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1 Introduction

In this paper, we are concerned with the following fractional Schrodinger equations:
(A u+ pV(X)u = f(x,u) + h(x)|ul’>u, xe RV, (1.1)
2
where 0<a <1,2a <N, p>0,1<p<2,feCR" xR,R), heL¥ (RN), (-A) is the so-

called fractional Laplacian operator of order « € (0,1) and it can be either defined point-

wise for x € RN by

(=AY u(x) = _% / ulx +y) + ulx —y) — 2u(x) ”

|y|N+2a
along any rapidly decaying function u of class C**(RN), or characterized by
(-A)u=F (&P Fu),

where F denotes the usual Fourier transform in RN. The potential V satisfies the condi-
tions:
(V1) VeCRN,R) and V> 0onRN.
(V5) There exists a constant ¢ > 0 such that the set {V < ¢} = {x € RN|V(x) < ¢} is
nonempty and has finite measure.
(V3) Q=int V71(0) is a nonempty open set and has smooth boundary with & = V=1(0).
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From (V7)—(V3), we can see pV represents a steep potential well whose depth is con-
trolled by p. Bartsch and Wang first introduced this problem for the case « = 1 in [1], and
since then it has attracted much attention. For more details, please see [2-5].

Over the past decades, the existence and multiplicity of nontrivial solutions for the in-
teger order Schrodinger equation have been extensively investigated. In [6], the authors
proved that the fractional Laplacian (—A)* reduces to the standard Laplacian —A, as
a — 1. When o =1, Eq. (1.1) becomes the integer order Schréodinger equation, which
shows the results in the present paper are also valid for « = 1.

Fractional calculus has played an important role in the description of hereditary proper-
ties of various materials and memory processes. Fractional differential equations provides
a powerful tool for the research of many fields such as engineering, science, electrical cir-
cuits, diffusion, and applied mathematics; see [7—10] and so on. Recently, more and more
attention has been focused on the study of problems involving the fractional Laplacian;
see [11] and the references therein.

In the field of fractional quantum mechanics, the fractional Schrodinger equation is a
fundamental equation, which was discovered by Laskin [12, 13] as a result of extending
the Feynman path integral. Recently, for the different cases of the potential V' and the non-
linearity f, some researchers have investigated the fractional Schrédinger equations under
the appropriate assumptions:

(~Au+V@)u=f(xu), xRV (1.2)

The variational method has been used in many works to study the fractional Schrodinger
equations (1.2). For the basic theory of the variational method in a fractional setting, one
can see [14]. Next, we list some work on (1.2) in the following.

In [15], Felmer et al. considered the regularity and existence of solutions under the
famous Ambrosetti-Rabinowitz (A—R) condition, i.e., there exists 0 > 2 such that 0 <
OF(x,t) < tf(x,t). In [16], the ground state solutions were obtained by Secchi under the
A-R condition and

(Vo) V € C(RN), inf,xn V(%) = Vo > 0 and limyy o0 V() = 00.

In [17], Chang obtained the existence and multiplicity of solutions when the nonlinear
term f satisfies the asymptotically linear case and under the condition:

(V4) There exists rp > 0 such that, for all M > 0, |{x € B,,(y)|V < M}| — 0 as |y| — oo.

In [18], by the variant fountain theorems, the author discussed the nontrivial high or
small energy solutions; In [19], using nonlinear analysis techniques, the weak solutions
are obtained. In [20], when V =1 and f(x,u) = f(u), the authors gave the existence of
least two nontrivial radial solutions without the A-R condition by variational methods.
In [21], the existence criteria of radial solutions are established under different conditions
by variational methods. In [22], the authors also studied the existence of infinitely many
nontrivial energy solutions by variational methods. In [23], in the asymptotically periodic
case, a nontrivial solution is obtained by variational methods. For more related study, the
interested reader may consult [24—34] and the references therein. It should also be noted
that the concentration phenomena for the fractional Schrédinger equation have been in-
vestigated byDavila, del Pino et al. [35, 36], and Fall, Mahmoudi and Valdinoci [37].

But for the generalized fractional Schrédinger equations (1.1) with perturbation and
steep potential well, there are very few results. Obviously, the form of (1.1), whose non-
linear term combines asymptotic linearity and superlinear term with sublinear term
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h(x)|ulP~2u, is more general than that of (1.2). In [38], the existence of at least two non-
trivial solutions of (1.1) is showed. In the present paper, by variational methods, we have
established existence criteria of infinitely many nontrivial high or small energy solutions
without A-R condition. In addition, we explore the concentration of solutions as well.
Moreover, some examples are given to demonstrate our results. In fact, it is a challenging
research to study the concentration problem of solutions for the fractional Schrédinger
equations by variational methods and it is not trivial to construct the fractional Sobolev
space, which is used to study the concentration phenomenon. As is well known, the com-
pactness of the embedding fails when p is large enough. By using a new function space
introduced in [38, 39] and constructing some inequalities, we can obtain the concentra-
tion of the solutions of (1.1) under different conditions. Hence our results can be viewed
as an extension to the main results in [16—-23, 38].

We list the following assumptions.

() h GL%(RN) and >0 on RN.
(H;) f(t,s) is continuous on RN x R. There exist constants ao > 0 and v € [1,2) such that

[f(x, u)| < ao(l + |u|"’1), V(x,u) € RN x R.

(Ha) limyy -0 f(‘u‘ =0 uniformly in x € RN,
(H3) F(x,u) = fo f(x,7)dt > 0. There exist two constants o € [1,v) and b > 0 such that
1m0 % > b uniformly for x € RN,

(Hy) Letf € C(RN x R,R). There exist two constants a; > 0, g € [2,2) such that
[f(x, u)| < a1(1 + |u|‘1_1), V(x,u) € RN x R,

where 2}, = - with 2 <N.
(Hs) Flx,u)>0 and hmmHOO l(x"f) = 00 uniformly in x € RN,

In the next of this paper, by variational methods, we will give the existence criteria of in-
finitely many nontrivial high or small energy solutions without A-R condition. Moreover,
we will study the concentration phenomenon of (1.1). We will also give some examples to
illustrate the main results.

2 Preliminaries
Now, we review some definitions and related lemmas. For 1 < g < 0o, we give the definition

the following norms:

1

q
ll24]l oo =Itlelgﬁ|u(t)|, llly = llull Loy = </RN|M(S)|qu> .

Let D?(RN) denote the completion of C5°(RY) with respect to the Gagliardo (semi) norm

lu(x) — u(z)|? 172
u]a_</I;N./I;N I z[N dx dz) ,

then the embedding D4(RN) — L% (RN) is continuous with [|u]|yx <3S [u]s, Vi € DA(RN),
g &

where S = M(N,a) Nl 2‘(’;) M(I{],a) = [on l;;ﬁii d¢ depends only on N and «. For de-

tails, see [6].
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Define the space

{uquRN // ) - Z(i ddz+/ V(x)uz(x)dx<+oo}
RN Jry o |x—z|NY RN

with the inner product and the norm

(u,v) = /RN /RN () ~ w2 V) - v(2)] dxdz + /RN Vx)u(x)v(x) dx,

|x __ZVV+2a

(2.1)

Nl = (u, u)

for all #,v € X. Then X is a Hilbert space with the inner product (,v) and X c L1(RN) for
all g € [2,2!] with the embedding being continuous. In order to consider (1.1), for p > 0,
parallel to (2.1), we introduce another inner product and normal

(u,v)p = ,/RN j;eN (1) - u@)][vx) - v(2)] dxdz + ,/RN oV (x)u(x)v(x) dx,

Lx __Z|}J+2a

2
el = (o, ),

Let X, = (X, ||lu||,), obviously X,, is still a Hilbert space and
el < llull, for p=1. (2:2)
By a standard argument, we have the following.

Lemma 2.1 Assume that the condition (V1)-(V,) hold. Then the embeddings X, —
qu

loc

(RN) are compact, for any q € [2,2}).

Lemma 2.2 ([38]) Suppose that (V1)-(Vs) hold. Then, for r € [2,2}],

/ lul"dx < d,|lull,, Vo= p1. (2.3)
RN
In particular,
/ lul*dx < dy|lul’, Vo= p1, (2.4)
RN
2% —r 2%r
where p1 = |meas{V <c}| % ,d, =S |meas{V <c}| %, cisgivenin (V3).

Let {e;} be a complete orthonormal basis of X. We define

k 00
X; := span{e;}, Yi := @Xl and Zj:= @ X, keN.
j=1 j=k+1

Also
Bi={ue Ye:llull < pi}, S ={u e Zi:|lull =re}

for pi > ri > 0. Clearly, X = Yy @ Zj with dim Y} < oo.
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The following variant fountain theorem will be used to prove Theorem 3.1.

Lemma 2.3 ([40]) Let X be a Banach space, suppose that ¢, , (u) satisfies:
(A1) @pa(1) maps bounded sets into bounded sets uniformly for A € [1,2], and

Q1) =@, (u) for (A u)€[1,2] x X.

(A2) B(u) =0 forall u € X, and B(u) — oo as ||u|| = oo on any finite dimensional sub-
space of X.
(A3) There exist px > ry > 0 such that

ar(A):= _inf @, () >0>br(A):= max ¢,;(u), Viel[l,2]
u€Zy,llull=pg ueYpllull=r
and
(M) = inf  @p(u) >0, ask— oo uniformly for A € [1,2].
u€Zy,llul <px

Then there exist L, — 1, u(r,) € Y, such that

Drinly, @) =0 and @, (u(hn)) — o € [e(2),bx(1)],  asn— 0.

In particular, if {u(r,)} has a convergent subsequence for any k € N, then ¢,,1 has infinitely
many nontrivial critical points {u;} € X \ {0} satisfying ¢,1(ux) — 0~ as k — oo.

Next, we give another variant fountain theorem which will be needed to prove Theo-

rem 3.2.

Lemma 2.4 ([40]) Let X be a Banach space, suppose that ¢, (u) defined above satisfies:
(B1) @p,.(u) maps bounded sets into bounded sets uniformly for A € [1,2], and

Qoo (—u) = pa(u) forevery (A, u) €[1,2] x X.

(By) B(u) =0 forallu € X, A(u) — oo or B(u) — o0 as ||u|| — oo.
(B3) There exist px > ry > 0 such that

Oop W) > fi(A)= max @,,(u), Vrell,2]

ex(A) = i
ueZ, |lull=ry u€ Yy, llull=px

Then
ex(x) <g(A) = inf maxg,,(y (), Viell,2],
y el ueBy

where T'y = {y € C(Bi, X)) : v is odd, y|sp, = id} (k > 2). In addition, for almost every ). €
[1,2], there exists a sequence {uf,(k)};,";l such that

sup| u, (1) < oo, @ (k) >0 and ¢, (up(L)) —> g(n), asn— oo.
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The following famous Lions vanishing lemma is useful for the proofs of Theorems
3.3-3.4.

Lemma 2.5 ([16]) Suppose that {u,} is bounded in D1(RN) and satisfies

lim sup / ‘u,,(x)‘zdxzo
B(,R

n_)ooyeRN

for some R > 0, where B(y,R) = {x € R" : |x —y| < R}. Then u,, — 0 strongly in L1(RN), for
qe(2,2}).

3 Main results

Without loss of generality, we use the same notation {u,} for a sequence {u,} and any of
its subsequences. We denote

A = ul = 1<[u12 / ,0Vu2dx>,
RN

B(u) = /RN F(x,u)dx + }7 /RN h(x)|ul? dx

and

() = A(u) — AB(u) = %Hu”i - k|:/RN F(x,u)dx + }7 /1;1\1 h(x)|ulf dx] (3.1)

forall u € X, and A € [1,2].
It is easy to verify that ¢; , («) : X;, —> R is a C'-functional for A € [1,2] and

[u(x) — u(2)][v(x) - v(2)]
gDp a \/RN ,/RN |x Z|N+2a dxdz + \/RN pV(x)u(x)v(x) dx

- k|: flx,u)vdx + / hx)|ulP2uy dx] (3.2)
RN RN

for all &, v € X. Hence the critical points of ¢, ; are solutions of (1.1). Next, we will discuss
the existence of critical points of ¢, ;.

Lemma 3.1 Assume (V1)-(Va), (f1), (H1)—(H3) hold. Then, for p > py, there exist py > ry >0
such that
ar(M):=  inf @, () >0>br(X):= max ¢,;(u), VYie[l,2]
u€Zy, llull=px u€ Yy, |lull=rg
and
ck(A) == inf  @p(u) =0, ask— oouniformly for % € [1,2],
u€Zp,llull <px

where py = max{1, p1}.
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Proof (H;)—(Hs) imply that, for arbitrary § > 0 with d»8 <
depending on § such that

12, there exists a constant cs

F(x,u) < 8|ul? + csaolu|” forall (x,u) € RN x R, (3.3)

F(x,u) > blu|® — 8|u|* — csaolu|”  for all (x,u) € RN x R. (3.4)

From (2.3), (3.3) and the Holder inequality, for u € Zy, v,p € [1,2), p > po, we have

05 0) = 5l - (/ F(x,u)dml/ h(x)|u|de)
RN P JRN

1
EIIMII2 )»3/Nlulzdx—kcwollullv MAl 2 IIMII”
R

1
Ellull2 AdaS||ul? = Aesaolull) —AIAl 2 ||M||p (3.5)
Let
ar=sup |lull, foro €[L,2}).
ueZp, ullp=1

Since X, — Lﬁ,C(RN) is compact, by Lemma 3.8 of [41], we can deduce that oy — 0, as

k — oo. Then, for X € [1,2], it follows by (3.5) that
()>l|| 1% -2 Clll}) = 2117l 2o lleel?
<pp,,\u_3up— Cgﬂ()OlkMp— %akup.
We denote
lk_max{zcaﬂoak»2||h||2L ) llaall = max{ [|zll}, llull? }.

Obviously, I > 0, [y — 0%, as k — oo and n € [1,2).
Then

1
@02 (1) = S Nl = 2lollael . (3.6)

1
Choose p = (12[;) 7, then pr — 0%, as k — oo, for n € [1,2).
By a direct calculation, for any A € [1,2], we have

1
A):= inf > —pi>0.
()= il @) = pic>

Moreover, from (3.6), for any u € Zy, ||u|| < px, » € [1,2], one has
@pa(u) = =20 |ull}) = —2lp),
which shows

inf @, () > -2lkp] - 0%, ask— oo.
ueZi,|ull <px
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Hence, for Iy — 0%, pr — 0%, as k — oo, we have

cr(A) == ¢, (u) = 0, as k — oo uniformly for A € [1,2].

inf
ueZp,llull<pg

Now we are in the position to verify b()) := max, ey, juj=r, ©p,.(#) <0, VA € [1,2]. From
(2.3), (3.4), for any u € Y; with dim Y} < 0o, A € [1,2], we have

1 A
onst) = 12 = [ Foswds=2 [ htanup
27 RN pJry
By the equivalence of any norm in finite dimensional space Y%, one has

1
2 2
0on1) < Sl = exllul] + ealull, + esllul;

20— -
= [l [(1 = ex)llull ™ + eslull;,” - erds ],

where e, €5, e3 > 0 are positive constants.

Then, for v € [1,2), o € [1,v), by choosing suitable 0 < ||| = rx < px, we can get

be(M):= max @, (u) <0, VYiel[l,2]
u€ Yy, |lull=rg

We complete the proof of Lemma 3.1. d

Lemma 3.2 Suppose that (V1)—(V3), (f1), (H1)—(H3) hold. Then, for p > po, 1, € [1,2],
A — 1, u(r,) € Y, with

P |Yn () =0 and  @,5,(u(k,)) = o € [cr(2),bx(1)], asn— oo,
{u(X,)} has a convergent subsequence in X, for every k € N.

Proof Assume that, for each k € N, A € [1,2], there exist a subsequence 1, — 1 and
u(ry) € Yy such that ¢ ; |y, (u(r,)) =0, and @, (u(2,)) = wx € [ck(2), br(1)], as n — oo.

From (2.2), (3.3), (H3) and the Holder inequality, for p > pg, A, € [1,2], A, = 1lasn — o0
and v,p € [1,2), one has

2 1 »
Hu()\,,)Hp =205, (4(hn)) + 20, [/RN F(x,u(hy)) dx + > fRN h(x)|u(hn)| dx]
< 2wk +1) + 24, [ / (84| + esaolui)[") dx + 1l 2 b ||u(xn>||';}
RN 2-p

1 v
<2wg+1)+ 3 ”u()»,,)Hi + 465a0d‘,”u()»,,)”p + 4”h”2%,,d127/2 ||u()»,,) 1;,

which shows that {x(},)} is bounded in X,,. Then we can obtain a weakly convergent sub-
sequence of {u(A,)}. Assume u(),) — u weakly in X,. By Lemma 2.1, we know u(A,) — u

strongly in LY(RN) for q € [2,2}), which implies l(Xy) —ull; — 0,asm — oo, for g € [2,2%).
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Next we prove that u, — u in X,,. By (3.1)—(3.2), we have

ah) = ]2 < )5, (O)) = 9}, 00), 14(h) — )
+ /RN |Anf (3, () = f (0, () ) | | (hs) — 4]

+ / B [Ats () — | 16(0) — a] . (3.7)
RN
Obviously,
((p;)’,\n (u(hn)) - @1 (@), u(ry) - u) —0, n— oo. (3.8)

2
From the condition /2 € L=7 (RN), A, = 1, u(,) = uin L1(RN), as n — oo and the Holder

inequality, we have
f H) ponte(h) = " o) - | de < Wil 2 [uhn) =l >0, m—o0.  (39)
RN —P
From (H;) and the Holder inequality, we can get

/RN [Anf (e, (h)) = f (o, 1) | () — 0s)
< /RN(|2f(x,u(/\n))] + [f e, )|)|(hn) - 0] dx

- /RN aof (1] + [2000)]) + (1" + 2[us0n)| )] 1) = 1] i

< Bao(llulla i) = u], + Nl u(h) = ] )

-0, n— 0. (3.10)

It follows from (3.7)—(3.10) that ||z, — u||% — 0, which implies u#, — u in X,,. O
When the nonlinearity f is asymptotically linear, we have Theorem 3.1.

Theorem 3.1 Suppose that (V1)-(Va), (f1), (H1)—(Hs) hold, and F(x,—u) = F(x, u) for all
(x,u) € RN x R, then, for p > po, (1.1) possesses infinitely many small energy solutions uﬁjk) €
X, for any k € N, that is,

Lo w2 k 1 k) |p -
§||u£))||p—/I;NF(x,u;))dx—l—ﬂ/};}\{h(@hp\ dx — 07, ask— oc.
Proof From (f1) and (H3), we have B(u) > 0 and
1 1
B(u):/ F(x,u)dx+—/ h(x)|ulf dx > —/ h(x)|ulf dx — oo, as ||u]| — oo,
RN P JrN P JrN

on any finite dimensional subspace of X, which shows that (4;) of Lemma 2.3 holds.



Li and Yuan Boundary Value Problems (2018) 2018:22 Page 10 of 18

It is easy to check that (A1) of Lemma 2.3 holds. Lemma 3.1 implies that (A3) is satisfied.
Owing to Lemma 2.3, we know that, for each k € N, there exist 1, — 1, u(A,) € ¥, such
that

Drinly, @) =0 and @, (u(hn) = ok € [cx(2),b4(1)], asn— 0.
By Lemma 3.2, we know {u(},)} has a convergent subsequence in X,. In view of
Lemma 2.3, ¢,,; has infinitely many nontrivial critical points ug‘) € X, \ {0} satisfying

1 1

- ||u£)k) ||2 - / F(x,uld)dx - —/ h)|u® P dx — 07, ask— oo
2 P RN L P JRN L

for p > po, every k € N, which implies (1.1) possesses infinitely many small energy solu-

tions. O

Lemma 3.3 Assume (V1)—(V2), (f1), (Ha), (Ha)—(Hs) hold. Then, for p > py, there exist
Ok > i > 0 such that

ex(2) = @pa) > fi(h) = max @y, (u), Vie[l,2].

i
u€Zp, |lull=rr ueYy,|lull=px

1

Proof (H,) and (Hs4) imply that, for arbitrary & > 0 with dye < 3,

constant ¢, depending on ¢ such that

there exists a positive

F(x,u) < ¢|ul?® + cear|u|? forall (x,u) € RN x R. (3.11)

By (Hs), we know that, for any 6 > 0 large enough, there exists a constant ¢ > 0 such that,
for (x,u) € RN x Rand |u| > ¢,

F(x,u) > 0|ul®. (3.12)
Combining (3.12) and (H;), we see that there exists Sy > 0 such that
F(x,u) > 0'|u|®> forall (x,u) e RN xR, (3.13)

where 8’ =0 — Sy —6¢.
Choosing a suitable 6, we can get

2
0'dy> . (3.14)

From (2.3), (3.11) and the Holder inequality, for any p > po, u € Z, g € [2,2}), we have

1 A
Qo) = =|ull> =1 | Fxu)ydx—= | hx)|ul? dx
207 RN P JrN

1 2 2 4
= 5 lull, = Adaellull, = Aceanlullg = ARl 2 llull;

2-p

1
e (5 - kdz8) el = reearalllull = Al 2 o ulls,

where oy is defined in the proof Lemma 3.1 and ay — 0, as n — oo.
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Let

M' =208 (ccaral ™ + ||h||%).

1
We choose ry = (6M') %4, then ry — 00, as k — o9, for g € [2,2}), which implies there
exists a positive constant ky € N such that ry = (6M')24 > 1, for k > ko, k € N.
1
Then, for A € [1,2], k > ko, k € N, u € Zy, ||ull, = re = (6M') 74 > 1, we have

1
ex(x) = 00 (0) 2 Sl = 2ecancf el — 201hl 2 o ul

1
u€Zy,llull=ry

2

1 ! 1 !
> §||u||§ - M'||u||? = grﬁ = —(6M')>7 > 0. (3.15)

N =

Next we prove f;(A) = maxX ey, ju|=p; Pp.r () <0, VA € [1,2].
From (2.3), (3.13)—(3.14) and the equivalence of the norms in the finite dimensional
space Y, for A € [1,2] and any u € Y} with dim Y} < 0o, we have
P y

1 A
Qo) = —IIMIIi—/\/ F(x, u)dx - —/ h(x)|ul? dx
2 RN P JRN

2 2
< ull? - 0'dy |1ul]?

N =

Lo
<= Il
Then, for any ||u|| = px > ri > 0, one has

filh) = max ¢, (u) <0, Viell,2]. (3.16)
u€Yp,llull=px

From (3.15)—(3.16), we obtain

ex(A) = inf @, (u)>0>f(A)= max ¢, (), Viel[l2]. O
u€Zp, |lull=rg u€Ypllull=pk
Theorem 3.2 is about the existence of high energy solutions for (1.1) when the non-
linearity f is superlinear.

Theorem 3.2 Suppose (V1)-(V2), (1), (H2), (Ha)—(Hs) hold, and F(x,-u) = F(x,u) for all
(x,u) € RN x R, then, for p > po, (1.1) possesses infinitely many high energy solutions ug‘,) €
X, for any k' > ko, k' € N, in the sense that

Lo w2 (k") 1 )P /

—||u H - F(x,u )d S— h(x)|u | dx — +00, ask — oo.

2 4 P RN P p Jry 14
Proof From (Hs) and the definitions of A(x) and B(u), we know B(u) > 0 for u € X and
A(u) — oo as |lu|| — oo, which implies (4;) of Lemma 2.4 holds.

From (f1), (3.1) and F(x,—u) = F(x, u), it is easy to see that ¢, , () maps a bounded set
into bounded sets uniformly for A € [1,2], and

Yoo (—u) =@, m) forall (A, u) e[1,2] x X,
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which shows (A;) of Lemma 2.4 is satisfied. Lemma 3.3 implies (A3) holds. From
Lemma 2.4, for almost any X € [1,2], there exists a sequence {u’;/(k)};‘;l for k' > ko, k' € N,
such that

sup”ul;/ (A)||p < 00,
" (3.17)
@ (uﬁ/(k)) —0 and ¢, (u];/ (V) = &), asn— oo.

From Lemma 2.4, we also have gy (1) = inf, cr,, max,ep,, ¢, (v (1)) > ex (1)
2
Let B = %(6M/)ﬁ >0, then B — 00, as k' — oo. For k' > ko, k' € N, it follows, see
(3.15), that gi/(A) > ep (1) = Br. Then

ge() € [Bes By ] (3.18)
where f; = maxyep, 9,1 (v (W), T ={y € C(By, X)) : v isodd, y|sp,, = id} (K' > 2) with
Bu={ueYe:|ul <pr}

Choose A,, — 1 as m — oo, for A, € [1,2]. Owing to (3.17), we can get the boundedness
of {u’;/ (Am)}, which implies {uﬁ/ (Am)} has a weakly convergent subsequence. Similar to the
proof of Lemma 3.2, we can prove that {u’,‘,/(km)} has a strong convergent subsequence in
X, as n — o0o. Assume lim,,_, uﬁ/()»m) = uk' (,,) for m € N, then it follows, see (3.17)—
(3.18), that, for k' > ko, k' € N,

(p,/DJLm (”k/ ()"m)) =0, Do,k (uk/ ()\m)) € [ﬁk’: ﬂ//(/] (3.19)

Next we show {#X' (4,,)} is bounded in X »- We argue by contradiction. In fact, if it is not

the case, then

||uk/ (Am)||p — 00, asm — Q. (3.20)
k/
Let w,, = ﬁ, which shows ||, ||, = 1. Then @, has a weakly convergent subse-
m)llp

quence in X,. By Lemma 2.1, we can see that @, has a strong convergent subsequence in
LI(RN), for q € [2,2}]. Without loss of generality, we suppose @,, — @ strongly a.e. in
L1(RN), which also implies @, (x) — @o(x) for a.e. x € RN,

For p € [1,2), from (1), (3.20) and the Holder inequality, we have

K (5 P IRl 2 dy* NuCo)lb
0< tim J& Holu” Gl dz -\ = "o (3.21)
Tmoco U )IZ T meee UK ()2
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Let A = {x € R" : wy(x) #0}. It’s easy to see that A is nonempty. For x € A, 1, € [1,2],
combining (3.1), (Hs), (3.19)—(3.21) and Fatou’s lemma, we can get

@pin 1 ()
¥ )12

16X )12 = Aol S Fe, X Q) i+ L o )| () [P ]
1% () 112

U [ Eeu¥0n) 1 [ B@IE Gl ]
Z_ 761 - ————d
=32 UA 1% G2 “p/RN ¥ Gz

2F,ul ) 1 [ () (AP
=5 [l = e - | St
/| O e p/RN 1 Gz

— —00, asm — OQ.

This is a contradiction. Hence {u* (A,,)} is bounded in X, »» which shows (X (A,)} has a
weakly convergent subsequence. By a similar proof to that of Lemma 3.2, we know that

(¥ (A,n)} has a strongly convergent subsequence in X,. Suppose

lim o (Ay) = ¥ (1) = u¥ eX,.

m— 00 p

Then, for k' > ko, k' € N, from (3.19) and B — 00, as k' — 00, we have

01(5) =0, @pa(uy) € [P, Bi] = 00, ask — oo,

which shows u"

is a nontrivial critical point of ¢, ;. Consequently, for K > ko, K € N is
arbitrary, we obtam infinitely many nontrivial critical points u ) of ¢,,1, which are also

the nontrivial solutions of (1.1) with high energy, that is,
P (®) 1 &) |P /
—||up H - F(x,u )dx—— h(x)|u } dx — +0o0, ask’ — oo.
2 P RN 4 P JRN °

Next, we will explore the concentration phenomenon of (1.1).
We denote

2
{ uel(Q): f 'LL(:‘ y;gl' dxdy < 00,u(x) = 0if x € Q} (3.22)

where Q = R?V \ (Q° x Q°), Q¢ = RN \ @, Q is defined in (V3). The function space X, was
first defined by Servadei and Valdinoci in [39]. Obviously, C§°(€2) C X, and X is a Hilbert

space with the scalar product and normal

) / W) = wON) V0D 4l = ), 0

|x _y|N+2a

Theorem 3.3 Assume that (V1)—(V3), (f1), (H1)—(Hs) hold, and F(x,—u) = F(x,u) for

(x,u) € RN x R. Let u(pk) (k € N) be solutions obtained by Theorem 3.1, then u(pk) — uf)k)
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strongly in LY(RN) as p — oo, for every k € N, q € [2,2%), where uék) € Xy, for every k € N,
are the nontrivial solutions of the following fractional Schrédinger equation:

i (=A)u = f(x,u) + h(x)|ulPu  inQ, (3.23)

u=0 inRV\Q.

Proof Let u (k € N) be the nontrivial solutions obtained by Theorem 3.1, then u ) are
the nontr1v1al critical points of the functional

1 1
G (1) = = 1], / Flouw)dx— - / ) ul? dx
2 RN P JrN

and {ug;)},fil € X \ {0} satisfying (ppyl(ufo’;)) — 0~ as k — o0o. From the proof of Lemma 3.2,

we know the ufo’;) are bounded in X, for any k € N. Then {ufoljl)} has a weakly convergent

(k)

subsequence in X, as p, — 00. Assume ug;) — uy’, as p, — 00. From Lemma 2.1, we

(k)

know that u( — uy’ strongly in L (RN) for q € [2, 2r], as p, = oo. By Lemma 2.5, we

loc
can verify that as p, — 00, u( ) u(() ) strongly in L4(RN) for g € [2,2%]. And by a standard
argument, we can prove u(k) — u( Vin Xp,» s Py = 00.

Combining the boundedness of u ), the definition of || - | o, and Fatou’s lemma, for every

k € N, one can obtain

)2
f V(x)(ug())2 dx <lim inf / Vix) (ug{))z dx <lim inf —22 -0,
RN Pn—>00 JpN " Pn—>00 Pu

Then we know that uok 0 a.e. in the set D = {x € RN : V(x) # 0}. It follows (3.22) that

u(() € Xo, forany k € N. Hence, we have |, RN V(x)u (x)v(x) dx =0, for any v € Xj. Together

with (3.2), ( gopn( )y, y )—O,foranykeN,VeXo,wehave

Pn

/ / [0 (x) — P ()] [v(x) - v(2)] dxda
RN RN

|x_Z|N+2a

—/ f(x, )de /h(x)|u£§)|p72ug;)vdx=0.
RN RN

By taking the limit, we can get

f / [y (%) - ul) ()] [v(x) — v(2)] didz
RN JRN

|x _ Z|N+2a

—/ f(x,u(ok>)vdx—/ he) w2 ulPvdx =0,
RN RN

which implies the ug() € Xy are nontrivial weak solutions of (3.23), for every k € N. 0

Theorem 3.4 Assume that (V1)=(V3), (i), (H2), (Ha)—(Hs5) hold, and F(x,—u) = F(x, u)
for (x,u) € RN x R. Let u ) (K > ko, k' € N) be solutions obtained by Theorem 3 2 then
g‘) — ué strongly in Lq(RN) as p — oo, forallk' > ko, k' € N, q € [2,2%), where uo ) e X

are the nontrivial solutions of (3.23).

Proof Similarly to the proof of Theorem 3.3, we can prove Theorem 3.4. In fact, we only
should make some corresponding modifications for the high energy solutions u(k ) 0
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4 Examples

Now, we give several examples as applications of our main results.

Example 4.1

3
(—A)%u +oVx)u=02+ sinx)|u|%(1 + |u|%)_2 sgnu

2
In(1.1 + cos? x) |u|%‘2

— u, xeR (4.1)
Ve (1 4+ x2)

+

From (4.1), we can see that

3
a=1/2, 20=1<N =2, p:i,

3
flxe,u)=02+ sinx)|u|%(l + |u|%)72 sgnu € C(R2 X R,R)

and
) = ln(}.} +cos?x) .
eV (1 4 42)
Let
0, lx] <1;
Vix) =1 2(lx|-1), 1<|¥<2;
||, lx| > 2.

Then we can easily show (V7)—(V>) are satisfied.

. In(1.1+cos” x) ;
Obviously, 4(x) > 0 and 42 (x) = ﬁ < ﬁ, which shows #(x) € L*(R). Hence
(f1) holds.

1+x2)
From (4.1), we have
[fe, )| = |2+ sinx)|u|%(1 + |u|%)7%’ <3(1+ |u|%‘1),

withay=3,v= %, which shows that (H;) is satisfied.
Also we can get

lim fx,u) - lim (2 + sinx) ul i sgnu _o,

lul—0 |ul |t]—0 1+ |M|%)%

which implies that (H>) holds.
We also find F(x, u) = fouf(x, t)dt >0.Foro € [1,v= %), it follows by the L'Hospital rule
that

Flx, “flx,T)dt y i 1
fim F®W g SSwndr W] o et =
lul>oo |ul®  |ul->oco |u|® oo o |u|771  ul=00 (1 4 |y|2): 2

Then (H3) also holds.
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We can also easily verify that F(x, —u) = F(x, ). Then all the conditions of Theorem 3.1
hold. Consequently, (4.1) has infinitely many small energy solutions ufok) € X,, for p > po
and any k € N.

We can also see that Q = int V=1(0) is a nonempty open set and the boundary is smooth,
which shows (V3) holds. Hence, by Theorem 3.3, we know that we have the following
equation:

In(1.1+cos? x) _72 .
(- A)zu (2+smx)|u| (1 + |ul2 ) 2sgnu+ 7«/21%(1 2)|u| in ,

u=0 inRV\Q.

It possesses infinitely many nontrivial solutions ug() € X satisfying ug‘) — ug() strongly in

LI(RN) as p — oo, for g € [2,2}) = [2,4) and every k € N.

Example 4.2

8(sin®x)u®?  1n(1.3 + | sinx?|)

+
9 el /(1 + x2)

Obviously, from (4.2), we have

(—A)%u+qu: || 2u, xeR. (4.2)

N=2 3
od=—, =4 =
P=3
8(si 2 5/3
flxu) = % € C(R* x R,R)
and
) = In(1.3 + |sinx2|).

e /(1 +42)

Then 0 < h(x) = % € L*(R), which implies (fl) is satisfied.

From (4.2), we know 2a =1 <N = 2F(x,u)—“"§” >0, and

5/3

V(x’ u)| ‘8(sm x)u

) 8 S'Ilz 2/3
<(t+3h),  lim Veul g, 86 ou”
ul—0  |ul Jul—~0 9

9

Flru) . (sin’x)u??®

=00,

ul—oo  |ul2  lul>oo 3

with g = % € [2,2% =4), a; = 1, which shows that (H;)—(H5) of Theorem 3.2 hold.
Let V(x) be the same function as in (4.1), then the conditions (V;7)—(V3) are all satisfied.
It is also easy to check F(x,—u) = F(x,u). In view of Theorem 3.2, for p > po, k' > ko,
"€ N, (4.2) has infinitely many high energy solutions u e X,.
meg to Theorem 3.4, we know that we have the followmg fractional Schrodinger equa-

tion:

1 Gin2 5/3 3 .
(=A)2u = 8(sin 9x)u In(1.3+| sinx? |)| |7_2I/l in Q,
eM\/ 1+x
u=0 inRV\Q.
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It has infinitely many nontrivial solutions ugk) € Xo, satisfying ug(/) — u(()k) , strongly in

LI(RN) as p — oo, for g € [2,2%) = [2,4) and kK’ > ko, k' € N.
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