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Abstract
In this paper, we consider a fractional Schrödinger equation with steep potential well
and sublinear perturbation. By virtue of variational methods, the existence criteria of
infinitely many nontrivial high or small energy solutions are established. In addition,
the phenomenon of the concentration of solutions is also explored. We also give
some examples to demonstrate the main results.
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1 Introduction
In this paper, we are concerned with the following fractional Schrödinger equations:

(–�)αu + ρV (x)u = f (x, u) + h(x)|u|p–2u, x ∈ RN , (1.1)

where 0 < α < 1, 2α < N , ρ > 0, 1 ≤ p < 2, f ∈ C(RN × R, R), h ∈ L
2

2–p (RN ), (–�)α is the so-
called fractional Laplacian operator of order α ∈ (0, 1) and it can be either defined point-
wise for x ∈ RN by

(–�)αu(x) = –
1
2

∫
RN

u(x + y) + u(x – y) – 2u(x)
|y|N+2α

dy

along any rapidly decaying function u of class C∞(RN ), or characterized by

(–�)αu = F–1(|ξ |2αFu
)
,

where F denotes the usual Fourier transform in RN . The potential V satisfies the condi-
tions:

(V1) V ∈ C(RN , R) and V ≥ 0 on RN .
(V2) There exists a constant c > 0 such that the set {V < c} = {x ∈ RN |V (x) < c} is

nonempty and has finite measure.
(V3) � = int V –1(0) is a nonempty open set and has smooth boundary with � = V –1(0).
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From (V1)–(V3), we can see ρV represents a steep potential well whose depth is con-
trolled by ρ . Bartsch and Wang first introduced this problem for the case α = 1 in [1], and
since then it has attracted much attention. For more details, please see [2–5].

Over the past decades, the existence and multiplicity of nontrivial solutions for the in-
teger order Schrödinger equation have been extensively investigated. In [6], the authors
proved that the fractional Laplacian (–�)α reduces to the standard Laplacian –�, as
α → 1. When α = 1, Eq. (1.1) becomes the integer order Schrödinger equation, which
shows the results in the present paper are also valid for α = 1.

Fractional calculus has played an important role in the description of hereditary proper-
ties of various materials and memory processes. Fractional differential equations provides
a powerful tool for the research of many fields such as engineering, science, electrical cir-
cuits, diffusion, and applied mathematics; see [7–10] and so on. Recently, more and more
attention has been focused on the study of problems involving the fractional Laplacian;
see [11] and the references therein.

In the field of fractional quantum mechanics, the fractional Schrödinger equation is a
fundamental equation, which was discovered by Laskin [12, 13] as a result of extending
the Feynman path integral. Recently, for the different cases of the potential V and the non-
linearity f , some researchers have investigated the fractional Schrödinger equations under
the appropriate assumptions:

(–�)αu + V (x)u = f (x, u), x ∈ RN . (1.2)

The variational method has been used in many works to study the fractional Schrödinger
equations (1.2). For the basic theory of the variational method in a fractional setting, one
can see [14]. Next, we list some work on (1.2) in the following.

In [15], Felmer et al. considered the regularity and existence of solutions under the
famous Ambrosetti–Rabinowitz (A–R) condition, i.e., there exists θ > 2 such that 0 <
θF(x, t) < tf (x, t). In [16], the ground state solutions were obtained by Secchi under the
A–R condition and

(V0) V ∈ C(RN ), infx∈RN V (x) = V0 > 0 and lim|x|→∞ V (x) = ∞.
In [17], Chang obtained the existence and multiplicity of solutions when the nonlinear
term f satisfies the asymptotically linear case and under the condition:

(V ′
0) There exists r0 > 0 such that, for all M > 0, |{x ∈ Br0 (y)|V ≤ M}| → 0 as |y| → ∞.

In [18], by the variant fountain theorems, the author discussed the nontrivial high or
small energy solutions; In [19], using nonlinear analysis techniques, the weak solutions
are obtained. In [20], when V = 1 and f (x, u) = f (u), the authors gave the existence of
least two nontrivial radial solutions without the A–R condition by variational methods.
In [21], the existence criteria of radial solutions are established under different conditions
by variational methods. In [22], the authors also studied the existence of infinitely many
nontrivial energy solutions by variational methods. In [23], in the asymptotically periodic
case, a nontrivial solution is obtained by variational methods. For more related study, the
interested reader may consult [24–34] and the references therein. It should also be noted
that the concentration phenomena for the fractional Schrödinger equation have been in-
vestigated byDávila, del Pino et al. [35, 36], and Fall, Mahmoudi and Valdinoci [37].

But for the generalized fractional Schrödinger equations (1.1) with perturbation and
steep potential well, there are very few results. Obviously, the form of (1.1), whose non-
linear term combines asymptotic linearity and superlinear term with sublinear term
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h(x)|u|p–2u, is more general than that of (1.2). In [38], the existence of at least two non-
trivial solutions of (1.1) is showed. In the present paper, by variational methods, we have
established existence criteria of infinitely many nontrivial high or small energy solutions
without A–R condition. In addition, we explore the concentration of solutions as well.
Moreover, some examples are given to demonstrate our results. In fact, it is a challenging
research to study the concentration problem of solutions for the fractional Schrödinger
equations by variational methods and it is not trivial to construct the fractional Sobolev
space, which is used to study the concentration phenomenon. As is well known, the com-
pactness of the embedding fails when ρ is large enough. By using a new function space
introduced in [38, 39] and constructing some inequalities, we can obtain the concentra-
tion of the solutions of (1.1) under different conditions. Hence our results can be viewed
as an extension to the main results in [16–23, 38].

We list the following assumptions.
(f1) h ∈ L

2
2–p (RN ) and h > 0 on RN .

(H1) f (t, s) is continuous on RN × R. There exist constants a0 > 0 and v ∈ [1, 2) such that

∣∣f (x, u)
∣∣ ≤ a0

(
1 + |u|v–1), ∀(x, u) ∈ RN × R.

(H2) lim|u|→0
f (x,u)
|u| = 0 uniformly in x ∈ RN .

(H3) F(x, u) =
∫ u

0 f (x, τ ) dτ ≥ 0. There exist two constants σ ∈ [1, v) and b > 0 such that
lim|u|→∞ F(x,u)

|u|σ ≥ b uniformly for x ∈ RN .
(H4) Let f ∈ C(RN × R, R). There exist two constants a1 > 0, q ∈ [2, 2∗

α) such that

∣∣f (x, u)
∣∣ ≤ a1

(
1 + |u|q–1), ∀(x, u) ∈ RN × R,

where 2∗
α = 2N

N–2α
with 2α < N .

(H5) F(x, u) ≥ 0 and lim|u|→∞ F(x,u)
|u|2 = ∞ uniformly in x ∈ RN .

In the next of this paper, by variational methods, we will give the existence criteria of in-
finitely many nontrivial high or small energy solutions without A–R condition. Moreover,
we will study the concentration phenomenon of (1.1). We will also give some examples to
illustrate the main results.

2 Preliminaries
Now, we review some definitions and related lemmas. For 1 < q ≤ ∞, we give the definition
the following norms:

‖u‖∞ = max
t∈RN

∣∣u(t)
∣∣, ‖u‖q = ‖u‖Lq(RN ) =

(∫
RN

∣∣u(s)
∣∣q ds

) 1
q

.

Let Dq(RN ) denote the completion of C∞
0 (RN ) with respect to the Gagliardo (semi) norm

[u]α =
(∫

RN

∫
RN

|u(x) – u(z)|2
|x – z|N+2α

dx dz
)1/2

,

then the embedding Dq(RN ) �→ L2∗
α (RN ) is continuous with ‖u‖2∗

α
≤ S–1[u]α , ∀u ∈ Dq(RN ),

where S–1 = M(N ,α) α(1–α)
N–2α

and 1
M(N ,α) =

∫
RN

1–cos ζ

|ζ |2N+α dζ depends only on N and α. For de-
tails, see [6].
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Define the space

X =
{

u ∈ Dq(RN)
:
∫

RN

∫
RN

|u(x) – u(z)|2
|x – z|N+2α

dx dz +
∫

RN
V (x)u2(x) dx < +∞

}

with the inner product and the norm

〈u, v〉 =
∫

RN

∫
RN

[u(x) – u(z)][v(x) – v(z)]
|x – z|N+2α

dx dz +
∫

RN
V (x)u(x)v(x) dx,

‖u‖2 = 〈u, u〉
(2.1)

for all u, v ∈ X. Then X is a Hilbert space with the inner product 〈u, v〉 and X ⊂ Lq(RN ) for
all q ∈ [2, 2∗

α] with the embedding being continuous. In order to consider (1.1), for ρ > 0,
parallel to (2.1), we introduce another inner product and normal

〈u, v〉ρ =
∫

RN

∫
RN

[u(x) – u(z)][v(x) – v(z)]
|x – z|N+2α

dx dz +
∫

RN
ρV (x)u(x)v(x) dx,

‖u‖2
ρ = 〈u, u〉ρ .

Let Xρ = (X,‖u‖ρ), obviously Xρ is still a Hilbert space and

‖u‖ ≤ ‖u‖ρ for ρ ≥ 1. (2.2)

By a standard argument, we have the following.

Lemma 2.1 Assume that the condition (V1)–(V2) hold. Then the embeddings Xρ �→
Lq

loc(RN ) are compact, for any q ∈ [2, 2∗
α).

Lemma 2.2 ([38]) Suppose that (V1)-(V2) hold. Then, for r ∈ [2, 2∗
α],

∫
RN

|u|r dx ≤ dr‖u‖r
ρ , ∀ρ ≥ ρ1. (2.3)

In particular,
∫

RN
|u|2 dx ≤ d2‖u‖2

ρ , ∀ρ ≥ ρ1, (2.4)

where ρ1 = S2

c |meas{V < c}|
2–2∗

α
2∗
α , dr = S–r|meas{V < c}|

2∗
α–r
2∗
α , c is given in (V2).

Let {ej} be a complete orthonormal basis of X. We define

Xj := span{ej}, Yk :=
k⊕

j=1

Xj and Zk :=
∞⊕

j=k+1

Xj, k ∈N.

Also

Bk =
{

u ∈ Yk : ‖u‖ ≤ ρk
}

, Sk =
{

u ∈ Zk : ‖u‖ = rk
}

for ρk > rk > 0. Clearly, X = Yk ⊕ Zk with dim Yk < ∞.
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The following variant fountain theorem will be used to prove Theorem 3.1.

Lemma 2.3 ([40]) Let X be a Banach space, suppose that ϕρ,λ(u) satisfies:
(A1) ϕρ,λ(u) maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and

ϕρ,λ(–u) = ϕρ,λ(u) for (λ, u) ∈ [1, 2] × X.

(A2) B(u) ≥ 0 for all u ∈ X , and B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional sub-
space of X .

(A3) There exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

ϕρ,λ(u) ≥ 0 > bk(λ) := max
u∈Yk ,‖u‖=rk

ϕρ,λ(u), ∀λ ∈ [1, 2]

and

ck(λ) := inf
u∈Zk ,‖u‖≤ρk

ϕρ,λ(u) → 0, as k → ∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, u(λn) ∈ Yn such that

ϕ′
ρ,λn

∣∣
Yn

(
u(λn)

)
= 0 and ϕρ,λn

(
u(λn)

) → ωk ∈ [
ck(2), bk(1)

]
, as n → ∞.

In particular, if {u(λn)} has a convergent subsequence for any k ∈ N , then ϕρ,1 has infinitely
many nontrivial critical points {uk} ∈ X \ {0} satisfying ϕρ,1(uk) → 0– as k → ∞.

Next, we give another variant fountain theorem which will be needed to prove Theo-
rem 3.2.

Lemma 2.4 ([40]) Let X be a Banach space, suppose that ϕρ,λ(u) defined above satisfies:
(B1) ϕρ,λ(u) maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and

ϕρ,λ(–u) = ϕρ,λ(u) for every (λ, u) ∈ [1, 2] × X.

(B2) B(u) ≥ 0 for all u ∈ X , A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞.
(B3) There exist ρk > rk > 0 such that

ek(λ) = inf
u∈Zk ,‖u‖=rk

ϕρ,λ(u) > fk(λ) = max
u∈Yk ,‖u‖=ρk

ϕρ,λ(u), ∀λ ∈ [1, 2].

Then

ek(λ) ≤ gk(λ) = inf
γ∈�k

max
u∈Bk

ϕρ,λ
(
γ (u)

)
, ∀λ ∈ [1, 2],

where �k = {γ ∈ C(Bk , Xλ) : γ is odd,γ |∂Bk = id} (k ≥ 2). In addition, for almost every λ ∈
[1, 2], there exists a sequence {uk

n(λ)}∞n=1 such that

sup
n

∥∥un(λ)
∥∥ < ∞, ϕ′

ρ,λ
(
uk

n(λ)
) → 0 and ϕρ,λ

(
uk

n(λ)
) → gk(λ), as n → ∞.
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The following famous Lions vanishing lemma is useful for the proofs of Theorems
3.3–3.4.

Lemma 2.5 ([16]) Suppose that {un} is bounded in Dq(RN ) and satisfies

lim
n→∞ sup

y∈RN

∫
B(y,R)

∣∣un(x)
∣∣2 dx = 0

for some R > 0, where B(y, R) = {x ∈ Rn : |x – y| ≤ R}. Then un → 0 strongly in Lq(RN ), for
q ∈ [2, 2∗

α).

3 Main results
Without loss of generality, we use the same notation {un} for a sequence {un} and any of
its subsequences. We denote

A(u) =
1
2
‖u‖2

ρ =
1
2

(
[u]2

α +
∫

RN
ρVu2 dx

)
,

B(u) =
∫

RN
F(x, u) dx +

1
p

∫
RN

h(x)|u|p dx

and

ϕρ,λ(u) = A(u) – λB(u) =
1
2
‖u‖2

ρ – λ

[∫
RN

F(x, u) dx +
1
p

∫
RN

h(x)|u|p dx
]

(3.1)

for all u ∈ Xρ and λ ∈ [1, 2].
It is easy to verify that ϕλ,μ(u) : Xλ → R is a C1-functional for λ ∈ [1, 2] and

〈
ϕ′

ρ,λ(u), v
〉

=
∫

RN

∫
RN

[u(x) – u(z)][v(x) – v(z)]
|x – z|N+2α

dx dz +
∫

RN
ρV (x)u(x)v(x) dx

– λ

[∫
RN

f (x, u)v dx +
∫

RN
h(x)|u|p–2uv dx

]
(3.2)

for all u, v ∈ X. Hence the critical points of ϕρ,1 are solutions of (1.1). Next, we will discuss
the existence of critical points of ϕρ,1.

Lemma 3.1 Assume (V1)–(V2), (f1), (H1)–(H3) hold. Then, for ρ > ρ0, there exist ρk > rk > 0
such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

ϕρ,λ(u) ≥ 0 > bk(λ) := max
u∈Yk ,‖u‖=rk

ϕρ,λ(u), ∀λ ∈ [1, 2]

and

ck(λ) := inf
u∈Zk ,‖u‖≤ρk

ϕρ,λ(u) → 0, as k → ∞ uniformly for λ ∈ [1, 2],

where ρ0 = max{1,ρ1}.
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Proof (H1)–(H3) imply that, for arbitrary δ > 0 with d2δ < 1
12 , there exists a constant cδ

depending on δ such that

F(x, u) ≤ δ|u|2 + cδa0|u|v for all (x, u) ∈ RN × R, (3.3)

F(x, u) ≥ b|u|σ – δ|u|2 – cδa0|u|v for all (x, u) ∈ RN × R. (3.4)

From (2.3), (3.3) and the Hölder inequality, for u ∈ Zk , v, p ∈ [1, 2), ρ > ρ0, we have

ϕρ,λ(u) =
1
2
‖u‖2

ρ – λ

(∫
RN

F(x, u) dx +
1
p

∫
RN

h(x)|u|p dx
)

≥ 1
2
‖u‖2

ρ – λδ

∫
RN

|u|2 dx – λcδa0‖u‖v
v – λ‖h‖ 2

2–p
‖u‖p

2

≥ 1
2
‖u‖2

ρ – λd2δ‖u‖2
ρ – λcδa0‖u‖v

v – λ‖h‖ 2
2–p

‖u‖p
2. (3.5)

Let

αk = sup
u∈Zk ,‖u‖ρ=1

‖u‖σ for σ ∈ [1, 2∗
α).

Since Xρ �→ Lσ
loc(RN ) is compact, by Lemma 3.8 of [41], we can deduce that αk → 0, as

k → ∞. Then, for λ ∈ [1, 2], it follows by (3.5) that

ϕρ,λ(u) ≥ 1
3
‖u‖2

ρ – 2cδa0α
v
k‖u‖v

ρ – 2‖h‖ 2
2–p

α
p
k ‖u‖p

ρ .

We denote

lk = max
{

2cδa0α
v
k , 2‖h‖ 2

2–p
α

p
k
}

, ‖u‖η
ρ = max

{‖u‖v
ρ ,‖u‖p

ρ

}
.

Obviously, lk > 0, lk → 0+, as k → ∞ and η ∈ [1, 2).
Then

ϕρ,λ(u) ≥ 1
3
‖u‖2

ρ – 2l0‖u‖η
ρ . (3.6)

Choose ρk = (12lk)
1

2–η , then ρk → 0+, as k → ∞, for η ∈ [1, 2).
By a direct calculation, for any λ ∈ [1, 2], we have

ak(λ) := inf
u∈Zk ,‖u‖=ρk

ϕρ,λ(u) ≥ 1
6
ρ2

k > 0.

Moreover, from (3.6), for any u ∈ Zk , ‖u‖ ≤ ρk , λ ∈ [1, 2], one has

ϕρ,λ(u) ≥ –2lk‖u‖η
ρ ≥ –2lkρ

η

k ,

which shows

inf
u∈Zk ,‖u‖≤ρk

ϕρ,λ(u) ≥ –2lkρ
η

k → 0+, as k → ∞.
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Hence, for lk → 0+, ρk → 0+, as k → ∞, we have

ck(λ) := inf
u∈Zk ,‖u‖≤ρk

ϕρ,λ(u) → 0, as k → ∞ uniformly for λ ∈ [1, 2].

Now we are in the position to verify bk(λ) := maxu∈Yk ,‖u‖=rk ϕρ,λ(u) < 0, ∀λ ∈ [1, 2]. From
(2.3), (3.4), for any u ∈ Yk with dim Yk < ∞, λ ∈ [1, 2], we have

ϕρ,λ(u) ≤ 1
2
‖u‖2

ρ – λ

∫
RN

F(x, u) dx –
λ

p

∫
RN

h(x)|u|p dx.

By the equivalence of any norm in finite dimensional space Yk , one has

ϕρ,λ(u) ≤ 1
2
‖u‖2

ρ – e1‖u‖σ
ρ + e2‖u‖2

ρ + e3‖u‖v
ρ

= ‖u‖σ
ρ

[
(1 – e2)‖u‖2–σ

ρ + e3‖u‖v–σ
ρ – e1dσ

]
,

where e1, e2, e3 > 0 are positive constants.
Then, for v ∈ [1, 2), σ ∈ [1, v), by choosing suitable 0 < ‖u‖ = rk < ρk , we can get

bk(λ) := max
u∈Yk ,‖u‖=rk

ϕρ,λ(u) < 0, ∀λ ∈ [1, 2].

We complete the proof of Lemma 3.1. �

Lemma 3.2 Suppose that (V1)–(V2), (f1), (H1)–(H3) hold. Then, for ρ ≥ ρ0, λn ∈ [1, 2],
λn → 1, u(λn) ∈ Yn with

ϕ′
ρ,λn

∣∣
Yn

(
u(λn)

)
= 0 and ϕρ,λn

(
u(λn)

) → ωk ∈ [
ck(2), bk(1)

]
, as n → ∞,

{u(λn)} has a convergent subsequence in Xρ for every k ∈ N .

Proof Assume that, for each k ∈ N , λ ∈ [1, 2], there exist a subsequence λn → 1 and
u(λn) ∈ Yn such that ϕ′

ρ,λn |Yn (u(λn)) = 0, and ϕρ,λn (u(λn)) → ωk ∈ [ck(2), bk(1)], as n → ∞.
From (2.2), (3.3), (H3) and the Hölder inequality, for ρ ≥ ρ0, λn ∈ [1, 2], λn → 1 as n → ∞

and v, p ∈ [1, 2), one has

∥∥u(λn)
∥∥2

ρ
= 2ϕρ,λn

(
u(λn)

)
+ 2λn

[∫
RN

F
(
x, u(λn)

)
dx +

1
p

∫
RN

h(x)
∣∣u(λn)

∣∣p dx
]

≤ 2(ωk + 1) + 2λn

[∫
RN

(
δ
∣∣u(λn)

∣∣2 + cδa0
∣∣u(λn)

∣∣v)dx + ‖h‖ 2
2–p

dp/2
2

∥∥u(λn)
∥∥p

ρ

]

≤ 2(ωk + 1) +
1
3
∥∥u(λn)

∥∥2
ρ

+ 4cδa0dv
∥∥u(λn)

∥∥v
ρ

+ 4‖h‖ 2
2–p

dp/2
2

∥∥u(λn)
∥∥p

ρ
,

which shows that {u(λn)} is bounded in Xρ . Then we can obtain a weakly convergent sub-
sequence of {u(λn)}. Assume u(λn) ⇀ u weakly in Xρ . By Lemma 2.1, we know u(λn) → u
strongly in Lq(RN ) for q ∈ [2, 2∗

α), which implies ‖u(λn)–u‖q → 0, as n → ∞, for q ∈ [2, 2∗
α).
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Next we prove that un → u in Xρ . By (3.1)–(3.2), we have

∥∥u(λn) – u
∥∥2

ρ
≤ 〈

ϕ′
ρ,λn

(
u(λn)

)
– ϕ′

ρ,1(u), u(λn) – u
〉

+
∫

RN

∣∣λnf
(
x, u(λn)

)
– f

(
x, u(x)

)∣∣∣∣u(λn) – u
∣∣dx

+
∫

RN
h(x)

∣∣λnu(λn) – u
∣∣p–1∣∣u(λn) – u

∣∣dx. (3.7)

Obviously,

〈
ϕ′

ρ,λn

(
u(λn)

)
– ϕ′

ρ,1(u), u(λn) – u
〉 → 0, n → ∞. (3.8)

From the condition h ∈ L
2

2–p (RN ), λn → 1, u(λn) → u in Lq(RN ), as n → ∞ and the Hölder
inequality, we have

∫
RN

h(x)
∣∣λnu(λn) – u

∣∣p–1∣∣u(λn) – u
∣∣dx ≤ ‖h‖ 2

2–p

∥∥u(λn) – u
∥∥p

2 → 0, n → ∞. (3.9)

From (H1) and the Hölder inequality, we can get

∫
RN

[
λnf

(
x, u(λn)

)
– f (x, u)

](
u(λn) – u

)
dx

≤
∫

RN

(∣∣2f
(
x, u(λn)

)∣∣ +
∣∣f (x, u)

∣∣)∣∣u(λn) – u
∣∣dx

≤
∫

RN
a0

[(|u| +
∣∣2u(λn)

∣∣) +
(|u|v–1 + 2

∣∣u(λn)
∣∣v–1)]∣∣u(λn) – u

∣∣dx

≤ 3a0
(‖u‖2

∥∥u(λn) – u
∥∥

2 + ‖u‖v–1
v

∥∥u(λn) – u
∥∥

v

)

→ 0, n → ∞. (3.10)

It follows from (3.7)–(3.10) that ‖un – u‖2
ρ → 0, which implies un → u in Xρ . �

When the nonlinearity f is asymptotically linear, we have Theorem 3.1.

Theorem 3.1 Suppose that (V1)–(V2), (f1), (H1)–(H3) hold, and F(x, –u) = F(x, u) for all
(x, u) ∈ RN × R, then, for ρ > ρ0, (1.1) possesses infinitely many small energy solutions u(k)

ρ ∈
Xρ for any k ∈ N , that is,

1
2
∥∥u(k)

ρ

∥∥2
ρ

–
∫

RN
F
(
x, u(k)

ρ

)
dx –

1
p

∫
RN

h(x)
∣∣u(k)

ρ

∣∣p dx → 0–, as k → ∞.

Proof From (f1) and (H3), we have B(u) ≥ 0 and

B(u) =
∫

RN
F(x, u) dx +

1
p

∫
RN

h(x)|u|p dx ≥ 1
p

∫
RN

h(x)|u|p dx → ∞, as ‖u‖ → ∞,

on any finite dimensional subspace of X, which shows that (A2) of Lemma 2.3 holds.
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It is easy to check that (A1) of Lemma 2.3 holds. Lemma 3.1 implies that (A3) is satisfied.
Owing to Lemma 2.3, we know that, for each k ∈ N , there exist λn → 1, u(λn) ∈ Yn such
that

ϕ′
ρ,λn

∣∣
Yn

(
u(λn)

)
= 0 and ϕρ,λn

(
u(λn)

) → ωk ∈ [
ck(2), bk(1)

]
, as n → ∞.

By Lemma 3.2, we know {u(λn)} has a convergent subsequence in Xρ . In view of
Lemma 2.3, ϕρ,1 has infinitely many nontrivial critical points u(k)

ρ ∈ Xρ \ {0} satisfying

1
2
∥∥u(k)

ρ

∥∥2
ρ

–
∫

RN
F
(
x, u(k)

ρ

)
dx –

1
p

∫
RN

h(x)
∣∣u(k)

ρ

∣∣p dx → 0–, as k → ∞

for ρ > ρ0, every k ∈ N , which implies (1.1) possesses infinitely many small energy solu-
tions. �

Lemma 3.3 Assume (V1)–(V2), (f1), (H2), (H4)–(H5) hold. Then, for ρ ≥ ρ0, there exist
ρk > rk > 0 such that

ek(λ) = inf
u∈Zk ,‖u‖=rk

ϕρ,λ(u) > fk(λ) = max
u∈Yk ,‖u‖=ρk

ϕρ,λ(u), ∀λ ∈ [1, 2].

Proof (H2) and (H4) imply that, for arbitrary ε > 0 with d2ε < 1
12 , there exists a positive

constant cε depending on ε such that

F(x, u) ≤ ε|u|2 + cεa1|u|q for all (x, u) ∈ RN × R. (3.11)

By (H5), we know that, for any θ > 0 large enough, there exists a constant ς > 0 such that,
for (x, u) ∈ RN × R and |u| > ς ,

F(x, u) ≥ θ |u|2. (3.12)

Combining (3.12) and (H2), we see that there exists S0 > 0 such that

F(x, u) ≥ θ ′|u|2 for all (x, u) ∈ RN × R, (3.13)

where θ ′ = θ – S0 – θς .
Choosing a suitable θ , we can get

θ ′d2 >
2
3

. (3.14)

From (2.3), (3.11) and the Hölder inequality, for any ρ ≥ ρ0, u ∈ Zk , q ∈ [2, 2∗
α), we have

ϕρ,λ(u) =
1
2
‖u‖2

ρ – λ

∫
RN

F(x, u) dx –
λ

p

∫
RN

h(x)|u|p dx

≥ 1
2
‖u‖2

ρ – λd2ε‖u‖2
ρ – λcεa1‖u‖q

q – λ‖h‖ 2
2–p

‖u‖p
2

≥
(

1
2

– λd2ε

)
‖u‖2

ρ – λcεa1α
q
k‖u‖q

ρ – λ‖h‖ 2
2–p

α
p
k ‖u‖p

ρ ,

where αk is defined in the proof Lemma 3.1 and αk → 0, as n → ∞.
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Let

M′ = 2α
p
k
(
cεa1α

q–p
k + ‖h‖ 2

2–p

)
.

We choose rk = (6M′)
1

2–q , then rk → ∞, as k → ∞, for q ∈ [2, 2∗
α), which implies there

exists a positive constant k0 ∈ N such that rk = (6M′)
1

2–q > 1, for k ≥ k0, k ∈ N .
Then, for λ ∈ [1, 2], k ≥ k0, k ∈ N , u ∈ Zk , ‖u‖ρ = rk = (6M′)

1
2–q > 1, we have

ek(λ) = inf
u∈Zk ,‖u‖=rk

ϕρ,λ(u) ≥ 1
3
‖u‖2

ρ – 2cεa1α
q
k‖u‖q

ρ – 2‖h‖ 2
2–p

α
p
k ‖u‖p

ρ

≥ 1
3
‖u‖2

ρ – M′‖u‖q
ρ =

1
6

r2
k =

1
6
(
6M′) 2

2–q > 0. (3.15)

Next we prove fk(λ) = maxu∈Yk ,‖u‖=ρk ϕρ,λ(u) < 0, ∀λ ∈ [1, 2].
From (2.3), (3.13)–(3.14) and the equivalence of the norms in the finite dimensional

space Yk , for λ ∈ [1, 2] and any u ∈ Yk with dim Yk < ∞, we have

ϕρ,λ(u) =
1
2
‖u‖2

ρ – λ

∫
RN

F(x, u) dx –
λ

p

∫
RN

h(x)|u|p dx

≤ 1
2
‖u‖2

ρ – θ ′d2‖u‖2
ρ

< –
1
6
‖u‖2

ρ .

Then, for any ‖u‖ = ρk > rk > 0, one has

fk(λ) = max
u∈Yk ,‖u‖=ρk

ϕρ,λ(u) < 0, ∀λ ∈ [1, 2]. (3.16)

From (3.15)–(3.16), we obtain

ek(λ) = inf
u∈Zk ,‖u‖=rk

ϕρ,λ(u) > 0 > fk(λ) = max
u∈Yk ,‖u‖=ρk

ϕρ,λ(u), ∀λ ∈ [1, 2]. �

Theorem 3.2 is about the existence of high energy solutions for (1.1) when the non-
linearity f is superlinear.

Theorem 3.2 Suppose (V1)–(V2), (f1), (H2), (H4)–(H5) hold, and F(x, –u) = F(x, u) for all
(x, u) ∈ RN × R, then, for ρ > ρ0, (1.1) possesses infinitely many high energy solutions u(k′)

ρ ∈
Xρ for any k′ ≥ k0, k′ ∈ N , in the sense that

1
2
∥∥u(k′)

ρ

∥∥2
ρ

–
∫

RN
F
(
x, u(k′)

ρ

)
dx –

1
p

∫
RN

h(x)
∣∣u(k′)

ρ

∣∣p dx → +∞, as k′ → ∞.

Proof From (H5) and the definitions of A(u) and B(u), we know B(u) ≥ 0 for u ∈ X and
A(u) → ∞ as ‖u‖ → ∞, which implies (A2) of Lemma 2.4 holds.

From (f1), (3.1) and F(x, –u) = F(x, u), it is easy to see that ϕρ,λ(u) maps a bounded set
into bounded sets uniformly for λ ∈ [1, 2], and

ϕρ,λ(–u) = ϕρ,λ(u) for all (λ, u) ∈ [1, 2] × X,
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which shows (A1) of Lemma 2.4 is satisfied. Lemma 3.3 implies (A3) holds. From
Lemma 2.4, for almost any λ ∈ [1, 2], there exists a sequence {uk′

n (λ)}∞n=1 for k′ ≥ k0, k′ ∈ N ,
such that

sup
n

∥∥uk′
n (λ)

∥∥
ρ

< ∞,

ϕ′
ρ,λ

(
uk′

n (λ)
) → 0 and ϕρ,λ

(
uk′

n (λ)
) → gk(λ), as n → ∞.

(3.17)

From Lemma 2.4, we also have gk′ (λ) = infγ∈�k′ maxu∈Bk′ ϕρ,λ(γ (u)) ≥ ek′ (λ).

Let βk′ = 1
6 (6M′)

2
2–q > 0, then βk′ → ∞, as k′ → ∞. For k′ ≥ k0, k′ ∈ N , it follows, see

(3.15), that gk′ (λ) ≥ ek′ (λ) ≥ βk′ . Then

gk′ (λ) ∈ [
βk′ ,β ′

k′
]
, (3.18)

where β ′
k = maxu∈Bk ϕρ,λ(γ (u)), �k′ = {γ ∈ C(Bk′ , Xρ) : γ is odd,γ |∂Bk′ = id} (k′ ≥ 2) with

Bk′ =
{

u ∈ Yk′ : ‖u‖ ≤ ρk′
}

.

Choose λm → 1 as m → ∞, for λm ∈ [1, 2]. Owing to (3.17), we can get the boundedness
of {uk′

n (λm)}, which implies {uk′
n (λm)} has a weakly convergent subsequence. Similar to the

proof of Lemma 3.2, we can prove that {uk′
n (λm)} has a strong convergent subsequence in

Xρ as n → ∞. Assume limn→∞ uk′
n (λm) = uk′ (λm) for m ∈ N , then it follows, see (3.17)–

(3.18), that, for k′ ≥ k0, k′ ∈ N ,

ϕ′
ρ,λm

(
uk′ (λm)

)
= 0, ϕρ,λm

(
uk′ (λm)

) ∈ [
βk′ ,β ′

k′
]
. (3.19)

Next we show {uk′ (λm)} is bounded in Xρ . We argue by contradiction. In fact, if it is not
the case, then

∥∥uk′
(λm)

∥∥
ρ

→ ∞, as m → ∞. (3.20)

Let �m = uk′
(λm)

‖uk′ (λm)‖ρ
, which shows ‖�m‖ρ = 1. Then �m has a weakly convergent subse-

quence in Xρ . By Lemma 2.1, we can see that �m has a strong convergent subsequence in
Lq(RN ), for q ∈ [2, 2∗

α]. Without loss of generality, we suppose �m → �0 strongly a.e. in
Lq(RN ), which also implies �m(x) → �0(x) for a.e. x ∈ RN .

For p ∈ [1, 2), from (f1), (3.20) and the Hölder inequality, we have

0 ≤ lim
m→∞

∫
RN h(x)|uk′ (λm)|p dx

‖uk′ (λm)‖2
ρ

≤ lim
m→∞

‖h‖ 2
2–p

dp/2
2 ‖u(λm)‖p

ρ

‖uk′ (λm)‖2
ρ

= 0. (3.21)
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Let A = {x ∈ Rn : �0(x) �= 0}. It’s easy to see that A is nonempty. For x ∈ A, λm ∈ [1, 2],
combining (3.1), (H5), (3.19)–(3.21) and Fatou’s lemma, we can get

0 ← ϕρ,λm (uk′ (λm))
‖uk′ (λm)‖2

ρ

=
1
2‖uk′ (λm)‖2

ρ – λm[
∫

RN F(x, uk′ (λm)) dx + 1
p
∫

RN h(x)|uk′ (λm)|p dx]
‖uk′ (λm)‖2

ρ

≤ 1
2

–
[∫

A

F(x, uk′ (λm))
‖uk′ (λm)‖2

ρ

dx +
1
p

∫
RN

h(x)|uk′ (λm)|p
‖uk′ (λm)‖2

ρ

dx
]

=
1
2

–
∫

A

∣∣�m(x)
∣∣2 F(x, uk′ (λm))

|uk′ (λm)|2 dx –
1
p

∫
RN

h(x)|uk′ (λm)|p
‖uk′ (λm)‖2

ρ

dx

→ –∞, as m → ∞.

This is a contradiction. Hence {uk′ (λm)} is bounded in Xρ , which shows {uk′ (λm)} has a
weakly convergent subsequence. By a similar proof to that of Lemma 3.2, we know that
{uk′ (λm)} has a strongly convergent subsequence in Xρ . Suppose

lim
m→∞ uk′

(λm) = uk′
(1) = uk′

ρ ∈ Xρ .

Then, for k′ ≥ k0, k′ ∈ N , from (3.19) and βk′ → ∞, as k′ → ∞, we have

ϕ′
ρ,1

(
uk′

ρ

)
= 0, ϕρ,1

(
uk′

ρ

) ∈ [
βk′ ,β ′

k′
] → ∞, as k′ → ∞,

which shows uk′
ρ is a nontrivial critical point of ϕρ,1. Consequently, for k′ ≥ k0, k′ ∈ N is

arbitrary, we obtain infinitely many nontrivial critical points u(k′)
ρ of ϕρ,1, which are also

the nontrivial solutions of (1.1) with high energy, that is,

1
2
∥∥u(k′)

ρ

∥∥2
ρ

–
∫

RN
F
(
x, u(k′)

ρ

)
dx –

1
p

∫
RN

h(x)
∣∣u(k′)

ρ

∣∣p dx → +∞, as k′ → ∞.

Next, we will explore the concentration phenomenon of (1.1).
We denote

X0 =
{

u ∈ L2(�) :
∫ ∫

Q

|u(x) – u(y)|2
|x – y|N+2α

dx dy < ∞, u(x) = 0 if x ∈ �c
}

, (3.22)

where Q = R2N \ (�c × �c), �c = RN \ �, � is defined in (V3). The function space X0 was
first defined by Servadei and Valdinoci in [39]. Obviously, C∞

0 (�) ⊂ X0 and X0 is a Hilbert
space with the scalar product and normal

〈u, v〉 =
∫ ∫

Q

(u(x) – u(y))(v(x) – v(y))
|x – y|N+2α

dx dy, ‖u‖2 = 〈u, u〉. �

Theorem 3.3 Assume that (V1)–(V3), (f1), (H1)–(H3) hold, and F(x, –u) = F(x, u) for
(x, u) ∈ RN × R. Let u(k)

ρ (k ∈ N ) be solutions obtained by Theorem 3.1, then u(k)
ρ → u(k)

0
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strongly in Lq(RN ) as ρ → ∞, for every k ∈ N , q ∈ [2, 2∗
α), where u(k)

0 ∈ X0, for every k ∈ N ,
are the nontrivial solutions of the following fractional Schrödinger equation:

{
(–�)αu = f (x, u) + h(x)|u|p–2u in �,
u = 0 in RN \ �.

(3.23)

Proof Let u(k)
ρn (k ∈ N ) be the nontrivial solutions obtained by Theorem 3.1, then u(k)

ρn are
the nontrivial critical points of the functional

ϕρn ,1(u) =
1
2
‖u‖2

ρn –
∫

RN
F(x, u) dx –

1
p

∫
RN

h(x)|u|p dx

and {u(k)
ρn }∞k=1 ∈ X \ {0} satisfying ϕρ,1(u(k)

ρn ) → 0– as k → ∞. From the proof of Lemma 3.2,
we know the u(k)

ρn are bounded in Xρn for any k ∈ N . Then {u(k)
ρn } has a weakly convergent

subsequence in Xρ as ρn → ∞. Assume u(k)
ρn ⇀ u(k)

0 , as ρn → ∞. From Lemma 2.1, we
know that u(k)

ρn → u(k)
0 strongly in Lq

loc(RN ) for q ∈ [2, 2∗
α], as ρn → ∞. By Lemma 2.5, we

can verify that, as ρn → ∞, u(k)
ρn → u(k)

0 strongly in Lq(RN ) for q ∈ [2, 2∗
α]. And by a standard

argument, we can prove u(k)
ρn → u(k)

0 in Xρn , as ρn → ∞.
Combining the boundedness of u(k)

ρn , the definition of ‖ ·‖ρn and Fatou’s lemma, for every
k ∈ N , one can obtain

∫
RN

V (x)
(
u(k)

0
)2 dx ≤ lim inf

ρn→∞

∫
RN

V (x)
(
u(k)

ρn

)2 dx ≤ lim inf
ρn→∞

‖u(k)
ρn ‖2

ρn

ρn
= 0.

Then we know that u(k)
0 = 0 a.e. in the set D = {x ∈ RN : V (x) �= 0}. It follows (3.22) that

u(k)
0 ∈ X0, for any k ∈ N . Hence, we have

∫
RN V (x)u(k)

ρn (x)v(x) dx = 0, for any v ∈ X0. Together
with (3.2), 〈ϕ′

ρn ,1(u(k)
ρn ), v〉 = 0, for any k ∈ N , v ∈ X0, we have

∫
RN

∫
RN

[u(k)
ρn (x) – u(k)

ρn (z)][v(x) – v(z)]
|x – z|N+2α

dx dz

–
∫

RN
f
(
x, u(k)

ρn

)
v dx –

∫
RN

h(x)
∣∣u(k)

ρn

∣∣p–2u(k)
ρn v dx = 0.

By taking the limit, we can get

∫
RN

∫
RN

[u(k)
0 (x) – u(k)

0 (z)][v(x) – v(z)]
|x – z|N+2α

dx dz

–
∫

RN
f
(
x, u(k)

0
)
v dx –

∫
RN

h(x)
∣∣u(k)

0
∣∣p–2u(k)

0 v dx = 0,

which implies the u(k)
0 ∈ X0 are nontrivial weak solutions of (3.23), for every k ∈ N . �

Theorem 3.4 Assume that (V1)–(V3), (f1), (H2), (H4)–(H5) hold, and F(x, –u) = F(x, u)
for (x, u) ∈ RN × R. Let u(k′)

ρ (k′ ≥ k0, k′ ∈ N ) be solutions obtained by Theorem 3.2, then
u(k′)

ρ → u(k′)
0 strongly in Lq(RN ) as ρ → ∞, for all k′ ≥ k0, k′ ∈ N , q ∈ [2, 2∗

α), where u(k′)
0 ∈ X0

are the nontrivial solutions of (3.23).

Proof Similarly to the proof of Theorem 3.3, we can prove Theorem 3.4. In fact, we only
should make some corresponding modifications for the high energy solutions u(k′)

ρ . �
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4 Examples
Now, we give several examples as applications of our main results.

Example 4.1

(–�)
1
2 u + ρV (x)u = (2 + sin x)|u| 5

4
(
1 + |u| 1

2
)– 3

2 sgn u

+

√
ln(1.1 + cos2 x)
e
√

e1–sin x (1 + x2)
|u| 3

2 –2u, x ∈ R2. (4.1)

From (4.1), we can see that

α = 1/2, 2α = 1 < N = 2, p =
3
2

,

f (x, u) = (2 + sin x)|u| 5
4
(
1 + |u| 1

2
)– 3

2 sgn u ∈ C
(
R2 × R, R

)

and

h(x) =

√
ln(1.1 + cos2 x)
e
√

e1–sin x (1 + x2)
.

Let

V (x) =

⎧⎪⎨
⎪⎩

0, |x| ≤ 1;
2(|x| – 1), 1 < |x| ≤ 2;
|x|, |x| > 2.

Then we can easily show (V1)–(V2) are satisfied.
Obviously, h(x) > 0 and h2(x) = ln(1.1+cos2 x)

e
√

e1–sin x (1+x2)
≤ 1

1+x2 , which shows h(x) ∈ L2(R). Hence
(f1) holds.

From (4.1), we have

∣∣f (x, u)
∣∣ =

∣∣(2 + sin x)|u| 5
4
(
1 + |u| 1

2
)– 3

2
∣∣ ≤ 3

(
1 + |u| 3

2 –1),

with a0 = 3, v = 3
2 , which shows that (H1) is satisfied.

Also we can get

lim|u|→0

f (x, u)
|u| = lim|u|→0

(2 + sin x)|u| 1
4 sgn u

(1 + |u| 1
2 ) 3

2
= 0,

which implies that (H2) holds.
We also find F(x, u) =

∫ u
0 f (x, τ ) dτ ≥ 0. For σ ∈ [1, v = 3

2 ), it follows by the L’Hospital rule
that

lim|u|→∞
F(x, u)
|u|σ = lim|u|→∞

∫ u
0 f (x, τ ) dτ

|u|σ = lim|u|→∞
|f (x, u)|
σ |u|σ–1 > lim|u|→∞

|u| 3
4

2(1 + |u| 1
2 ) 3

2
=

1
2

.

Then (H3) also holds.
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We can also easily verify that F(x, –u) = F(x, u). Then all the conditions of Theorem 3.1
hold. Consequently, (4.1) has infinitely many small energy solutions u(k)

ρ ∈ Xρ , for ρ > ρ0

and any k ∈ N .
We can also see that � = int V –1(0) is a nonempty open set and the boundary is smooth,

which shows (V3) holds. Hence, by Theorem 3.3, we know that we have the following
equation:

⎧⎨
⎩

(–�) 1
2 u = (2 + sin x)|u| 5

4 (1 + |u| 1
2 )– 3

2 sgn u +
√

ln(1.1+cos2 x)

e
√

e1–sin x (1+x2)
|u| 3

2 –2u in �,

u = 0 in RN \ �.

It possesses infinitely many nontrivial solutions u(k)
0 ∈ X0 satisfying u(k)

ρ → u(k)
0 strongly in

Lq(RN ) as ρ → ∞, for q ∈ [2, 2∗
α) = [2, 4) and every k ∈ N .

Example 4.2

(–�)
1
2 u + ρVu =

8(sin2 x)u5/3

9
+

ln(1.3 + | sin x2|)
e|x|√(1 + x2)

|u| 3
2 –2u, x ∈ R2. (4.2)

Obviously, from (4.2), we have

α =
1
2

, N = 2, p =
3
2

,

f (x, u) =
8(sin2 x)u5/3

9
∈ C

(
R2 × R, R

)

and

h(x) =
ln(1.3 + | sin x2|)

e|x|√(1 + x2)
.

Then 0 < h(x) = ln(1.3+| sin x2|)
e|x|√(1+x2)

∈ L2(R), which implies (f1) is satisfied.

From (4.2), we know 2α = 1 < N = 2, F(x, u) = (sin2 x)u8/3

3 ≥ 0, and

∣∣f (x, u)
∣∣ =

∣∣∣∣8(sin2 x)u5/3

9

∣∣∣∣ <
(
1 + |u| 8

3 –1), lim|u|→0

|f (x, u)|
|u| = lim|u|→0

8(sin2 x)u2/3

9
= 0,

lim|u|→∞
F(x, u)
|u|2 = lim|u|→∞

(sin2 x)u2/3

3
= ∞,

with q = 8
3 ∈ [2, 2∗

α = 4), a1 = 1, which shows that (H4)–(H5) of Theorem 3.2 hold.
Let V (x) be the same function as in (4.1), then the conditions (V1)–(V3) are all satisfied.
It is also easy to check F(x, –u) = F(x, u). In view of Theorem 3.2, for ρ > ρ0, k′ ≥ k0,

k′ ∈ N , (4.2) has infinitely many high energy solutions u(k′)
ρ ∈ Xρ .

Owing to Theorem 3.4, we know that we have the following fractional Schrödinger equa-
tion:

⎧⎨
⎩

(–�) 1
2 u = 8(sin2 x)u5/3

9 + ln(1.3+| sin x2|)
e|x|√(1+x2)

|u| 3
2 –2u in �,

u = 0 in RN \ �.
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It has infinitely many nontrivial solutions u(k′)
0 ∈ X0, satisfying u(k′)

ρ → u(k′)
0 , strongly in

Lq(RN ) as ρ → ∞, for q ∈ [2, 2∗
α) = [2, 4) and k′ ≥ k0, k′ ∈ N .
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