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Abstract
This paper is concerned with the uniqueness of positive solutions for a class of
singular fractional differential equations with integral boundary conditions. The
nonlinear term and boundary conditions of fractional differential equation contain
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1 Introduction
In this paper, we investigate the uniqueness of positive solutions for the following class of
nonlinear singular fractional differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + f (t, u(t), Dα1

0+ u(t), Dα2
0+ u(t), . . . , Dαn–2

0+ u(t)) = 0, t ∈ (0, 1),

u(0) = Dγ1
0+ u(0) = Dγ2

0+ u(0) = · · · = Dγn–2
0+ u(0) = 0,

Dβ1
0+ u(1) =

∫ η

0 h(s)Dβ2
0+ u(s) dA(s) +

∫ 1
0 a(s)Dβ3

0+ u(s) dA(s),

(1.1)

where Dα
0+ u, Dαk

0+ u, Dγk
0+ u (k = 1, 2, . . . , n–2), and Dβi

0+ u (i = 1, 2, 3) are the standard Riemann–
Liouville derivatives and n – 1 < α ≤ n, k – 1 < αk ,γk ≤ k (k = 1, 2, . . . , n – 2), n – k – 1 <
α –αk ≤ n – k, n – k – 1 < α –γk ≤ n – k (k = 1, 2, . . . , n – 2), γn–2 –αn–2 ≥ 0, β1 ≥ β2,β1 ≥ β3,
α – βi > 1, βi – αn–2 ≥ 0 (i = 1, 2, 3), f : (0, 1) × (0, +∞)n–1 → R

1
+ = [0, +∞) is con-

tinuous and a, h ∈ C(0, 1), A is a function of bounded variation,
∫ η

0 h(s)Dβ2
0+ u(s) dA(s),

∫ 1
0 a(s)Dβ3

0+ u(s) dA(s) denote the Riemann–Stieltjes integral with respect to A.
Fractional differential equations arise in the mathematical modeling of systems and pro-

cesses occurring in many engineering and scientific disciplines such as physics, chemistry,
polymer rheology, control theory, diffusive transport akin to diffusion, electrical networks,
probability, etc. For details, see [1–5] and the references therein. Fractional-order differ-
ential equations and integral operators are found to be a better tool for the description of
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hereditary properties of various materials and processes than the corresponding integer-
order differential equations. The topic of fractional-order boundary value problems has
been intensively studied by several researchers, see [1–31] and the references therein, and
a great deal of results have been developed for differential and integral boundary value
problems. The existence and uniqueness of positive solutions for such problems have be-
come an important area of investigation in recent years. These studies mainly use the fixed
point theory in cones.

In [6], Bai and Sun investigated the following fractional differential equations:

⎧
⎨

⎩

Dα
0+ u(t) + f (t, u(t), Dν

0+ u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = u′′(1) = 0,

where α,ν,μ ∈ R
1
+, 3 < α ≤ 4, 0 < ν ≤ 1 are real numbers, f : [0, 1] × R

3 → R
1 =

(–∞, +∞) satisfies the local Carathéodory conditions, f (t, x, y, z) is singular at x, y, z = 0,
and Dν

0+ , Dμ

0+ , Dα
0+ are the Riemann–Liouville fractional derivatives. The authors obtained

the existence and multiplicity of positive solutions by means of Krasnosel’skii’s fixed point.
In [7], by means of a fixed point theorem of the mixed monotone operator, Zhang et

al. investigated the uniqueness of positive solutions for the fractional differential equation
with integral boundary conditions:

⎧
⎨

⎩

–Dβ
t (ϕp(–Dα

t x))(t) = f (x(t), Dγ
t x(t)), t ∈ (0, 1),

Dα
t x(0) = Dα+1

t x(0) = Dα
t x(1) = 0, Dγ

t x(0) = 0, Dγ
t x(1) =

∫ 1
0 Dγ

t x(s) dA(s),

where α,ν,μ ∈ R
1
+, 0 < γ ≤ 1 < α ≤ 2 < β < 3, α – γ > 1, Dα

t , Dβ
t , Dγ

t are the standard
Riemann–Liouville derivatives,

∫ 1
0 x(s) dA(s) is denoted by a Riemann–Stieltjes integral,

A is a function of bounded variation, and dA can be a signed measure. The p-Laplacian
operator is defined as ϕp(s) = |s|p–2s, p > 2, and f (t, u, v) may be singular at both u = 0 and
v = 0.

In [9], Cabada and Wang studied the existence of positive solutions of the following
nonlinear factional differential equation with integral boundary conditions:

⎧
⎨

⎩

Dα
0+ u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) = λ
∫ 1

0 u(s) ds,

where 2 < α ≤ 3, 0 < λ,λ �= α, Dα
0+ is the standard Riemann–Liouville fractional derivative,

and f : [0, 1] ×R
1
+ →R

1
+ is a continuous function.

In [12], by means of fixed point theory, Qarout et al. investigated the existence and
uniqueness of solutions for the following nonlinear fractional differential equation with
multi-point strip boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

cDq
0+ x(t) = f (t, x(t)), n – 1 < q ≤ n, 0 ≤ t ≤ 1,

x(0) = x′(0) = x′′(0) = · · · = xn–2(0) = 0,

x(1) = a
∫ ξ

0 x(s) ds + b
∑m–2

i=1 αix(ηi),
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where cDα
0+ denote the Caputo fractional derivative of order q, 0 < ξ < η1 < η2 < · · · < ηn–2 <

1, f : [0, 1] ×R
1 → R

1 is a given continuous function, a and b are real constants, and α
,
i s

are positive real constants.
Motivated by the above mentioned works, we aim to establish the uniqueness of positive

solutions for the fractional differential equation BVP (1.1). Different from the previous
paper, the main features of the present paper are as follows. Firstly, the nonlinearity f
is allowed to depend on higher derivatives of unknown functions, and we allow f to be
singular at t = 0, 1 and xi = 0 (i = 0, 1, . . . , n – 2). Secondly, the fractional derivatives in
the boundary conditions can be different; at the same time, the higher derivatives in the
nonlinearity f are also different from the fractional derivatives in the integral boundary
conditions; and the boundary conditions of fractional differential BVP (1.1) contain [7,
9] as special cases. The boundary conditions involving fractional derivatives of unknown
function are more general cases, which covers the multi-point boundary conditions and
integral boundary conditions as special cases. Thirdly, the conclusion and the proof used
in this paper are different from the known papers.

The paper is organized as follows. In Sect. 2, we present some preliminaries and lemmas
that are to be used to prove our main results. We also develop some properties of the Green
function. In Sect. 3, we discuss the existence of positive solutions of BVP (1.1). In Sect. 4,
an example is presented to demonstrate the application of our main results.

2 Preliminaries and lemmas
In this section, for the convenience of the reader, we present some notations and lemmas
that will be used in the proof of our main results. They can be found in the literature, see
[1, 5, 8, 11, 12].

Definition 2.1 ([1, 5]) The Riemann–Liouville fractional integral of order α > 0 of a func-
tion y : (0,∞) →R

1 is given by

Iα
0+ y(t) =

1

(α)

∫ t

0
(t – s)α–1y(s) ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 ([1, 5]) The Riemann–Liouville fractional derivative of order α > 0 of a
continuous function y : (0,∞) →R

1 is given by

Dα
0+ y(t) =

1

(n – α)

(
d
dt

)n ∫ t

0

y(s)
(t – s)α–n+1 ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is pointwise defined on (0, ∞).

Lemma 2.1 ([1]) Let α > 0. If we assume u ∈ C(0, 1) ∩ L1(0, 1), then the fractional differen-
tial equation

Dα
0+ u(t) = 0
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has

u(t) = C1tα–1 + C2tα–2 + · · · + CN tα–N ,

for some Ci ∈R
1 (i = 1, 2, . . . , N), as the unique solution, where N = [α] + 1.

Lemma 2.2 ([1]) Assume that u ∈ C(0, 1) ∩ L1(0, 1) with a fractional derivative of order
α > 0 that belongs to C(0, 1) ∩ L1(0, 1). Then

Iα
0+ Dα

0+ u(t) = u(t) + C1tα–1 + C2tα–2 + · · · + CN tα–N

for some Ci ∈R
1 (i = 1, 2, . . . , N), where N = [α] + 1.

Lemma 2.3 ([1]) If x ∈ L1(0, 1),α > β > 0, then

Iα
0+ Iβ

0+ x(t) = Iα+β

0+ x(t), Dβ

0+ Iα
0+ x(t) = Iα–β

0+ x(t), Dβ

0+ Iβ

0+ x(t) = x(t).

Lemma 2.4 (Auxiliary lemma) Given y ∈ C(0, 1)∩L1(0, 1), n – 1 < α ≤ n, and the following
condition is satisfied:

(H)

(α – β1)

(α – β2)

∫ η

0
h(t)tα–β2–1 dA(t) +


(α – β1)

(α – β3)

∫ 1

0
a(t)tα–β3–1 dA(t) < 1,

the unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

Dα–αn–2
0+ x(t) + y(t) = 0, 0 < t < 1,

Dγn–2–αn–2
0+ x(0) = 0,

Dβ1–αn–2
0+ x(1) =

∫ η

0 h(s)Dβ2–αn–2
0+ x(s) dA(s) +

∫ 1
0 a(s)Dβ3–αn–2

0+ x(s) dA(s)

(2.1)

is

x(t) =
∫ 1

0
G(t, s)y(s) ds, t ∈ [0, 1], (2.2)

where

G(t, s) = G1(t, s) +
tα–αn–2–1


(α – β2)
�–1

∫ η

0
h(t)G2(t, s) dA(t)

+
tα–αn–2–1


(α – β3)
�–1

∫ 1

0
a(t)G3(t, s) dA(t),
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in which

δ1 :=
∫ η

0
h(t)tα–β2–1 dA(t), δ2 :=

∫ 1

0
a(t)tα–β3–1 dA(t),

� =
1


(α – β1)
–

1

(α – β2)

δ1 –
1


(α – β3)
δ2 > 0,

G1(t, s) =
1


(α – αn–2)

⎧
⎪⎪⎨

⎪⎪⎩

tα–αn–2–1(1 – s)α–β1–1 – (t – s)α–αn–2–1,

0 ≤ s ≤ t ≤ 1,

tα–αn–2–1(1 – s)α–β1–1, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
1


(α – αn–2)

⎧
⎪⎪⎨

⎪⎪⎩

tα–β2–1(1 – s)α–β1–1 – (t – s)α–β2–1,

0 ≤ s ≤ t ≤ 1,

tα–β2–1(1 – s)α–β1–1, 0 ≤ t ≤ s ≤ 1,

G3(t, s) =
1


(α – αn–2)

⎧
⎪⎪⎨

⎪⎪⎩

tα–β3–1(1 – s)α–β1–1 – (t – s)α–β3–1,

0 ≤ s ≤ t ≤ 1,

tα–β3–1(1 – s)α–β1–1, 0 ≤ t ≤ s ≤ 1.

(2.3)

Proof We may apply Lemma 2.2 to reduce (2.1) to an equivalent integral equation

x(t) = –Iα–αn–2
0+ y(t) + C1tα–αn–2–1 + C2tα–αn–2–2

for some Ci ∈ R
1 (i = 1, 2). Consequently, the general solution of (2.1) is

x(t) = –
1


(α – αn–2)

∫ t

0
(t – s)α–αn–2–1y(s) ds + C1tα–αn–2–1 + C2tα–αn–2–2. (2.4)

By (2.4) and Lemma 2.3, we have

Dγn–2–αn–2
0+ x(t)

= –Dγn–2–αn–2
0+ Iα–αn–2

0+ y(t) + C1Dγn–2–αn–2
0+ tα–αn–2–1

+ C2Dγn–2–αn–2
0+ tα–αn–2–2

= –Iα–γn–2
0+ y(t) + C1


(α – αn–2)

(α – γn–2)

tα–γn–2–1 + C2

(α – αn–2 – 1)

(α – γn–2 – 1)

tα–γn–2–2

= –
∫ t

0

(t – s)α–γn–2–1


(α – γn–2)
y(s) ds + C1


(α – αn–2)

(α – γn–2)

tα–γn–2–1

+ C2

(α – αn–2 – 1)

(α – γn–2 – 1)

tα–γn–2–2. (2.5)

Considering the fact that Dγn–2–αn–2
0+ x(0) = 0, one gets that C2 = 0 by (2.5). Then we obtain

x(t) = –
1


(α – αn–2)

∫ t

0
(t – s)α–αn–2–1y(s) ds + C1tα–αn–2–1. (2.6)
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By (2.6) and Lemma 2.3, we have

Dβi–αn–2
0+ x(t) = –Dβi–αn–2

0+ Iα–αn–2
0+ y(t) + C1Dβi–αn–2

0+ tα–αn–2–1

= –Iα–βi
0+ y(t) + C1


(α – αn–2)

(α – βi)

tα–βi–1

= –
∫ t

0

(t – s)α–βi–1


(α – βi)
y(s) ds + C1


(α – αn–2)

(α – βi)

tα–βi–1. (2.7)

So, from (2.7), we have

Dβ1–αn–2
0+ x(1) = –

∫ 1

0

(1 – s)α–β1–1


(α – β1)
y(s) ds + C1


(α – αn–2)

(α – β1)

,

Dβ2–αn–2
0+ x(t) = –

∫ t

0

(t – s)α–β2–1


(α – β2)
y(s) ds + C1


(α – αn–2)

(α – β2)

tα–β2–1,

Dβ3–αn–2
0+ x(t) = –

∫ t

0

(t – s)α–β3–1


(α – β3)
y(s) ds + C1


(α – αn–2)

(α – β3)

tα–β3–1.

(2.8)

On the other hand, by

Dβ1–αn–2
0+ x(1) =

∫ η

0
h(s)Dβ2–αn–2

0+ x(s) dA(s) +
∫ 1

0
a(s)Dβ3–αn–2

0+ x(s) dA(s)

combining with (2.8), we obtain

C1 =
[

(α – αn–2)�

]–1
(∫ 1

0

(1 – s)α–β1–1


(α – β1)
y(s) ds –

∫ η

0
h(t)

∫ t

0

(t – s)α–β2–1


(α – β2)
y(s) ds dA(t)

–
∫ 1

0
a(t)

∫ t

0

(t – s)α–β3–1


(α – β3)
y(s) ds dA(t)

)

.

So, substituting C1 into (2.6), one has the unique solution of problem (2.1):

x(t) = –
1


(α – αn–2)

∫ t

0
(t – s)α–αn–2–1y(s) ds

+ tα–αn–2–1[
(α – αn–2)�
]–1

(∫ 1

0

(1 – s)α–β1–1


(α – β1)
y(s) ds

–
∫ η

0
h(t)

∫ t

0

(t – s)α–β2–1


(α – β2)
y(s) ds dA(t) –

∫ 1

0
a(t)

∫ t

0

(t – s)α–β3–1


(α – β3)
y(s) ds dA(t)

)

= –
1


(α – αn–2)

∫ t

0
(t – s)α–αn–2–1y(s) ds +

[
tα–αn–2–1


(α – αn–2)

+
(

(α – αn–2)�

)–1
(

δ1tα–αn–2–1


(α – β2)
+

δ2tα–αn–2–1


(α – β3)

)]∫ 1

0
(1 – s)α–β1–1y(s) ds

–
[

(α – αn–2)�

]–1 tα–αn–2–1


(α – β2)

∫ η

0
h(t)

∫ t

0
(t – s)α–β2–1y(s) ds

–
[

(α – αn–2)�

]–1 tα–αn–2–1


(α – β3)

∫ 1

0
a(t)

∫ t

0
(t – s)α–β3–1y(s) ds

= –
1


(α – αn–2)

∫ t

0
(t – s)α–αn–2–1y(s) ds
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+
1


(α – αn–2)

∫ 1

0
tα–αn–2–1(1 – s)α–β1–1y(s) ds

+
[

(α – αn–2)�

]–1 tα–αn–2–1


(α – β2)

∫ η

0
h(t)

∫ 1

0
tα–β2–1(1 – s)α–β1–1y(s) ds dA(t)

+
[

(α – αn–2)�

]–1 tα–αn–2–1


(α – β3)

∫ 1

0
a(t)

∫ 1

0
tα–β3–1(1 – s)α–β1–1y(s) ds dA(t)

–
[

(α – αn–2)�

]–1 tα–αn–2–1


(α – β2)

∫ η

0
h(t)

∫ t

0
(t – s)α–β2–1y(s) ds dA(t)

–
[

(α – αn–2)�

]–1 tα–αn–2–1


(α – β3)

∫ 1

0
a(t)

∫ t

0
(t – s)α–β3–1y(s) ds dA(t)

=
∫ 1

0

[

G1(t, s) + �–1 tα–αn–2–1


(α – β2)

∫ η

0
h(t)G2(t, s) dA(t)

+ �–1 tα–αn–2–1


(α – β3)

∫ 1

0
a(t)G3(t, s) dA(t)

]

y(s) ds.

The proof is complete. �

Lemma 2.5 If the condition (H) in Lemma 2.4 is satisfied, the Green function G(t, s) defined
by (2.3) satisfies

(1) G(t, s) > 0, for all t, s ∈ (0, 1);
(2) G1(t, s) ≤ tα–αn–2–1


(α–αn–2) , G2(t, s) ≤ 1

(α–αn–2) , G3(t, s) ≤ 1


(α–αn–2) for all t, s ∈ [0, 1];
(3) For any t, s ∈ [0, 1], we have

tα–αn–2–1l1(s) ≤ G(t, s) ≤ L1tα–αn–2–1,

where

l1(s) =
�–1


(α – β2)

∫ η

0
h(t)G2(t, s) dA(t)

+
�–1


(α – β3)

∫ 1

0
a(t)G3(t, s) dA(t),

L1 =
1


(α – αn–2)
+

�–1


(α – β2)
1


(α – αn–2)

∫ η

0
h(t) dA(t)

+
�–1


(α – β3)
1


(α – αn–2)

∫ 1

0
a(t) dA(t).

Proof The proof is similar to that for Lemma 3 in [19], we omit it here. �

Let u(t) = Iαn–2
0+ x(t), x(t) ∈ C[0, 1], then Dαn–2

0+ u(t) = x(t), problem (1.1) can turn into the
following modified problem of BVP (2.9):

⎧
⎪⎪⎨

⎪⎪⎩

Dα–αn–2
0+ x(t) + f (t, Iαn–2

0+ x(t), Iαn–2–α1
0+ x(t), . . . , x(t)) = 0, t ∈ (0, 1),

Dγn–2–αn–2
0+ x(0) = 0,

Dβ1–αn–2
0+ x(1) =

∫ η

0 h(s)Dβ2–αn–2
0+ x(s) dA(s) +

∫ 1
0 a(s)Dβ3–αn–2

0+ x(s) dA(s).

(2.9)
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Obviously, the solution of BVP (2.9) is

x(t) =
∫ 1

0
G(t, s)f

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s)

)
ds. (2.10)

Lemma 2.6 If x ∈ C[0, 1] is a positive solution of BVP (2.9), let u(t) = Iαn–2
0+ x(t), x(t) ∈

C[0, 1], then u(t) = Iαn–2
0+ x(t) is a positive solution of BVP (1.1).

Proof The proof is similar to that for Lemma 2.5 in [21], we omit it here. �

Suppose that (E,‖ · ‖) is a Banach space and θ is the zero element of E. A nonempty
closed convex set P ⊂ E is a cone if it satisfies (1) x ∈ P,λ ≥ 0 ⇒ λx ∈ P; (2) x ∈ P, –x ∈
P ⇒ x = θ . Moreover, P is called normal if there exists a constant N > 0 such that, for
all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where the smallest N is called the normal-
ity constant of P. Let P be a normal cone of a Banach space E, and e ∈ P, e > θ . De-
fine a component of P by Pe = {u ∈ P : there exist constants c, C > 0 such that ce ≤ u ≤
Ce}.

Definition 2.3 ([8]) A : P × P → P is said to be a mixed monotone operator if A(x, y)
is increasing in x and decreasing in y, i.e., ui, vi (i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2, im-
ply A(u1, v1) ≤ A(u2, v2). An element x ∈ P is called a fixed point of A if A(x, x) =
x.

Lemma 2.7 ([10, 24, 28]) Let P be a normal cone in a real Banach space E, e > 0, Pe is a
component of P. Assume that A, B : Pe × Pe → Pe are two mixed monotone operators and
satisfy the following three conditions:

(1) For any t ∈ (0, 1), there exists ϕ(t) ∈ (0, 1] such that

A
(
tx, t–1y

) ≥ ϕ(t)A(x, y), ∀x, y ∈ Pe;

(2) For any t ∈ (0, 1), x, y ∈ Pe,

B
(
tx, t–1y

) ≥ tB(x, y);

(3) There exists a constant δ0 > 0 such that B(x, y) ≤ δ0A(x, y), ∀x, y ∈ Pe. Then the
operator equation T(x, x) � A(x, x) + B(x, x) = x has a unique positive solution x∗ in
P, which satisfies ce ≤ x∗ ≤ Ce, where c, C > 0 are two real numbers. And for any
initial values x0, y0 ∈ Pe, by constructing successively the sequences as follows:

xn = T(xn–1, yn–1), yn = T(yn–1, xn–1), n = 1, 2, . . . ,

we have xn → x∗ and yn → y∗ in E, as n → ∞.

Lemma 2.8 ([10, 24, 28]) Let P be a normal cone in a real Banach space E. Assume that
T = A + B : Pe × Pe → Pe is a mixed monotone operator and A, B satisfy the conditions of
Lemma 2.7 for ϕ(t) = tβ (0 < β < 1). If x∗

λ ∈ Pe is a unique solution of the equation

T(x, x) = λx, λ > 0,
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then
(1) For any λ0 ∈ (0, +∞], ‖x∗

λ – x∗
λ0

‖ → 0, λ → λ0.
(2) If 0 < β < 1

2 , then 0 < λ1 < λ2 implies x∗
λ1

� x∗
λ2

and limλ→∞ ‖x∗
λ‖ = 0,

limλ→0+ ‖x∗
λ‖ = ∞.

We here define a normal cone of the Banach space E = C[0, 1] by P = {u ∈ E : u(t) ≥
0, 0 ≤ t ≤ 1}, and we also define a component Pe = {u ∈ P : ∃M ∈ (0, 1), Me ≤ u ≤ 1

M e} of P,
where e(t) = tα–αn–2–1 ∈ P, t ∈ [0, 1].

3 Uniqueness of a positive solution for BVP
Theorem 3.1 The fractional BVP (1.1) has a unique positive solution u∗ with

M

(α – αn–2)


(α)
tα–1 ≤ u∗(t) ≤ 1

M

(α – αn–2)


(α)
tα–1

if the following conditions are satisfied:
(H1) For any t ∈ (0, 1) and xi ∈ (0, +∞) (i = 0, 1, 2, . . . , n – 2), f (t, x0, x1, . . . , xn–2) =

g(t, x0, x1, . . . , xn–2; x0, x1, . . . , xn–2)+φ(t, x0, x1, . . . , xn–2; x0, x1, . . . , xn–2) with g ∈ C((0,
1) × (0, +∞)2(n–1),R1

+), φ ∈ C((0, 1) × (0, +∞)2(n–1),R1
+).

(H2) For any fixed t ∈ (0, 1) and yi ∈ (0, +∞) (i = 0, 1, 2, . . . , n–2), g(t, x0, x1, . . . , xn–2, y0, y1,
. . . , yn–2) and φ(t, x0, x1, . . . , xn–2, y0, y1, . . . , yn–2) are increasing in xi ∈ (0, +∞), for
any fixed t ∈ (0, 1) and xi ∈ (0, +∞) (i = 0, 1, 2, . . . , n–2), g(t, x0, x1, . . . , xn–2, y0, y1, . . . ,
yn–2) and φ(t, x0, x1, . . . , xn–2, y0, y1, . . . , yn–2) are decreasing in yi ∈ (0, +∞).

(H3) For any τ ∈ (0, 1), t ∈ (0, 1), there exists ϕ(τ ) ∈ (τ , 1] such that, for all xi, yi ∈
(0, +∞) (i = 0, 1, 2, . . . , n – 2),

g
(
t, τx0, τx1, . . . , τxn–2, τ–1y0, τ–1y1, . . . , τ–1yn–2

)

≥ ϕ(τ )g(t, x0, x1, . . . , xn–2, y0, y1, . . . , yn–2),

φ
(
t, τx0, τx1, . . . , τxn–2, τ–1y0, τ–1y1, . . . , τ–1yn–2

)

≥ τφ(t, x0, x1, . . . , xn–2, y0, y1, . . . , yn–2).

(H4) For any fixed t ∈ (0, 1) and xi, yi ∈ (0, +∞) (i = 0, 1, 2, . . . , n – 2), there exists a con-
stant δ0 > 0 such that

φ(t, x0, x1, . . . , xn–2, y0, y1, . . . , yn–2) ≤ δ0g(t, x0, x1, . . . , xn–2, y0, y1, . . . , yn–2).

(H5) The functions g and φ satisfy

0 <
∫ 1

0
g
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds < +∞,

0 <
∫ 1

0
φ
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds < +∞.

Proof We first consider the existence of a positive solution to BVP (2.9), BVP (2.9) has an
integral formulation given by

x(t) =
∫ 1

0
G(t, s)f

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s)

)
ds,
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where G(t, s) is given as in (2.2). Define three integral operators A, B, T : Pe × Pe → P by

A(x, y)(t) =
∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y(s), Iαn–2–α1
0+ y(s),

. . . , y(s)
)

ds,

B(x, y)(t) =
∫ 1

0
G(t, s)φ

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y(s), Iαn–2–α1
0+ y(s),

. . . , y(s)
)

ds,

T(x, y) = A(x, y) + B(x, y).

It is easy to prove that x is the solution of BVP (2.9) if and only of T in Pe has a fixed point x,
that is, x = T(x, x) = A(x, x) + B(x, x).

First of all, we prove that A, B : Pe ×Pe → P are well defined. For any x, y ∈ Pe, there exists
a constant M ∈ (0, 1) such that Me ≤ x ≤ 1

M e, Me ≤ y ≤ 1
M e. Moreover, by Definition 2.1,

for any t ∈ [0, 1], we can obtain that

0 ≤ Iαn–2–αi
0+ e(t) =

1

(αn–2 – αi)

∫ t

0
(t – s)αn–2–αi–1sα–αn–2–1 ds

=
B(αn–2 – αi,α – αn–2)


(αn–2 – αi)
tα–αi–1

=

(α – αn–2)

(α – αi)

tα–αi–1 ≤ 1, i = 0, 1, 2, . . . , n – 2.

Thus, by (H2), (H3), (H5) and (3) in Lemma 2.5, for any t ∈ [0, 1], we have

A(x, y)(t) ≤
∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y(s),

Iαn–2–α1
0+ y(s), . . . , y(s)

)
ds

≤
∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ M–1e(s), Iαn–2–α1
0+ M–1e(s), . . . , M–1e(s),

Iαn–2
0+ Me(s), Iαn–2–α1

0+ Me(s), . . . , Me(s)
)

ds

≤
∫ 1

0
G(t, s)g

(
s, M–1, M–1, . . . , M–1, Mωsα–1, Mωsα–α1–1, . . . ,

Mωsα–αn–2–1)ds

≤
∫ 1

0
G(t, s)g

(

s,
1

Mω
,

1
Mω

, . . . ,
1

Mω
, Mωsα–1,

Mωsα–1, . . . , Mωsα–1
)

ds

≤ 1
ϕ(Mω)

L1e(t)
∫ 1

0
g
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds

< +∞, (3.1)
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where

0 < ω < min

{

1,

(α – αn–2)


(α)
,

(α – αn–2)

(α – α1)

, . . . ,

(α – αn–2)

(α – αn–3)

}

.

Analogously, for any t ∈ [0, 1], we have

B(x, y)(t) ≤ 1
Mω

L1e(t)
∫ 1

0
φ
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds

< +∞. (3.2)

So, A, B : Pe × Pe → P are well defined, therefore T : Pe × Pe → P is well defined.
Next, we show T : Pe × Pe → Pe. But we first show that A, B : Pe × Pe → Pe. Taking

0 < M < 1 satisfies

M < min

{(
1

ϕ(Mω)
L1

∫ 1

0
g
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds

+
1

Mω
L1

∫ 1

0
φ
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds

)–1

,

ϕ(Mω)
∫ 1

0
l1(s)g

(
s, sα–1, sα–1, . . . , sα–1, 1, 1, . . . , 1

)
ds,

Mω

∫ 1

0
l1(s)φ

(
s, sα–1, sα–1, . . . , sα–1, 1, 1, . . . , 1

)
ds

}

. (3.3)

It follows from (3.1)–(3.3) that

A(x, y)(t) ≤ 1
ϕ(Mω)

L1tα–αn–2–1
∫ 1

0
g
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds

≤ M–1tα–αn–2–1

= M–1e(t), t ∈ [0, 1],

B(x, y)(t) ≤ 1
Mω

L1tα–αn–2–1
∫ 1

0
φ
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds

≤ M–1tα–αn–2–1

= M–1e(t), t ∈ [0, 1].

Hence,

T(x, y)(t) ≤ 1
ϕ(Mω)

L1tα–αn–2–1
∫ 1

0
g
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds

+
1

Mω
L1tα–αn–2–1

∫ 1

0
φ
(
s, 1, 1, . . . , 1, sα–1, sα–1, . . . , sα–1)ds

≤ M–1tα–αn–2–1

= M–1e(t), t ∈ [0, 1].
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On the other hand, by (H2), (H3), (3.3), and (3) in Lemma 2.5, for any t ∈ [0, 1], we have

A(x, y)(t) =
∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y(s), Iαn–2–α1
0+ y(s),

. . . , y(s)
)

ds

≥
∫ 1

0
G(t, s)g

(

s, Iαn–2
0+ Me(s), Iαn–2–α1

0+ Me(s), . . . , Me(s), Iαn–2
0+

1
M

e(s),

Iαn–2–α1
0+

1
M

e(s), . . . ,
1
M

e(s)
)

ds

≥
∫ 1

0
G(t, s)g

(

s, Mωsα–1, Mωsα–α1–1, . . . , Mωsα–αn–2–1,
1

Mω
sα–αn–2–1,

1
Mω

sα–αn–2–1, . . . ,
1

Mω
sα–αn–2–1

)

ds

≥
∫ 1

0
G(t, s)g

(

s, Mωsα–1, Mωsα–1, . . . , Mωsα–1,
1

Mω
sα–αn–2–1,

1
Mω

sα–αn–2–1, . . . ,
1

Mω
sα–αn–2–1

)

ds

≥ ϕ(Mω)tα–αn–2–1
∫ 1

0
l1(s)g

(
s, sα–1, sα–1, . . . , sα–1, 1, 1, . . . , 1

)
ds

≥ Mtα–αn–2–1

= Me(t).

Similarly, for any t ∈ [0, 1], we have

B(x, y)(t) ≥ Mωtα–αn–2–1
∫ 1

0
l1(s)φ

(
s, sα–1, sα–1, . . . , sα–1, 1, 1, . . . , 1

)
ds

≥ Mtα–αn–2–1

= Me(t).

Hence,

T(x, y)(t) ≥ ϕ(Mω)tα–αn–2–1
∫ 1

0
l1(s)g

(
s, sα–1, sα–1, . . . , sα–1, 1, 1, . . . , 1

)
ds

+ Mωtα–αn–2–1
∫ 1

0
l1(s)φ

(
s, sα–1, sα–1, . . . , sα–1, 1, 1, . . . , 1

)
ds

≥ Mtα–αn–2–1

= Me(t).

So, A, B, T : Pe × Pe → Pe.
In the following, we prove that T , A, B : Pe × Pe → Pe are three mixed monotone oper-

ators. In fact, for any xi, yi ∈ Pe (i = 1, 2) with x1 ≤ x2, y1 ≥ y2, from the monotonicity of
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Ii (i > 0) and (H2), we obtain

∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ x1(s), Iαn–2–α1
0+ x1(s), . . . , x1(s), Iαn–2

0+ y(s), Iαn–2–α1
0+ y(s), . . . , y(s)

)
ds

≤
∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ x2(s), Iαn–2–α1
0+ x2(s), . . . , x2(s), Iαn–2

0+ y(s), Iαn–2–α1
0+ y(s), . . . ,

y(s)
)

ds,
∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y1(s), Iαn–2–α1
0+ y1(s), . . . , y1(s)

)
ds

≤
∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y2(s), Iαn–2–α1
0+ y2(s), . . . ,

y2(s)
)

ds,

which implies that

A(x1, y)(t) ≤ A(x2, y)(t), y ∈ Pe, t ∈ [0, 1],

A(x, y1)(t) ≤ A(x, y2)(t), x ∈ Pe, t ∈ [0, 1],

that is, A(x, y) is nondecreasing in x for any y ∈ Pe, A(x, y) is nonincreasing in y for any
x ∈ Pe. Similarly, we obtain

B(x1, y)(t) ≤ B(x2, y)(t), y ∈ Pe, t ∈ [0, 1],

B(x, y1)(t) ≤ B(x, y2)(t), x ∈ Pe, t ∈ [0, 1],

that is, B(x, y) is nondecreasing in x for any y ∈ Pe, B(x, y) is nonincreasing in y for any
x ∈ Pe. Hence, the operators A, B are two mixed monotone operators, therefore T is a
mixed monotone operator.

For any τ ∈ (0, 1) and x, y ∈ Pe, by (H3), we obtain

A
(
τx, τ–1y

)
(t) =

∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ τx(s), Iαn–2–α1
0+ τx(s), . . . , τx(s), Iαn–2

0+ τ–1y(s),

Iαn–2–α1
0+ τ–1y(s), . . . , τ–1y(s)

)
ds

=
∫ 1

0
G(t, s)g

(
s, τ Iαn–2

0+ x(s), τ Iαn–2–α1
0+ x(s), . . . , τx(s), τ–1Iαn–2

0+ y(s),

τ–1Iαn–2–α1
0+ y(s), . . . , τ–1y(s)

)
ds

≥ ϕ(τ )
∫ 1

0
G(t, s)g

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y(s),

Iαn–2–α1
0+ y(s), . . . , y(s)

)
ds

= ϕ(τ )A(x, y)(t), t ∈ [0, 1].



Min et al. Boundary Value Problems  (2018) 2018:23 Page 14 of 18

That is, A(τx, τ–1y) ≥ ϕ(τ )A(x, y) for any τ ∈ (0, 1), x, y ∈ Pe. Also, for any τ ∈ (0, 1) and
x, y ∈ Pe, by (H3), we obtain

B
(
τx, τ–1y

)
(t)

=
∫ 1

0
G(t, s)φ

(
s, Iαn–2

0+ τx(s), Iαn–2–α1
0+ τx(s), . . . , τx(s), Iαn–2

0+ τ–1y(s),

Iαn–2–α1
0+ τ–1y(s), . . . , τ–1y(s)

)
ds

=
∫ 1

0
G(t, s)φ

(
s, τ Iαn–2

0+ x(s), τ Iαn–2–α1
0+ x(s), . . . , τx(s), τ–1Iαn–2

0+ y(s),

τ–1Iαn–2–α1
0+ y(s), . . . , τ–1y(s)

)
ds

≥ τ

∫ 1

0
G(t, s)φ

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y(s),

Iαn–2–α1
0+ y(s), . . . , y(s)

)
ds

= τB(x, y)(t), t ∈ [0, 1].

That is, B(τx, τ–1y) ≥ τB(x, y) for any τ ∈ (0, 1), x, y ∈ Pe. Finally, we shall prove that
B(x, y) ≤ δ0A(x, y) for all x, y ∈ Pe. For x, y ∈ Pe, from (H4), we have

B(x, y)(t) =
∫ 1

0
G(t, s)φ

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y(s),

Iαn–2–α1
0+ y(s), . . . , y(s)

)
ds

≤
∫ 1

0
G(t, s)δ0g

(
s, Iαn–2

0+ x(s), Iαn–2–α1
0+ x(s), . . . , x(s), Iαn–2

0+ y(s),

Iαn–2–α1
0+ y(s), . . . , y(s)

)
ds

= δ0A(x, y)(t), t ∈ [0, 1].

Then we get

B(x, y) ≤ δ0A(x, y), ∀x, y ∈ Pe.

Thus, Lemma 2.7 ensures that there exists a unique positive solution x∗ ∈ Pe such that
T(x∗, x∗) = x∗. Consequently, problem (2.9) has a unique positive solution x∗ ∈ Pe. By
Lemma 2.6, then u∗(t) = Iαn–2

0+ x∗(t) is the unique positive solution of BVP (1.1). Moreover,

M

(α – αn–2)


(α)
tα–1 ≤ u∗(t) = Iαn–2

0+ x∗(t) ≤ 1
M


(α – αn–2)

(α)

tα–1.

Therefore, the proof of Theorem 3.1 is completed. �

Theorem 3.2 Assume that the conditions of Theorem 3.1 are satisfied for ϕ(t) = tβ (0 < β <
1), then BVP (1.1) has a unique solution u∗

λ with

M

(α – αn–2)


(α)
tα–1 ≤ u∗

λ(t) ≤ 1
M


(α – αn–2)

(α)

tα–1.
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Furthermore, we have the following conclusions:
(1) For any λ0 ∈ (0, +∞],‖u∗

λ – u∗
λ0

‖ → 0,λ → λ0.
(2) If 0 < β < 1

2 , then 0 < λ1 < λ2 implies u∗
λ1

� u∗
λ2

and limλ→∞ ‖u∗
λ‖ = 0,

limλ→0+ ‖u∗
λ‖ = +∞.

Proof For fixed λ > 0, by Theorem 3.1, 1
λ

A, 1
λ

B : Pe × Pe → Pe are two mixed monotone
operators satisfying

1
λ

A
(
τx, τ–1y

) ≥ ϕ(τ )
1
λ

A(x, y), ϕ(t) ∈ (0, 1],

1
λ

B
(
τx, τ–1y

) ≥ τ
1
λ

B(x, y)

for all τ ∈ (0, 1), x, y ∈ Pe. So it follows from the proof of Lemma 2.7 and Theorem 3.1 that
1
λ

T : Pe × Pe → Pe is mixed monotone and satisfies

1
λ

T
(
τx, τ–1y

) ≥ 1
λ

ψ(τ )T(x, y), ϕ(t) ∈ (0, 1].

Hence, it follows from Theorem 3.1 that 1
λ

T has a unique fixed point x∗
λ ∈ Pe. That is,

T(x∗
λ, x∗

λ) = λx∗
λ. Moreover, by Lemma 2.8 we have the following conclusions:

(1) For any λ0 ∈ (0, +∞],‖x∗
λ – x∗

λ0
‖ → 0,λ → λ0.

(2) If 0 < β < 1
2 , then 0 < λ1 < λ2 implies x∗

λ1
� x∗

λ2
and

limλ→∞ ‖x∗
λ‖ = 0, limλ→0+ ‖x∗

λ‖ = +∞.
By Lemma 2.6, we have u∗

λ(t) = Iαn–2
0+ x∗

λ(t). Hence, by the monotonicity and continuity of
Iαn–2

0+ , we get
(1) For any λ0 ∈ (0, +∞],‖u∗

λ – u∗
λ0

‖ → 0,λ → λ0.
(2) If 0 < β < 1

2 , then 0 < λ1 < λ2 implies u∗
λ1

� u∗
λ2

and
limλ→∞ ‖u∗

λ‖ = 0, limλ→0+ ‖u∗
λ‖ = +∞.

Therefore, the proof of Theorem 3.2 is completed. �

4 An example
Example 4.1 We consider the following boundary value problem:

⎧
⎨

⎩

D
5
2
0+ u(t) + f (t, u(t), D

1
4
0+ u(t)) = 0, t ∈ (0, 1),

u(0) = D
3
4
0+ u(0) = 0, u′(1) =

∫ η

0 D
5
8
0+ u(s) dA(s) +

∫ 1
0 D

7
8
0+ u(s) dA(s),

(4.1)

where α = 5
2 , a(s) = s 9

8 , h(s) = 1, η = 1, and

A(t) =

⎧
⎨

⎩

0, t ∈ [0, 1
2 ),

1
100 , t ∈ [ 1

2 , 1].

Let u(t) = I
1
4

0+ x(t), equation (4.1) can be changed to the following:

⎧
⎨

⎩

D
9
4
0+ x(t) + f (t, I

1
4

0+ x(t), x(t)) = 0, t ∈ (0, 1),

D
1
2
0+ x(0) = 0, D

3
4
0+ x(1) =

∫ η

0 D
3
8
0+ x(s) dA(s) +

∫ 1
0 D

5
8
0+ x(s) dA(s),

(4.2)
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where

f (t, x, y) = (1 – t)– 1
3 t– 2

3 x
1
3 + t– 1

2 x
1
2 + (ty)– 1

6 + y– 1
5 + (1 – t)– 1

8 t– 1
6 x

1
3

+ x
1
2 + y– 1

5 + (2y)– 1
6 ,

g(t, x, x, y, y) = (1 – t)– 1
3 t– 2

3 x
1
3 + t– 1

2 x
1
2 + (ty)– 1

6 + y– 1
5 ,

φ(t, x, x, y, y) = (1 – t)– 1
8 t– 1

6 x
1
3 + x

1
2 + y– 1

5 + (2y)– 1
6

for any t ∈ (0, 1), x, y > 0, f (t, x, y) = g(t, x, x, y, y) + φ(t, x, x, y, y), e(t) = t 5
4 .

Let us check that all the required conditions of Theorem 3.1 are satisfied.
(1) Clearly, the functions g,φ : (0, 1) × (0, +∞)4 → [0, +∞) are continuous.
(2) We observe easily that for fixed t ∈ (0, 1) and yi ∈ (0, +∞) (i = 1, 2), g(t, x1, x2, y1, y2)

is increasing in xi ∈ (0, +∞) (i = 1, 2); for fixed t ∈ (0, 1) and xi ∈ (0, +∞) (i = 1, 2),
φ(t, x1, x2, y1, y2) is decreasing in yi ∈ (0, +∞) (i = 1, 2).

(3) For all λ ∈ (0, 1), t ∈ (0, 1), and xi, yi > 0 (i = 1, 2), taking ϕ(λ) = λ
1
2 ∈ (λ, 1), we have

g
(
t,λx1,λx2,λ–1y1,λ–1y2

)

= (1 – t)– 1
3 t– 2

3 (λx1)
1
3 + t– 1

2 (λx2)
1
2 +

(
tλ–1y1

)– 1
6 +

(
λ–1y2

)– 1
5

= (1 – t)– 1
3 t– 2

3 λ
1
3 (x1)

1
3 + t– 1

2 λ
1
2 (x2)

1
2 + λ

1
6 (ty1)– 1

6 + λ
1
5 (y2)– 1

5

≥ λ
1
2
[
(1 – t)– 1

3 t– 2
3 x

1
3
1 + t– 1

2 x
1
2
2 + (ty1)– 1

6 + y– 1
5

2
]

= ϕ(λ)g(t, x1, x2, y1, y2).

For all λ ∈ (0, 1), t ∈ (0, 1), and xi, yi > 0 (i = 1, 2), we have

φ
(
t,λx1,λx2,λ–1y1,λ–1y2

)

= (1 – t)– 1
8 t– 1

6 (λx1)
1
3 + (λx2)

1
2 +

(
λ–1y1

)– 1
5 +

(
2λ–1y2

)– 1
6

= (1 – t)– 1
8 t– 1

6 λ
1
3 (x1)

1
3 + λ

1
5 (x2)

1
2 + λ

1
2 (y1)– 1

5 + λ
1
6 (2y2)– 1

6

≥ λ
[
(1 – t)– 1

8 t– 1
6 x

1
3 + x

1
2 + y– 1

5 + (2y)– 1
6
]

= λφ(t, x1, x2, y1, y2).

(4) Taking δ0 = 2 > 0, then

φ(t, x1, x2, y1, y2) = (1 – t)– 1
8 t– 1

6 x
1
3 + x

1
2 + y– 1

5 + (2y)– 1
6

≤ 2
[
(1 – t)– 1

3 t– 2
3 x

1
3 + t– 1

2 x
1
2 + (ty)– 1

6 + y– 1
5
]

= δ0f (t, x1, x2, y1, y2).

(5)

∫ 1

0
g
(
s, 1, 1, s

3
2 , s

3
2
)

ds =
∫ 1

0

(
(1 – s)– 1

3 s– 2
3 + s– 1

2 + s– 5
12 + s– 3

10
)

ds < +∞.
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∫ 1

0
φ
(
s, 1, 1, s

3
2 , s

3
2
)

ds

=
∫ 1

0

(
(1 – s)– 1

8 s– 1
6 + 1 + s– 1

2 + s– 3
10 + 2– 1

6 s– 1
4
)

ds

< +∞.

Therefore the assumptions of Theorem 3.1 are satisfied. Then Theorem 3.1 implies
that BVP (4.1) has a unique positive solution.

5 Conclusions
In this paper, by using the fixed point theorem of mixed monotone operator in cone, we
have established the uniqueness of positive solutions for a class of singular fractional dif-
ferential equations with integral boundary conditions. Fractional differential equations
arise in the mathematical modeling of systems and processes occurring in many engi-
neering and scientific disciplines such as polymer rheology, electrodynamics of complex
medium. Moreover, fractional differential equations and integral operators are found to
be a better tool for the description of hereditary properties of various materials and pro-
cesses than the corresponding integer-order differential equations. The main contribu-
tion is that we divide the function into the form of g + φ and add different conditions to
g and φ. Furthermore, the higher derivatives in the nonlinearity f are also different from
the fractional derivatives in the integral boundary conditions, and boundary conditions of
fractional differential BVP (1.1) contain [7, 9] as special cases.
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