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Abstract
In this paper, we consider the properties of Green’s function for the nonlinear
fractional differential equation boundary value problem

Dα
0+u(t) + f (t,u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
m–2∑

i=1

βiu(ηi),

where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . ,m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1,∑m–2
i=1 βiη

α–1
i < 1, Dα

0+ is the standard Riemann–Liouville derivative. Here our
nonlinearity f may be singular at u = 0. As an application of Green’s function, we give
some multiple positive solutions for singular positone and semipositone boundary
value problems by means of the Leray–Schauder nonlinear alternative and a fixed
point theorem on cones.
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1 Introduction
In this paper, we consider the existence and multiplicity of positive solutions of the non-
linear fractional differential equation semipositone boundary value problem:

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = 0, u(1) =
m–2∑

i=1

βiu(ηi),
(1.1)

where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . , m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1,
∑m–2

i=1 βiη
α–1
i < 1,

Dα
0+ is the standard Riemann–Liouville derivative. Here our nonlinearity f may be singular
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at u = 0. The nonlinear fractional differential equation for the multi-point boundary value
problem has been studied extensively. For details, see [1–14] and the references therein.

For m = 3, Bai [15] investigated the existence and uniqueness of positive solutions for a
nonlocal boundary value problem of the fractional differential equation

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = 0, u(1) = βu(η),
(1.2)

via the contraction map principle and fixed point index theory, where 1 < α ≤ 2, 0 <
βηα–1 < 1, 0 < η < 1, Dα

0+ is the standard Riemann–Liouville derivative. The function f
is continuous on [0, 1] × [0,∞). Wang, Xiang and Liu [16] investigated the existence and
uniqueness of a positive solution to nonzero three-point boundary values problem for a
coupled system of fractional differential equations. Ahmad and Nieto [17] considered the
three point boundary value problems of the fractional order differential equation. By us-
ing some fixed point theorems, they obtained the existence and multiplicity result of pos-
itive solution to this problem. They considered the case when f has no singularities. Xu,
Jiang et al. [18] deduced some new properties of Green’s function of (1.2). By using some
fixed point theorems, they obtained the existence, uniqueness and multiplicity of posi-
tive solutions to singular positone and semipositone problems. Hussein A.H. Salem [1]
investigated the existence of pseudo-solutions for the nonlinear m-point boundary value
problem of the fractional case,

Dα
0+x(t) + q(t)f

(
t, x(t)

)
= 0, a.e. on [0, 1],α ∈ (n – 1, n], n ≥ 2,

x(0) = x′(0) = · · · = x(n–1) = 0, x(1) =
m–2∑

i=1

ζix(ηi),
(1.3)

where 0 < η1 < η2 < · · · < ηm–2 < 1, ζi > 0 with
∑m–2

i=1 ζiη
α–1
i < 1. It is assumed that q is a

real-valued continuous function and f is a nonlinear Pettis integrable function.
However, no paper to date has discussed the multiplicity for the semipositone singular

problem. This paper attempts to fill this gap in the literature, and as a corollary, we give a
result for singular positone problems.

2 Background materials
For convenience of the reader, we present here the necessary definitions from fractional
calculus theory.

Definition 2.1 ([19]) The Riemann–Liouville fractional integral of order α > 0 of a func-
tion y : (0,∞) → R is given by

Iα
0+y(t) =

1
�(α)

∫ t

0
(t – s)α–1y(s) ds,

provided the right side is pointwise defined on (0,∞).
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Definition 2.2 ([19]) The Riemann–Liouville fractional derivative of order α > 0 of a con-
tinuous function y : (0,∞) → R is given by

Dα
0+y(t) =

1
�(n – α)

(
d
dt

)n ∫ t

0

y(s)
(t – s)α–n+1 ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided that the right side is
pointwise defined on (0,∞).

From the definition of Riemann–Liouville’s derivative, one has the following results.

Lemma 2.1 ([19]) Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order
α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα
0+Dα

0+u(t) = u(t) + C1tα–1 + C2tα–2 + · · · + CN tα–N ,

for some Ci ∈ R, i = 1, 2, . . . , N , where N is the smallest integer greater than or equal to α.

Lemma 2.2 ([20]) Let X be a Banach space, and let P ⊂ X be a cone in X. Assume �1,�2

are open subsets of X with 0 ∈ �1 ⊂ �1 ⊂ �2, and let S : P → P be a completely continuous
operator such that either

1. ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂�1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂�2, or
2. ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂�1, ‖Sw‖ ≤ ‖w‖ w ∈ P ∩ ∂�2.

Then S has a fixed point in P ∩ (�2\�1).

3 Semipositone and positone singular problem
In this section, we consider the existence and multiplicity of positive solutions of the non-
linear fractional differential equation semipositone and positone boundary value problem

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = 0, u(1) =
m–2∑

i=1

βiu(ηi),
(3.1)

where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . , m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1,
∑m–2

i=1 βiη
α–1
i < 1,

Dα
0+ is the standard Riemann–Liouville derivative. Here our nonlinearity f may be singular

at u = 0.

Lemma 3.1 Given y ∈ C(0, 1) the problem

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, u(1) =
m–2∑

i=1

βiu(ηi),
(3.2)

is equivalent to

u(t) =
∫ 1

0
G(t, s)y(s) ds,
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where G(t, s) = G1(t, s) + G2(t, s),

G1(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[t(1–s)]α–1–β1tα–1(η1–s)α–1–(t–s)α–1(1–β1ηα–1
1 )

(1–β1ηα–1
1 )�(α) , 0 ≤ s ≤ t ≤ 1, s ≤ η1,

[t(1–s)]α–1–(t–s)α–1(1–β1ηα–1
1 )

(1–β1ηα–1
1 )�(α) , 0 < η1 ≤ s ≤ t ≤ 1,

[t(1–s)]α–1–β1tα–1(η1–s)α–1

(1–β1ηα–1
1 )�(α) , 0 ≤ t ≤ s ≤ η1 < 1,

[t(1–s)]α–1

(1–β1ηα–1
1 )�(α) , 0 ≤ t ≤ s ≤ 1,η1 ≤ s.

(3.3)

G2(t, s) = H(s)tα–1, H(s) = M0

m–2∑

i=1

[
Ki

1 – K1
qi(s) +

K1Ki

1 – K1
pi(s)

]
, (3.4)

where Ki = βiη
α–1
i , M0 = 1

�(α)(1–
∑m–2

i=1 βiη
α–1
i )

,

qi(s) = (1 – s)α–1 –
(

1 –
s
ηi

)α–1

I[0≤s≤ηi],

pi(s) =
(

1 –
s
ηi

)α–1

I[0≤s≤ηi] –
(

1 –
s
η1

)α–1

I[0≤s≤η1],

I[0≤s≤ηi] =

⎧
⎨

⎩
1, s ∈ [0,ηi],

0, s /∈ [0,ηi].

Proof By Lemma 2.1, the solution of (3.2) can be written as

u(t) = C1tα–1 + C2tα–2 –
∫ t

0

(t – s)α–1

�(α)
y(s) ds.

From u(0) = 0, we know that C2 = 0.
On the other hand, together with u(1) =

∑m–2
i=1 βiu(ηi), we have

C1 =
1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )

[∫ 1

0
(1 – s)α–1y(s) ds –

m–2∑

i=1

βi

∫ ηi

0
(ηi – s)α–1y(s) ds

]
.

Therefore, the unique solution of fractional boundary value problem (3.2) is

u(t) =
tα–1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )

[∫ 1

0
(1 – s)α–1y(s) ds –

m–2∑

i=1

βi

∫ ηi

0
(ηi – s)α–1y(s) ds

]

–
∫ t

0

(t – s)α–1

�(α)
y(s) ds

=
tα–1

�(α)(1 – β1η
α–1
1 )

[∫ 1

0
(1 – s)α–1y(s) ds – β1

∫ η1

0
(η1 – s)α–1y(s) ds

]

–
∫ t

0

(t – s)α–1

�(α)
y(s) ds

–
tα–1

�(α)(1 – β1η
α–1
1 )

[∫ 1

0
(1 – s)α–1y(s) ds – β1

∫ η1

0
(η1 – s)α–1y(s) ds

]

+
tα–1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )
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×
[∫ 1

0
(1 – s)α–1y(s) ds –

m–2∑

i=1

βi

∫ ηi

0
(ηi – s)α–1y(s) ds

]

= u1(t) + u2(t), (3.5)

where

u1(t) =
tα–1

�(α)(1 – β1η
α–1
1 )

[∫ 1

0
(1 – s)α–1y(s) ds – β1

∫ η1

0
(η1 – s)α–1y(s) ds

]

–
∫ t

0

(t – s)α–1

�(α)
y(s) ds, (3.6)

u2(t) = –
tα–1

�(α)(1 – β1η
α–1
1 )

[∫ 1

0
(1 – s)α–1y(s) ds – β1

∫ η1

0
(η1 – s)α–1y(s) ds

]

+
tα–1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )

[∫ 1

0
(1 – s)α–1y(s) ds

–
m–2∑

i=1

βi

∫ ηi

0
(ηi – s)α–1y(s) ds

]
. (3.7)

When t ≤ η1, we have

u1(t) = –
∫ t

0

(t – s)α–1

�(α)
y(s) ds +

tα–1

�(α)(1 – β1η
α–1
1 )

[(∫ t

0
+

∫ η1

t
+

∫ 1

η1

)
(1 – s)α–1y(s) ds

]

–
tα–1

�(α)(1 – β1η
α–1
1 )

(∫ t

0
+

∫ η1

t

)
β1(η1 – s)α–1y(s) ds

=
∫ t

0

[t(1 – s)]α–1 – β1(η1 – s)α–1tα–1 – (t – s)α–1(1 – β1η
α–1
1 )

�(α)(1 – β1η
α–1
1 )

y(s) ds

+
∫ η1

t

[t(1 – s)]α–1 – β1(η1 – s)α–1tα–1

�(α)(1 – β1η
α–1
1 )

y(s) ds +
∫ 1

η1

[t(1 – s)]α–1

�(α)(1 – β1η
α–1
1 )

y(s) ds

=
∫ 1

0
G1(t, s)y(s) ds.

When t ≥ η1, we have

u1(t) = –
(∫ η1

0
+

∫ t

η1

)
(t – s)α–1

�(α)
y(s) ds

+
tα–1

�(α)(1 – β1η
α–1
1 )

[(∫ η1

0
+

∫ t

η1

+
∫ 1

t

)
(1 – s)α–1y(s) ds

]

–
tα–1

�(α)(1 – β1η
α–1
1 )

∫ η1

0
β1(η1 – s)α–1y(s) ds

=
∫ η1

0

[t(1 – s)]α–1 – β1(η1 – s)α–1tα–1 – (t – s)α–1(1 – β1η
α–1
1 )

�(α)(1 – β1η
α–1
1 )

y(s) ds

+
∫ t

η1

[t(1 – s)]α–1 – (t – s)α–1(1 – β1η
α–1
1 )

�(α)(1 – β1η
α–1
1 )

y(s) ds +
∫ 1

t

[t(1 – s)]α–1

�(α)(1 – β1η
α–1
1 )

y(s) ds

=
∫ 1

0
G1(t, s)y(s) ds,
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where G1(t, s) is defined by (3.3).

u2(t) = –
tα–1

�(α)(1 – β1η
α–1
1 )

[∫ 1

0
(1 – s)α–1y(s) ds – β1

∫ η1

0
(η1 – s)α–1y(s) ds

]

+
tα–1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )

[∫ 1

0
(1 – s)α–1y(s) ds – β1

∫ η1

0
(η1 – s)α–1y(s) ds

–
m–2∑

i=2

βi

∫ ηi

0
(ηi – s)α–1y(s) ds

]

=
tα–1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )

[∑m–2
i=2 βiη

α–1
i

1 – β1η
α–1
1

∫ 1

0
(1 – s)α–1y(s) ds

–
∑m–2

i=2 βiη
α–1
i

1 – β1η
α–1
1

β1

∫ η1

0
(η1 – s)α–1y(s) ds

]

–
tα–1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )

m–2∑

i=2

βi

∫ ηi

0
(ηi – s)α–1y(s) ds

=
tα–1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )

[∑m–2
i=2 βiη

α–1
i

1 – β1η
α–1
1

∫ 1

0
(1 – s)α–1y(s) ds

–
∑m–2

i=2 βiη
α–1
i

1 – β1η
α–1
1

β1

∫ η1

0
(η1 – s)α–1y(s) ds

–
1 – β1η

α–1
1

1 – β1η
α–1
1

m–2∑

i=2

βi

∫ ηi

0
(ηi – s)α–1y(s) ds

]

=
tα–1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )

[∑m–2
i=2 βiη

α–1
i

1 – β1η
α–1
1

∫ 1

0
(1 – s)α–1y(s) ds

–
∑m–2

i=2 βiη
α–1
i

1 – β1η
α–1
1

β1η
α–1
1

∫ η1

0

(
1 –

s
η1

)α–1

y(s) ds

–
1

1 – β1η
α–1
1

m–2∑

i=2

βiη
α–1
i

∫ ηi

0

(
1 –

s
ηi

)α–1

y(s) ds

+
β1η

α–1
1

1 – β1η
α–1
1

m–2∑

i=2

βiη
α–1
i

∫ ηi

0

(
1 –

s
ηi

)α–1

y(s) ds

]

=
tα–1

�(α)(1 –
∑m–2

i=1 βiη
α–1
i )

[∑m–2
i=2 βiη

α–1
i

1 – β1η
α–1
1

(∫ 1

0
(1 – s)α–1y(s) ds

–
∫ ηi

0

(
1 –

s
ηi

)α–1

y(s) ds
)

+
β1η

α–1
1

∑m–2
i=2 βiη

α–1
i

1 – β1η
α–1
1

(∫ ηi

0

(
1 –

s
ηi

)α–1

y(s) ds –
∫ η1

0

(
1 –

s
η1

)α–1

y(s) ds
)]

=
∫ 1

0
G2(t, s)y(s) ds,

where G2(t, s) is defined by (3.4). The proof is complete. �



Xu and Zhang Boundary Value Problems  (2018) 2018:34 Page 7 of 18

Lemma 3.2 ([18]) The Green’s function G1(t, s) defined by Lemma 3.1 has the following
properties:

(1)

G(t, s) ≤ G(s, s) ≤ sα–1(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

for t, s ∈ [0, 1],β1η
α–2
1 ≤ 1; (3.8)

(2)

Mtα–1s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

≤ G(t, s) ≤ tα–1(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

for t, s ∈ [0, 1]; (3.9)

(3)

Mtα–1s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

≤ G(t, s) ≤ s(1 – s)α–1tα–2(1 + β1η
α–2
1 )

�(α)(1 – β1η
α–1
1 )

for t, s ∈ (0, 1]; (3.10)

(4)

Mts(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

≤ t2–αG(t, s) ≤ s(1 – s)α–1(1 + β1η
α–2
1 )

�(α)(1 – β1η
α–1
1 )

for t, s ∈ [0, 1], (3.11)

where 0 < M = min{1 – β1η
α–1
1 ,β1η

α–2
1 (1 – η1)(α – 1),β1η

α–1
1 } < 1.

Theorem 3.1 The Green’s function G(t, s) defined by Lemma 3.1 has the following proper-
ties:

(1)

H(s) ≥ 0, (3.12)

(2)

Mt
[

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

+ H(s)
]

≤ t2–αG(t, s)

≤ (
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
for t, s ∈ [0, 1], (3.13)

(3)

Mtα–1
[

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

+ H(s)
]

≤ G(t, s) ≤ tα–1
[

H(s) +
(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
for t, s ∈ [0, 1], (3.14)

where 0 < M = min{1 – β1η
α–1
1 ,β1η

α–2
1 (1 – η1)(α – 1),β1η

α–1
1 } < 1.



Xu and Zhang Boundary Value Problems  (2018) 2018:34 Page 8 of 18

Proof From (3.4), we know that Ki = βiη
α–1
i > 0, M0 = 1

�(α)(1–
∑m–2

i=1 βiη
α–1
i )

> 0, and pi(s) ≥
0, qi(s) ≥ 0 since 0 < η1 < η2 < · · · < ηm–2 < 1. Thus, H(s) ≥ 0. From Lemma 3.2 and the
definition of G2(t, s), it is easy to check that (2)–(3) hold. Thus the proof of Theorem 3.1
is complete. �

For convenience, in this article, we let ω = M
1+β1ηα–2

1
, G∗(t, s) = t2–αG(t, s).

Lemma 3.3 Suppose e ∈ C[0, 1], e(t) > 0, for t ∈ (0, 1), 1 < α ≤ 2, and γ (t) is the unique
solution of

Dα
0+u(t) + e(t) = 0, 0 < t < 1,

u(0) = 0, u(1) =
m–2∑

i=1

βiu(ηi),

where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . , m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1,
∑m–2

i=1 βiη
α–1
i < 1,

then there exists a constant C0 such that

0 ≤ φ(t) := t2–αγ (t) ≤ ωC0t, 0 ≤ t ≤ 1,

here C0 = 1+β1ηα–2
1

M
∫ 1

0 [H(s) + (1–s)α–1

�(α)(1–β1ηα–1
1 ) ]e(s) ds.

Proof In fact, from Lemma 3.1, we have

γ (t) =
∫ 1

0
G(t, s)e(s) ds.

Thus, from Theorem 3.1, we have

φ(t) = t2–α

∫ 1

0
G(t, s)e(s) ds ≤

∫ 1

0
t2–αtα–1

[
H(s) +

(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
e(s) ds = ωC0t. �

The above lemma together with Lemma 2.2 and the Leray–Schauder alternative princi-
ple establishes our main result.

Theorem 3.2 Suppose the following conditions are satisfied:
(H1) f : (0, 1]× (0,∞) → R is continuous and there exists a function e(t) ∈ C[0, 1], e(t) > 0

for t ∈ (0, 1), with f (t, u) + e(t) ≥ 0 for (t, u) ∈ (0, 1] × (0,∞);
(H2) f ∗(t, u) = f (t, u) + e(t), and f ∗(t, tα–2u) ≤ q(t)[g(u) + h(u)] on (0, 1]× (0,∞)with g > 0

continuous and nonincreasing on (0,∞), h ≥ 0continuous on [0,∞) and h
g nonde-

creasing on (0,∞), q ∈ L1[0, 1], q > 0 on (0, 1);
(H3) a0 =

∫ 1
0 q(s)g(s) ds < +∞;

(H4) ∃K0 with g(ab) ≤ K0g(a)g(b),∀a > 0, b > 0;
(H5) ∃r > C0 with

r
g(ω(r – C0)){1 + h(r)

g(r) }
> K0b0,
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where

b0 =
∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
q(s)g(s) ds; (3.15)

(H6) there exists 0 < a < 1
2 (choose and fix it) and a continuous, nonincreasing function

g1 : (0,∞) → (0,∞), and a continuous function h1 : [0,∞) → (0,∞) with h1
g1

non-
decreasing on (0,∞) and with f ∗(t, tα–2u) ≥ q1(t)[g1(u) + h1(u)] for (t, u) ∈ [a, 1] ×
(0,∞), q1(t) ∈ C([0, 1], [0,∞));

(H7) ∃R > r with

Rg1(εaωR)
g1(R)g1(εωaR) + g1(R)h1(εωaR)

≤
∫ 1

a
G∗(σ , s)q1(s) ds (3.16)

here ε > 0 is any constant (choose and fix it) so that 1 – C0
R ≥ ε (note ε exists since

R > r > C0) and 0 ≤ σ ≤ 1 is such that

∫ 1

a
q1(s)G∗(σ , s) ds = sup

t∈[0,1]

∫ 1

a
q1(s)G∗(t, s) ds;

(H8) for each L > 0, there exists a function ϕL ∈ C[0, 1], ϕL > 0 for t ∈ (0, 1) such that
f ∗(t, tα–2u) ≥ ϕL(t) for (t, u) ∈ (0, 1) × (0, L], and ϕr(t) > e(t), t ∈ (0, 1), where r is as
in H5.

Then (3.1) has at least two solution u1, u2 with u1(t) > 0, u2(t) > 0 for t ∈ (0, 1).

Proof To show (3.1) has two nonnegative solutions we will look at the boundary value
problem

Dα
0+u(t) + f ∗(t, u(t) – γ (t)

)
= 0, 0 < t < 1,

u(0) = 0, u(1) =
m–2∑

i=1

βiu(ηi),
(3.17)

where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . , m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1,
∑m–2

i=1 βiη
α–1
i < 1,

and γ is as in Lemma 3.1.
We will show, using Lemma 2.2 and the Leray–Schauder alternative principle, that there

exist two solutions, u1, u2 to (3.17) with u1(t) > γ (t), u2(t) > γ (t) for t ∈ (0, 1). If this is true
then ūi(t) = ui(t) – γ (t), 0 ≤ t ≤ 1 are nonnegative solutions (positive on (0,1)) of (3.1),
i = 1, 2, since

Dα
0+ūi(t)

= Dα
0+ui(t) – Dα

0+γ (t) = –f ∗(t, ui(t) – γ (t)
)

+ e(t)

= –
[
f
(
t, ui(t) – γ (t)

)
+ e(t)

]
+ e(t)

= –f
(
t, ūi(t)

)
, 0 < t < 1.
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As a result, we will concentrate our study on (3.17). Suppose that u is a solution of (3.17).
Then

u(t) =
∫ 1

0
G(t, s)f ∗(s, u(s) – γ (s)

)
ds

=
∫ 1

0
tα–2G∗(t, s)f ∗(s, u(s) – γ (s)

)
ds, 0 ≤ t ≤ 1. (3.18)

Let y(t) := t2–αu(t), then from (3.18) we have

y(t) =
∫ 1

0
G∗(t, s)f ∗(s, sα–2y(s) – γ (s)

)
ds

=
∫ 1

0
G∗(t, s)f ∗(s, sα–2(y(s) – φ(s)

))
ds, (3.19)

where γ and φ are as in Lemma 3.2.
Let E = C[0, 1] be endowed with maximum norm, ‖u‖ = max0≤t≤1 |u(t)|, and define the

cone K ⊂ E by

K =
{

u ∈ E|u(t) ≥ ωt‖u‖},

and let

�1 =
{

u ∈ E;‖u‖ < r
}

, �2 =
{

u ∈ E;‖u‖ < R
}

.

Next let A : K ∩ (�̄2 \ �1) → E be defined by

(Ay)(t) =
∫ 1

0
G∗(t, s)f ∗(s, sα–2(y(s) – φ(s)

))
ds, 0 ≤ t ≤ 1. (3.20)

First we show A is well defined. To see this notice if y ∈ K ∩ (�̄2 \ �1) then r ≤ ‖y‖ ≤ R
and y(t) ≥ ωt‖y‖ ≥ ωtr, 0 ≤ t ≤ 1. Also notice for t ∈ (0, 1) that Lemma 3.1 implies

y(t) – φ(t) ≥ ωtr – ωtC0 = ωt(r – C0), t ∈ [0, 1],

and for t ∈ (0, 1), from (H2) we have

f ∗(t, tα–2(y(t) – φ(t)
))

= f
(
t, tα–2(y(t) – φ(t)

))
+ e(t)

≤ q(t)
[
g
(
y(t) – φ(t)

)
+ h

(
y(t) – φ(t)

)]

= q(t)g
(
y(t) – φ(t)

){
1 +

h(y(t) – φ(t))
g(y(t) – φ(t))

}

≤ q(t)g
(
ωt(r – C0)

){
1 +

h(R)
g(R)

}

≤ K0q(t)g(t)g
(
ω(r – C0)

){
1 +

h(R)
g(R)

}
.

These inequalities with (H3) guarantee that A : K ∩ (�̄2 \ �1) → E is well defined.
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If y ∈ K ∩ (�̄2 \ �1), then we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖Ay‖ ≤ ∫ 1
0 (1 + β1η

α–2
1 [H(s) + s(1–s)α–1

�(α)(1–β1ηα–1
1 ) ]f ∗(s, sα–2(y(s) – φ(s))) ds,

(Ay)(t) ≥ ∫ 1
0 Mt[H(s) + s(1–s)α–1

�(α)(1–β1ηα–1
1 ) ]f ∗(s, sα–2(y(s) – φ(s))) ds

≥ ωt‖Ay‖, t ∈ [0, 1],

i.e., Ay ∈ K so A : K ∩ (�̄2 \ �1) → K .
Similarly reasoning as in the proof of Theorem 3.1 [18] shows that A : K ∩ (�̄2 \�1) → K

is continuous and completely continuous.
We now show

‖Ay‖ ≤ ‖y‖ for K ∩ ∂�1. (3.21)

To see this, let y ∈ K ∩ ∂�1. Then ‖y‖ = r and y(t) ≥ ωtr for t ∈ [0, 1]. Now for t ∈ (0, 1) (as
above)

y(t) – φ(t) ≥ ωt(r – C0) > 0,

then we have

(Ay)(t) =
∫ 1

0
G∗(t, s)f ∗(s, sα–2(y(s) – φ(s)

))
ds

≤
∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]

× q(s)
[
g
(
y(s) – φ(s)

)
+ h

(
y(s) – φ(s)

)]
ds

≤
∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
q(s)g

(
ωs(r – C0)

){
1 +

h(r)
g(r)

}
ds

≤
∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]

× q(s)K0g
(
ω(r – C0)

)
g(s)

{
1 +

h(r)
g(r)

}
ds.

This together with (H5) yields

‖Ay‖ < r = ‖y‖,

so (3.21) is satisfied.
Next we show

‖Ay‖ ≥ ‖y‖ for K ∩ ∂�2. (3.22)

To see this let y ∈ K ∩ ∂�2, then ‖y‖ = R and y(t) ≥ ωtR for t ∈ [0, 1]. Also for t ∈ [0, 1] we
have

y(t) – φ(t) ≥ ωt(R – C0) ≥ ωtR
(

1 –
C0

R

)
≥ εωtR.
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Now with σ as in the statement of Theorem 3.1, we have

(Ay)(σ ) =
∫ 1

0
G∗(σ , s)f ∗(s, sα–2(y(s) – φ(s)

)
ds

≥
∫ 1

a
G∗(σ , s)q1(s)

[
g1

(
y(s) – φ(s)

)
+ h1(y(s) – φ(s)

]
ds

=
∫ 1

a
G∗(σ , s)q1(s)g1

(
y(s) – φ(s)

){
1 +

h1(y(s) – φ(s))
g1(y(s) – φ(s))

}
ds

≥ g1(R)
∫ 1

a
G∗(σ , s)q1(s)

{
1 +

h1(εωaR)
g1(εωaR)

}
ds.

This together with (3.16) yields

(Ay)(σ ) ≥ R = ‖y‖.

Thus ‖Ay‖ ≥ ‖y‖, (3.22) holds.
Now Lemma 2.2 implies A has a fixed point y1 ∈ K ∩ (�̄2 \ �1), i.e. r ≤ ‖y1‖ ≤ R and

y1(t) ≥ ωtr for t ∈ [0, 1]. Thus y1(t) is a solution of (3.19) with y1(t) > φ(t) for t ∈ (0, 1) and
tα–2y1(t) is a solution of (3.17) for t ∈ [0, 1]. Therefore, tα–2y1(t) –γ (t) is a positive solution
of (3.1).

The existence of another solution is proved using the Leray–Schauder alternative prin-
ciple, together with a truncation technique.

Since (H5) holds, we can choose n0 ∈ {1, 2, . . .} such that 1
n0

< r – C0 and

K0g
(
ω(r – C0)

){
1 +

h(r)
g(r)

}
b0 +

1
n0

< r. (3.23)

Let N0 = {n0, n0 + 1, . . .}. Consider the family of equations

(Tny)(t) =
∫ 1

0
G∗(t, s)f ∗

n
(
s, sα–2(y(s) – φ(s)

))
ds +

1
n

, (3.24)

where n ∈ N0 and

f ∗
n
(
s, sα–2u

)
=

⎧
⎨

⎩
f ∗(s, sα–2u), u ≥ 1

n ,

f ∗(s, sα–2 1
n ), u ≤ 1

n .

Similarly reasoning as in the proof of Theorem 3.1 shows that Tn is well defined and maps
E into K . Moreover, Tn is continuous and completely continuous.

We consider

y = λTny + (1 – λ)
1
n

i.e.

y(t) = λ

∫ 1

0
G∗(t, s)f ∗

n
(
s, sα–2(y(s) – φ(s)

))
ds +

1
n

, (3.25)
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where λ ∈ [0, 1]. We claim that any fixed point y of (3.25) for any λ ∈ [0, 1] must satisfy
‖x‖ �= r. Otherwise, assume that y is a fixed point of (3.25) for some λ ∈ [0, 1] such that
‖y‖ = r. Note that

y(t) –
1
n

= λ

∫ 1

0
G∗(t, s)f ∗

n
(
s, sα–2(y(s) – φ(s)

))
ds

≤ λ

∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
f ∗
n
(
s, sα–2(y(s) – φ(s)

))
ds,

then we have
∥∥∥∥y –

1
n

∥∥∥∥ ≤ λ

∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
f ∗
n
(
s, sα–2(y(s) – φ(s)

))
ds.

On the other hand, we have

y(t) –
1
n

= λ

∫ 1

0
G∗(t, s)f ∗

n
(
s, sα–2(y(s) – φ(s)

))
ds

≥ λMt
∫ 1

0

[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
f ∗
n
(
s, sα–2(y(s) – φ(s)

))
ds

≥ ωt
∥∥∥∥y –

1
n

∥∥∥∥.

By the choice of n0, 1
n ≤ 1

n0
< r – C0. Hence, for all t ∈ [0, 1], we have

y(t) ≥ ωt
∥∥∥∥y –

1
n

∥∥∥∥ +
1
n

≥ ωt
(

‖y‖ –
1
n

)
+

1
n

≥ ωtr + (1 – ωt)
1
n

.

Therefore,

y(t) – φ(t) ≥ ωtr + (1 – ωt)
1
n

– ωtC0 ≥ ωt
(

r – C0 –
1
n

)
+

1
n

>
1
n

and

y(t) – φ(t) ≥ ωtr + (1 – ωt)
1
n

– ωtC0 ≥ ωt(r – C0) + [1 – ωt]
1
n

> ωt(r – C0).

Thus we have from condition (H2), for all t ∈ [0, 1],

y(t) = λ

∫ 1

0
G∗(t, s)f ∗

n
(
s, sα–2(y(s) – φ(s)

))
ds +

1
n

= λ

∫ 1

0
G∗(t, s)f ∗(s, sα–2(y(s) – φ(s)

))
ds +

1
n

≤
∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]

× q(s)
[
g
(
y(s) – φ(s)

)
+ h

(
y(s) – φ(s)

)]
ds +

1
n

≤
∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
q(s)g

(
ωs(r – C0)

){
1 +

h(r)
g(r)

}
ds +

1
n
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≤
∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
K0q(s)g

(
ω(r – C0)

)

× g(s)
{

1 +
h(r)
g(r)

}
ds +

1
n

= K0g
(
ω(r – C0)

){
1 +

h(r)
g(r)

}
b0 +

1
n

.

Therefore,

r = ‖y‖ ≤ K0g
(
ω(r – C0)

){
1 +

h(r)
g(r)

}
b0 +

1
n

.

This is a contradiction to the choice of n0 and the claim is proved.
From this claim, the Leray–Schauder alternative principle guarantees that

y(t) =
∫ 1

0
G∗(t, s)f ∗

n
(
s, sα–2(y(s) – φ(s)

))
ds +

1
n

has a fixed point, denoted by yn, in Br = {y ∈ E,‖y‖ < r}.
Next we claim that yn(t) – φ(t) has a uniform positive lower bound, i.e., there exists a

constant δ > 0, independent of n ∈ N0, such that

min
t∈[0,1]

{
yn(t) – φ(t)

} ≥ δt, (3.26)

for all n ∈ N0. Since (H8) holds, there exists a continuous function ϕr(t) > 0 such that
f ∗(t, tα–2u) > ϕr(t) > e(t) for all (t, u) ∈ (0, 1] × (0, r].

Since yn(t) – φ(t) < r, we have

yn(t) – φ(t) =
∫ 1

0
G∗(t, s)f ∗

n
(
s, sα–2(yn(s) – φ(s)

))
ds +

1
n

–
∫ 1

0
G∗(t, s)e(s) ds

≥
∫ 1

0
G∗(t, s)

(
ϕr(s) – e(s)

)
ds

≥
∫ 1

0
Mt

[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

](
ϕr(s) – e(s)

)
ds := δt.

Next note

{yn} is equicontinuous on [0, 1] for all n ∈ N0. (3.27)

Similarly reasoning as in the proof of Theorem 3.2 [18], we can easily verify it.
The facts ‖yn‖ < r and (3.27) show that {yn}n∈N0 is a bounded and equicontinuous family

on [0, 1]. Now the Arzela–Ascoli Theorem guarantees that {yn}n∈N0 has a subsequence
{ynk }nk∈N0 , converging uniformly on [0, 1] to a function y ∈ E. From the facts ‖yn‖ < r and
(3.26), y satisfies δt ≤ y(t) – φ(t) < r for all t ∈ [0, 1]. Moreover, ynk satisfies the integral
equation

ynk =
∫ 1

0
G∗(t, s)f ∗

n
(
s, sα–2(ynk (s) – φ(s)

))
ds +

1
nk

.
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Letting k → ∞, we arrive at

y =
∫ 1

0
G∗(t, s)f ∗(s, sα–2(y(s) – φ(s)

))
ds.

Therefore, y is a positive solution of (3.19) and satisfies 0 < ‖y‖ < r. Therefore, tα–2y(t) –
γ (t) is a positive solution of (3.1).

Thus (3.1) has at least two positive solutions u1 = tα–2y1(t)–γ (t), u2(t) = tα–2y(t)–γ (t). �

It is easy to see that if e(t) ≡ 0, we can have a corollary for the singular positone boundary
value problems. Here we omit it.

Example 3.1 Consider the boundary value problem

Dα
0+u(t) + μ

(
u–a(t) + ub(t) – At(2–α)a) = 0,

u(0) = 0, u(1) =
m–2∑

i=1

βiu(ηi),
(3.28)

where 0 < a < α – 1 < 1 < b < 1–a
2–α

, 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . , m – 2, 0 < η1 < η2 < · · · <
ηm–2 < 1,

∑m–2
i=1 βiη

α–1
i < 1, 0 < A < 1, μ ∈ (0,μ0) is such that

μ2
0

(1 – μ0c0)a <
ωa

2 d0
, μ0 <

1
c0

; (3.29)

here

c0 =
A(1 + β1η

α–2
1 )�(1 + a(2 – α))

M�(α + 1 + a(2 – α))

×
[

1 – β1η
α+(2–α)a
1

1 – β1η
α–1
1

+
1 –

∑m–2
i=1 βiη

α+(2–α)a
i

1 –
∑m–2

i=1 βiη
α–1
i

+
1

1 – β1η
α–1
1

]
,

d0 =
(1 + β1η

α–2
1 )�(1 – a – b(2 – α))

�(α + 1 – a – b(2 – α))

×
[

1 – β1η
α–a–b(2–α)
1

1 – β1η
α–1
1

+
1 –

∑m–2
i=1 βiη

α–a–b(2–α)
i

1 –
∑m–2

i=1 βiη
α–1
i

+
1 – a – b(2 – α)

(1 – β1η
α–1
1 )(2 – a – b(2 – α))

]
.

Then (3.28) has at least two positive solutions, u1, u2 with u1(t) > 0, u2(t) > 0 for t ∈ (0, 1).

Proof We will apply Theorem 3.2. To this end we take

f (t, u) = μ
(
u–a + ub – At(2–α)a),

then

f
(
t, tα–2y

)
= μ

(
ta(2–α)y–a + tb(α–2)yb – At(2–α)a).

Let q1(t) = t–a(α–2), q(t) = tb(α–2) and g(y) = g1(y) = μy–a, h(y) = h1(y) = μyb, e(t) = μAt(2–α)a,
K0 = 1, ϕL(t) = μt(2–α)aL–a then (H1)–(H4) and (H6) are satisfied since 0 < a < α – 1 < 1 <
b < 1–a

2–α
, 1 < α < 2.
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Also we have

b0 =
∫ 1

0

(
1 + β1η

α–2
1

)[
H(s) +

s(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
q(s)g(s) ds

= μ
(1 + β1η

α–2
1 )�(1 – a – b(2 – α))

�(α + 1 – a – b(2 – α))

×
[

1 – β1η
α–a–b(2–α)
1

1 – β1η
α–1
1

+
1 –

∑m–2
i=1 βiη

α–a–b(2–α)
i

1 –
∑m–2

i=1 βiη
α–1
i

+
1 – a – b(2 – α)

(1 – β1η
α–1
1 )(2 – a – b(2 – α))

]

:= μd0

and

C0 =
1 + β1η

α–2
1

M

∫ 1

0

[
H(s) +

(1 – s)α–1

�(α)(1 – β1η
α–1
1 )

]
e(s) ds

=
μA(1 + β1η

α–2
1 )�(1 + a(2 – α))

M�(α + 1 + a(2 – α))

×
[

1 – β1η
α+(2–α)a
1

1 – β1η
α–1
1

+
1 –

∑m–2
i=1 βiη

α+(2–α)a
i

1 –
∑m–2

i=1 βiη
α–1
i

+
1

1 – β1η
α–1
1

]

:= μc0.

Now the existence conditions (H5) and (H8) become

μ2 <
r(r – C0)aωa

d0(1 + ra+b)
, r > C0,

and

μt(2–α)ar–a > μAt(2–α)a.

Thus, (H5) and (H8) hold with r = 1 since (3.29) and A < 1.
Finally, (H7) becomes

μ ≥ R1+a
∫ 1

a q1(s)G∗(σ , s) ds[1 + (ωεa)a+bRa+b]
.

Since b > 1, the right-hand side goes to 0 as R → ∞.
Thus, Eq. (3.28) has at least two positive solutions, u1, u2 with u1(t) > 0, u2(t) > 0 for

t ∈ (0, 1). �

4 Conclusion
Prompted by the application of multi-point boundary value problems to applied mathe-
matics and physics, these problems have provoked a great deal of attention by many au-
thors. In this paper, we considered the properties of Green’s function for the nonlinear
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fractional differential equation boundary value problem

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = 0, u(1) =
m–2∑

i=1

βiu(ηi),

where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . , m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1,
∑m–2

i=1 βiη
α–1
i < 1,

Dα
0+ is the standard Riemann–Liouville derivative. Here our nonlinearity f may be singular

at u = 0. Unlike the classical expression, we gave a new expression of the Green’s function
and obtained some properties. As an application of Green’s function, we gave some mul-
tiple positive solutions for singular positone and semipositone boundary value problems
by means of the Leray–Schauder nonlinear alternative, a fixed point theorem on cones.
The results show that:

(1) G(t, s) = G1(t, s) + G2(t, s),

G1(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[t(1–s)]α–1–β1tα–1(η1–s)α–1–(t–s)α–1(1–β1ηα–1
1 )

(1–β1ηα–1
1 )�(α)

, 0 ≤ s ≤ t ≤ 1, s ≤ η1,
[t(1–s)]α–1–(t–s)α–1(1–β1ηα–1

1 )
(1–β1ηα–1

1 )�(α)
, 0 < η1 ≤ s ≤ t ≤ 1,

[t(1–s)]α–1–β1tα–1(η1–s)α–1

(1–β1ηα–1
1 )�(α) , 0 ≤ t ≤ s ≤ η1 < 1,

[t(1–s)]α–1

(1–β1ηα–1
1 )�(α) , 0 ≤ t ≤ s ≤ 1,η1 ≤ s,

G2(t, s) = H(s)tα–1, H(s) = M0

m–2∑

i=1

[
Ki

1 – K1
qi(s) +

K1Ki

1 – K1
pi(s)

]
,

where Ki = βiη
α–1
i , M0 = 1

�(α)(1–
∑m–2

i=1 βiη
α–1
i )

,

qi(s) = (1 – s)α–1 –
(

1 –
s
ηi

)α–1

I[0≤s≤ηi],

pi(s) =
(

1 –
s
ηi

)α–1

I[0≤s≤ηi] –
(

1 –
s
η1

)α–1

I[0≤s≤η1].

(2) The Green’s function G(t, s) has the following properties:
(i) H(s) ≥ 0,

(ii) Mt[ s(1–s)α–1

�(α)(1–β1ηα–1
1 ) + H(s)] ≤ t2–αG(t, s) ≤

(1 + β1η
α–2
1 )[H(s) + s(1–s)α–1

�(α)(1–β1ηα–1
1 ) ] for t, s ∈ [0, 1],

(iii) Mtα–1[ s(1–s)α–1

�(α)(1–β1ηα–1
1 ) + H(s)] ≤ G(t, s) ≤ tα–1[H(s) + (1–s)α–1

�(α)(1–β1ηα–1
1 ) ] for t, s ∈ [0, 1],

where 0 < M = min{1 – β1η
α–1
1 ,β1η

α–2
1 (1 – η1)(α – 1),β1η

α–1
1 } < 1.

(3) Suppose the conditions (H1)–(H8) hold. Then (3.1) has at least two solutions, u1, u2

with u1(t) > 0, u2(t) > 0 for t ∈ (0, 1).
(4) The boundary value problem

Dα
0+u(t) + μ

(
u–a(t) + ub(t) – At(2–α)a) = 0,

u(0) = 0, u(1) =
m–2∑

i=1

βiu(ηi),
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where 0 < a < α – 1 < 1 < b < 1–a
2–α

, 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . , m – 2, 0 < η1 < η2 <
· · · < ηm–2 < 1,

∑m–2
i=1 βiη

α–1
i < 1, 0 < A < 1, has at least two positive solutions, u1, u2

with u1(t) > 0, u2(t) > 0 for t ∈ (0, 1), μ ∈ (0,μ0), μ0 is some constant.
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