing patterns.

This paper is organized as follows. In Section 2, we study the boundedness and unique-
ness of global-in-time solutions of system (1.2). In particular, we show that there exists an
invariant rectangle that attracts all the solutions of system (1.2) regardless of the initial val-
ues. Then, we consider the long-time behavior of the solutions of system (1.2) and derive
precise conditions under which the solutions converge exponentially to a unique constant
steady-state solution. In Section 3, we derive conditions under which system (1.2) has no
nonconstant positive steady states, including Turing patterns. In Section 4, we use global
bifurcation theory to prove the existence of Turing patterns.

2 Global existence, boundedness, and asymptotical behavior of solutions
In this section, we consider the global existence, boundedness, and asymptotical behavior
of the solutions. To begin with, it is clear that system (1.2) has a unique positive steady-
state solution (u∗, v∗) of the system

u∗ = λ1

(

1 + α1
vn1∗

1 + vn1∗

)

, λ1

(

1 + α1
vn1∗

1 + vn1∗

)

=
λ2

v∗

(

1 + α2
(v∗/a)n2

1 + (v∗/a)n2

)

– 1. (2.1)
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We have the following results on the global existence and boundedness of the time-
dependent solutions of system (1.2).

Proposition 2.1 Suppose that a,α1,α2,λ1,λ2 > 0. For any d1, d2 > 0, the initial boundary
value problem (1.2) admits a unique solution (u(x, t), v(x, t)) for all x ∈ � and t > 0. More-
over, there exist two positive constants M1 and M2, depending on α1,α2,λ1,λ2, u0(x), and
v0(x), such that

M1 < u(x, t), v(x, t) < M2, t > 0, x ∈ �. (2.2)

Proof The existence and uniqueness of local-in-time solutions to the initial-boundary
value problem (1.2) is well known [15].

For the global existence and the boundedness of the solutions, we partially use the tech-
niques of invariant region [10, 11, 16]. A region � := [U1, U2] × [V1, V2] in the (u, v) phase
plane is called a positively invariant region of system (1.2) if the vector field

(

λ1

(

1 + α1
vn1

1 + vn1

)

– u,
λ2

1 + u

(

1 + α2
(v/a)n2

1 + (v/a)n2

)

– v
)

(2.3)

points inward on the boundary of � for all t ≥ 0. We construct the invariant rectangle
� := [U1, U2] × [V1, V2] in the following way:

U1 := min
{
λ1, min

x∈�

u0(x)
}

, U2 := max
{
λ1(1 + α1), max

x∈�

u0(x)
}

,

V1 := min

{
λ2

1 + U2
, min

x∈�

v0(x)
}

, V2 := max

{
λ2(1 + α2)

1 + U1
, max

x∈�

v0(x)
}

.
(2.4)

Obviously, u0(x) and v0(x) are closed by the rectangle �. Now we prove that the vector
field points inward on the boundary of �.

On u = U1, V1 ≤ v ≤ V2, by the definition of U1 we have

λ1

(

1 + α1
vn1

1 + vn1

)

– u = λ1

(

1 + α1
vn1

1 + vn1

)

– U1 > λ1 – U1 ≥ 0.

On u = U2, V1 ≤ v ≤ V2, by the definition of U2 we have

λ1

(

1 + α1
vn1

1 + vn1

)

– u = λ1

(

1 + α1
vn1

1 + vn1

)

– U2 < λ1(1 + α1) – U2 ≤ 0.

On v = V1, U1 ≤ u ≤ U2, by the definition of V1 we have

λ2

1 + u

(

1 + α2
(v/a)n2

1 + (v/a)n2

)

– v =
λ2

1 + u

(

1 + α2
(V1/a)n2

1 + (V1/a)n2

)

– V1 >
λ2

1 + U2
– V1 ≥ 0.

On v = V2, U1 ≤ u ≤ U2, by the definition of V2 we have

λ2

1 + u

(

1+α2
(v/a)n2

1 + (v/a)n2

)

–v =
λ2

1 + u

(

1+α2
(V2/a)n2

1 + (V2/a)n2

)

–V2 <
λ2(1 + α2)

1 + U1
–V2 ≤ 0.

Thus, � := [U1, U2] × [V1, V2] is an invariant rectangle for the vector field, where M1 :=
min{U1, V1} and M2 := max{U2, V2}. �
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We now prove that system (1.2) has an attraction region, which in fact attracts all solu-
tions of the system, regardless of the initial values [17].

Theorem 2.2 Suppose that (u(x, t), v(x, t)) is the unique solution of system (1.2). For any
x ∈ �, we have:

λ1 < lim inf
t→∞ u ≤ lim sup

t→∞
u < λ1(1 + α1);

λ2

1 + λ1(1 + α1)
< lim inf

t→∞ v ≤ lim sup
t→∞

v <
λ2(1 + α2)

1 + λ1
.

(2.5)

Proof (a). Let us prove that λ1 < lim inft→∞ u. By Proposition 2.1 there exists a sufficiently
small number 0 < ε < λ1α1vn1 /(1 + vn1 ) for all x ∈ � and t > 0. Let u1 be the unique solution
of the following ODE:

du1(t)
dt

= λ1 + ε – u1(t), u1(0) = (1 – ε) min
x∈�

u0(x). (2.6)

Setting ρ1(x, t) = u(x, t) – u1(t), we have

∂ρ1(x, t)
∂t

– d1�ρ1(x, t) + ρ1(x, t) = λ1α1
vn1

1 + vn1
– ε > 0,

ρ1(x, 0) = u(x, 0) – (1 – ε) min
x∈�

u0(x) > 0.
(2.7)

By the maximum principle for parabolic equations, we have ρ1(x, t) > 0, which means
that u(x, t) > u1(t) for all x ∈ � and t > 0. From (2.6) we have limt→∞ u1(t) = λ1 + ε.

Thus,

lim inf
t→∞ u ≥ lim

t→∞ u1(t) > λ1. (2.8)

(b). Let us now prove that lim supt→∞ u < λ1(1 + α1). By Proposition 2.1 there exists a
sufficiently small number 0 < η < λ1α1/(1 + vn1 ) for all x ∈ � and t > 0. Let u2 be the unique
solution of the following ODE:

du2(t)
dt

= λ1(1 + α1) – η – u2(t), u2(0) = (1 + η) max
x∈�

u0(x). (2.9)

Setting ρ2(x, t) = u(x, t) – u2(t), we have

∂ρ2(x, t)
∂t

– d1�ρ2(x, t) + ρ2(x, t) = –
λ1α1

1 + vn1
+ η < 0,

ρ2(x, 0) = u(x, 0) – (1 + η) max
x∈�

u0(x) < 0.
(2.10)

By the maximum principle for parabolic equations we have ρ2(x, t) < 0, which means
that u(x, t) < u2(t) for all x ∈ � and t > 0. From (2.9) we have limt→∞ u2(t) = λ1(1 + α1) – η.

Thus,

lim sup
t→∞

u < λ1(1 + α1). (2.11)
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(c). Let us prove that λ2
1+λ1(1+α1) < lim inft→∞ v. By Proposition 2.1 there exists a suffi-

ciently small number ϕ > 0 such that ϕ < (1 + λ1(1 + α1))v for all x ∈ � and t > 0. Let v1 be
the unique solution of the following ODE:

dv1(t)
dt

= λ2 + ϕ –
(
1 + λ1(1 + α1)

)
v1(t), v1(0) = (1 – ϕ) min

x∈�

v0(x). (2.12)

Setting ξ1(x, t) = v(x, t) – v1(t), we have

∂ξ1(x, t)
∂t

– d2�ξ1(x, t) +
(
1 + λ1(1 + α1)

)
ξ1(x, t)

=
λ2

1 + u
– ϕ +

(
1 + λ1(1 + α1)

)
v +

λ2α2

1 + u
· (v/a)n2

1 + (v/a)n2

> –ϕ +
(
1 + λ1(1 + α1)

)
v > 0,

ξ1(x, 0) = v(x, 0) – (1 – ϕ) min
x∈�

v0(x) > 0.

(2.13)

By the maximum principle for parabolic equations we have ξ1(x, t) > 0, which means that
v(x, t) > v1(t) for all x ∈ � and t > 0. From (2.12) we have limt→∞ v1(t) = λ2+ϕ

(1+λ1(1+α1)) .
Thus,

lim inf
t→∞ v >

λ2

1 + λ1(1 + α1)
. (2.14)

(d). Let us prove that lim supt→∞ v < λ2(1+α2)
1+λ1

. Since

0 < λ1 < lim inf
t→∞ u or, equivalently,

1
1 + λ1

> lim sup
t→∞

1
1 + u

> 0, (2.15)

there exists a finite number t0, depending on (u0, v0), such that, for any x ∈ � and t ≥ t0,

1
1 + λ1

>
1

1 + u
. (2.16)

By Proposition 2.1 and (2.16) there exists a sufficiently small number δ > 0 such that, for
all x ∈ � and t ≥ t0, we have

1
1 + λ1

–
δ

λ2(1 + λ1)(1 + α2)
>

1
1 + u

. (2.17)

Let v2 be the unique solution of the following ODE:

dv2(t)
dt

=
λ2(1 + α2) – δ

(1 + λ1)
– v2(t), t > t0, v2(t0) = (1 + δ) max

x∈�

v0(x, t0). (2.18)
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Setting ξ2(x, t) = v(x, t) – v2(t), by (2.17) and (2.18) we have

∂ξ2(x, t)
∂t

– d2�ξ2(x, t) + ξ2(x, t)

=
λ2

1 + u

(

1 + α2
(v/a)n2

1 + (v/a)n2

)

–
λ2(1 + α2) – δ

(1 + λ1)

<
λ2

1 + u
(1 + α2) –

λ2(1 + α2) – δ

1 + λ1
< 0,

ξ2(x, t0) = v(x, t0) – (1 + δ) max
x∈�

v0(x, t0) < 0, t > t0, .

(2.19)

By the maximum principle for parabolic equations we have ξ2(x, t) < 0, which means that
v(x, t) < v2(t) for all x ∈ � and t > t0. From (2.18) we have limt→∞ v2(t) = λ2(1+α2)–δ

1+λ1
.

Thus, we have proved that

lim
t→∞ sup v <

λ2(1 + α2)
1 + λ1

. (2.20)
�

Next, in the particular case, we derive precise conditions under which (u∗, v∗) is a glob-
ally asymptotically stable solution of the corresponding ODEs of system (1.2) and that all
the solutions of (1.2) tend to (u∗, v∗) [18]:

Theorem 2.3 Define

H1 :=
λ2α2

a
, H2 :=

aλ2α2(1 + λ1)
(1 + α1)[a(1 + λ1) + λ2(1 + α2)]2 . (2.21)

Suppose that n1 = n2 = 1 and that either H1 < 2 or H2 > 2. Then, (u∗, v∗) is a globally
asymptotically stable solution of the corresponding ODEs of system (1.2). If, additionally,
max{1, d} > M/λ1, then every solution of system (1.2) converges exponentially to the unique
constant equilibrium solution (u∗, v∗), where μ1 is the smallest positive eigenvalue of –�

on � subject to homogeneous Neumann boundary conditions, and

M := max

{

λ1α1 + 1,
λ2

2(1 + α2)2(2 + λ1)
a

+ 1
}

. (2.22)

Proof Consider the following ODEs in the particular case n1 = n2 = 1:

du
dt

= λ1

(

1 + α1
v

1 + v

)

– u =: f (u, v),

dv
dt

=
λ2

1 + u

(

1 + α2
v

a + v

)

– v =: g(u, v).
(2.23)

The Jacobian matrix J(u, v) at (u, v) is given by

J(u, v) =

(
–1 λ1α1

(1+v)2

– λ2(1+v+α2v)
(a+v)(1+u)2

aλ2α2
(1+u)(a+v)2 – 1

)

. (2.24)
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Then, we have

∂f
∂u

+
∂g
∂v

=
aλ2α2

(1 + u)(a + v)2 – 2. (2.25)

By (2.5) we have

aλ2α2

(1 + u)(a + v)2 <
aλ2α2

(1 + λ1)[a + λ2
1+λ1+λ1α1

]2
< H1 :=

λ2α2

a
. (2.26)

On the other hand,

aλ2α2

(1 + u)(a + v)2 >
aλ2α2

(1 + λ1(1 + α1))[a + λ2(1+α2)
1+λ1

]2

> H2 :=
aλ2α2(1 + λ1)

(1 + α1)[a(1 + λ1) + λ2(1 + α2)]2 . (2.27)

If either H1 < 2 or either H2 > 2, then we have ∂f
∂u + ∂g

∂v < 0 (or > 0). Hence, the Poincaré–
Bendixson theorem implies that (u∗, v∗) is globally asymptotically stable in (2.23). Define

Q := sup
(u,v)∈R

∥
∥J(u, v)

∥
∥. (2.28)

By (2.5) and (2.24) we have

Q := max

{

sup
(u,v)∈R

(

1 +
∣
∣
∣
∣

λ1α1

(1 + v)2

∣
∣
∣
∣

)

, sup
(u,v)∈R

(∣
∣
∣
∣
λ2(1 + v + α2v)
(a + v)(1 + u)2

∣
∣
∣
∣ +

∣
∣
∣
∣

aλ2α2

(1 + u)(a + v)2

∣
∣
∣
∣ + 1

)}

< M := max

{

λ1α1 + 1,
λ2

2(1 + α2)2(2 + λ1)
a

+ 1
}

. (2.29)

By [19], if max{1, d} > M/μ1, where d = min{d1, d2}, then every solution of system (1.2)
converges exponentially to the unique constant equilibrium solution (u∗, v∗). �

3 Nonexistence of Turing patterns
In this section, for the particular case where both n1 and n2 equal 1, we show the nonex-
istence of nonconstant positive steady-state solutions of the system

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = λ1(1 + α1
v

1+v ) – u, x ∈ �,

–d2�v = λ2
1+u (1 + α2

v
a+v ) – v, x ∈ �,

∂vu = ∂vu = 0, x ∈ ∂�.

(3.1)

Lemma 3.1 Suppose that (u(x), v(x)) is any given positive steady-state solution of system
(1.2). For any x ∈ �, we have:

λ1 < u(x) < λ1(1 + α1),
λ2

1 + λ1(1 + α1)
< v(x) <

λ2(1 + α2)
1 + λ1

. (3.2)

The lemma is the direct consequence of Theorem 2.1 in [17].
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For a steady-state solution pair (u(x), v(x)) of system (3.1), we define

u =
1

|�|
∫

�

u(x) dx, v =
1

|�|
∫

�

v(x) dx, (3.3)

φ(x) = u(x) – u, ψ(x) = v(x) – v, (3.4)
⎧
⎪⎪⎨

⎪⎪⎩

g1(u, v) := 1
(1+v)(1+v) ,

g2(u, v) := 1
(1+u)(a+v) – v

(1+u)(a+v)(a+v) – 1
λ2α2

,

g3(u, v) := 1
(1+u)(1+u) (1 + α2v

a+v ).

(3.5)

Lemma 3.1 shows that any positive solution (u, v) of system (3.1) satisfies (u, v) ∈ R,
where

R :=
(
λ1,λ1(1 + α1)

) ×
(

λ2

1 + λ1(1 + α1)
,
λ2(1 + α2)

1 + λ1

)

. (3.6)

Define

Gi := sup
(u,v)∈R

∣
∣gi(u, v)

∣
∣, i = 1, 2, 3. (3.7)

We now state the following theorem regarding the nonexistence of a nonconstant posi-
tive solution of system (3.1).

Lemma 3.2 Let gi(u, v) and Gi, i = 1, 2, 3, be defined as in (3.5) and (3.7). Suppose that
d1 > 1

μ1
and d2 > λ2α2G2

μ1
. Then, we have

(
d1μ1 – 1
λ1α1G1

)2 ∫

�

|∇φ|2 dx ≤
∫

�

|∇ψ |2 dx ≤
(

λ2G3

d2μ1 – λ2α2G2

)2 ∫

�

|∇φ|2 dx. (3.8)

Proof Multiplying the first equation of (3.1) by φ and integrating over �, we have

–
∫

�

d1φ�φ dx = λ1

∫

�

φ dx + λ1α1

∫

�

v
1 + v

φ dx –
∫

�

φu dx

= –λ1α1

∫

�

1
1 + v

φ dx –
∫

�

φ2 dx. (3.9)

By Green’s formula we have

d1

∫

�

|∇φ|2 dx

= –λ1α1

∫

�

1
1 + v

φ dx –
∫

�

φ2 dx = –λ1α1

∫

�

(
1

1 + v
–

1
1 + v

)

φ dx –
∫

�

φ2 dx

= λ1α1

∫

�

φψ

(1 + v)(1 + v)
dx –

∫

�

φ2 dx = λ1α1

∫

�

g1(v)φψ dx –
∫

�

φ2 dx

≤ λ1α1G1

∫

�

|φψ |dx +
∫

�

φ2 dx ≤ λ1α1G1

∫

�

|φψ |dx +
1
μ1

∫

�

|∇φ|2 dx. (3.10)
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On the other hand, we have

∫

�

|φψ |dx ≤
(∫

�

|φ|2 dx
) 1

2
(∫

�

|ψ |2 dx
) 1

2

≤
(

1
μ1

∫

�

|∇φ|2 dx
) 1

2
(

1
μ1

∫

�

|∇ψ |2 dx
) 1

2

=
1
μ1

(∫

�

|∇φ|2 dx
) 1

2
(∫

�

|∇ψ |2 dx
) 1

2
. (3.11)

Substituting (3.11) into (3.10), we have

d1

∫

�

|∇φ|2 dx ≤ λ1α1G1

μ1

(∫

�

|∇φ|2 dx
) 1

2
(∫

�

|∇ψ |2 dx
) 1

2
+

1
μ1

∫

�

|∇φ|2 dx. (3.12)

Thus,

(

d1 –
1
μ1

)∫

�

|∇φ|2 dx ≤ λ1α1G1

μ1

(∫

�

|∇φ|2 dx
) 1

2
(∫

�

|∇ψ |2 dx
) 1

2
. (3.13)

Since d1 > 1
μ1

, we have

(

d1 –
1
μ1

)2 ∫

�

|∇φ|2 dx ≤
(

λ1α1G1

μ1

)2 ∫

�

|∇ψ |2 dx. (3.14)

Thus,

(
d1μ1 – 1
λ1α1G1

)2 ∫

�

|∇φ|2 dx ≤
∫

�

|∇ψ |2 dx. (3.15)

Multiplying the second equation of (3.1) by ψ and integrating over �, we have

d2

∫

�

|∇ψ |2 dx = λ2

∫

�

ψ

1 + u
dx + λ2α2

∫

�

vψ
(1 + u)(a + v)

dx –
∫

�

vψ dx

= –
λ2

1 + u

∫

�

φψ

1 + u
dx + λ2α2

∫

�

ψ2

(1 + u)(a + v)
dx

+ λ2α2v
∫

�

ψ

(1 + u)(a + v)
dx –

∫

�

ψ2 dx. (3.16)

Furthermore,

∫

�

ψ

(1 + u)(a + v)
dx =

∫

�

ψ

(1 + u)(a + v)
dx –

∫

�

ψ

(1 + u)(a + v)
dx

= –
∫

�

(a + v)φ + (1 + u)ψ – φψ

(1 + u)(a + v)(1 + u)(a + v)
ψ dx

= –
1

(1 + u)(a + v)

∫

�

(a + v)φψ + (1 + u)ψ2

(1 + u)(a + v)
dx. (3.17)
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By (3.16) and (3.17) we have

d2

∫

�

|∇ψ |2 dx

= λ2α2

∫

�

g2(u, v)ψ2 dx – λ2

∫

�

g3(u, v)φψ dx

≤ λ2α2G2

∫

�

ψ2 dx + λ2G3

∫

�

|φψ |dx

≤ λ2α2G2

μ1

∫

�

|∇ψ |2 dx +
λ2G3

μ1

(∫

�

|∇φ|2 dx
) 1

2
(∫

�

|∇ψ |2 dx
) 1

2
. (3.18)

Since d2 > λ2α2G2
μ1

, we have

(

d2 –
λ2α2G2

μ1

)2 ∫

�

|∇ψ |2 dx ≤
(

λ2G3

μ1

)2 ∫

�

|∇φ|2 dx. (3.19)

Thus,

∫

�

|∇ψ |2 dx ≤
(

λ2G3

d2μ1 – λ2α2G2

)2 ∫

�

|∇φ|2 dx. (3.20)
�

Theorem 3.3 Let gi(u, v), Gi, i = 1, 2, 3, and ϕ(x) be defined as in (3.5), (3.7), and (3.22).
Then, for any (d1, d2) ∈ �, system (3.1) has no nonconstant positive solutions, where

� :=
{

(d1, d2) ∈ R2 : d1 >
1
μ1

, d2 >
λ2α2G2

μ1

}

∩ {
(d1, d2) ∈ R2 : d2 > ϕ(d1)

}
(3.21)

with

ϕ(x) :=
λ1λ2α1G1G3

μ1x – 1
+ λ2α2G2. (3.22)

Proof By Lemma 3.2 we have

∫

�

|∇ψ |2 dx ≤
(

λ2G3

d2μ1 – λ2α2G2

)2 ∫

�

|∇φ|2 dx

≤
(

λ1λ2α1G1G3

(d2μ1 – λ2α2G2)(d1μ1 – 1)

)2 ∫

�

|∇ψ |2 dx. (3.23)

For any (d1, d2) ∈ �, we have λ1λ2α1G1G3
(d2μ1–λ2α2G2)(d1μ1–1) < 1. Thus ∇ψ ≡ 0. Similarly, we have

∇φ ≡ 0. Hence, system (3.1) has no nonconstant positive solutions. �

4 Existence of bifurcating positive nonconstant steady-state solutions
In this section, for the particular case where both n1 and n2 equal 1, we use the global
bifurcation theory to prove the existence of positive nonconstant steady state of system
(3.1). In particular, we are concerned with the existence of Turing patterns.
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The linearized operator of system (2.23) evaluated at equilibrium (u∗, v∗) is given by

J(u∗, v∗) =

(
–1 λ1α1χ1

–λ2χ2 λ2α2χ3 – 1

)

, (4.1)

where

χ1 := (1 + v∗)2, χ2 :=
1 + v∗ + α2v∗

(a + v∗)(1 + u∗)2 , χ3 :=
a

(1 + u∗)(a + v∗)2 . (4.2)

Then the characteristic equation of (4.1) is given by

μ2 – (λ2α2χ3 – 2)μ + 1 + λ2(λ1α1χ1χ2 – α2χ3) = 0. (4.3)

By (2.1) and (4.3) if follows that if

α2 > 1, χ3 < min

{
2

λ2α2
,
λ1α1χ1χ2

α2

}

, (4.4)

then (u∗, v∗) is positive and stable in the ODEs (2.23); Moreover, if χ3 > 1
λ2α2

, then system
(1.2) is a substrate-inhibition system.

The linearized operator of system (3.1) evaluated at (u∗, v∗) is given by (choosing d1 as
the bifurcation parameter)

L(d1) :=

(
d1� – 1 λ1α1χ1

–λ2χ2 d2� + λ2α2χ3 – 1

)

. (4.5)

Let μi and ξi(x), i ∈N0, be the eigenvalues and the corresponding eigenfunctions of –�

in � subject to Neumann boundary conditions. Then the eigenvalues of L(d1) are given
by those of the following operator Li(d1):

Li(d1) =

(
–d1μi – 1 λ1α1χ1

–λ2χ2 –d2μi + λ2α2χ3 – 1

)

, (4.6)

the characteristic equation of which is

μ2 – Hi(d1)μ + Di(d1) = 0, i ∈N0, (4.7)

where

Hi(d1) = –(d1 + d2)μi + λ2α2χ3 – 2,

Di(d1) = d1d2μ
2
i + (d1 + d2 – d1λ2α2χ3)μi + λ1λ2α1χ1χ2 – λ2α2χ3 + 1.

(4.8)

According to [13], if there exist i ∈N0 and d1∗ > 0 such that

Di(d1∗) = 0, Hi(d1∗) �= 0, Hj(d1∗) �= 0, Dj(d1∗) �= 0 for all j �= i, (4.9)

and d
dd1

Di(d1∗) �= 0, then a global steady-state bifurcation occurs at the critical point d1∗.
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By (4.4) we have H0(d1) < 0. Thus, for all i ∈ N0, we have Hi(d1) < 0. Solving Di(d1) = 0,
we get the set of critical values of (d1, d2) given by the hyperbolic curves Ci with i ∈ N :=
N0\{0}:

(Ci) : di
2 =

d1(λ2α2χ3 – 1)μi + λ2α2χ3 – λ1λ2α1χ1χ2 – 1
d1μ

2
i + μi

. (4.10)

Suppose that μi, i ∈ N , are the simple eigenvalues of –
. Following [20], we call B :=
⋃∞

i=1 Ci the bifurcation set with respect to (u∗, v∗) and denote B0 by the countable set of
intersection points of two curves of {Ci}∞i=1; also denote B̂ = B\B0.

Clearly, for any fixed d2 > 0, there exists a unique di
1 such that (di

1, d2) ∈ B̂ ∩ Ci, and at
d = di

1, both (4.9) and d
dd1

Di(d1∗) �= 0 are satisfied.
Then, from [13] we have the following results regarding the existence of Turing patterns.

Theorem 4.1 Suppose that (4.4) holds and that Ci is defined in (4.10), where μi, i ∈ N ,
is the simple eigenvalue of –
. Then, for any (di

1, d2) ∈ B̂ ∩ Ci with d2 fixed, there is a
smooth curve �i of positive solutions of (3.1) bifurcating from (d1, u, v) = (di

1, u∗, v∗) with �i

contained in a global branch Ci of the positive solutions of (3.1). Moreover:
1. Near (d1, u, v) = (di

1, u∗, v∗), �i = {(d1(s), u(s), v(s) : s ∈ (–ε, ε))}, where
u(s) = u∗ + saiξi(x) + so1(s), v(s) = v∗ + sbiξi(x) + so2(s) for s ∈ (–ε, ε) for some C∞

smooth functions d1(s), o1(s), o2(s) such that d1(0) = di
1 and o1(0) = o2(0) = 0. Here ai

and bi satisfy Li(d1)(ai, bi)T = (0, 0)T , and ξi(·) is the corresponding eigenfunction of
the eigenvalue μi of -
.

2. The projection of Ci onto di
1-axis contains the interval (0, di

1).

Proof By (4.10) it follows that (4.9) holds. Thus, the local steady-state bifurcation occurs
near the positive steady-state solution. Then, by Theorem 3.1 in [13] we can conclude
that the local steady-state bifurcation branches are actually global. Furthermore, since our
model is in the framework of [20], we can induce from Theorem 2.3 of [20] that the bifurca-
tion branch cannot contain another bifurcation point (dj

1, u∗, v∗), with i �= j. This completes
the proof of the theorem. �

5 Conclusion
In this paper, we considered a class of homogeneous reaction–diffusion Atkinson oscil-
lator system under Neumann boundary conditions. First, we proved the global existence
and boundedness of the time-dependent solutions, which converge to the unique positive
equilibrium solution under certain conditions. Then we show the nonexistence of non-
constant positive steady-state solutions of the system. Finally, we proved the existence of
Turing patterns by using the global steady-state bifurcation theory. To get better results,
we have only taken into account the particular case n1 = n2 = 1. Considering the more
general situation is the next step of our research.
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