
Geng and Hou Boundary Value Problems  (2018) 2018:25 
https://doi.org/10.1186/s13661-018-0946-6

R E S E A R C H Open Access

Gradient estimates for the Fisher–KPP
equation on Riemannian manifolds
Xin Geng and Songbo Hou*

*Correspondence:
housb10@163.com
Department of Applied
Mathematics, College of Science,
China Agricultural University,
Beijing, P.R. China

Abstract
In this paper, we consider positive solutions to the Fisher–KPP equation on complete
Riemannian manifolds. We derive the gradient estimate. Using the estimate, we get
the classic Harnack inequality which extends the recent result of Cao, Liu, Pendleton,
and Ward (Pac. J. Math. 290(2):273–300, 2017).
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1 Introduction
Let (M, g) be a complete Riemannian manifold. We consider the parabolic equation

ut = �u + cu(1 – u) (1.1)

on M × [0,∞), where c is a positive constant. In the pioneering work of Fisher in 1937 [2],
he proposed equation (1.1) to study the propagation of advantageous genes in a popula-
tion, where u = u(x, t) stands for the population density. In another well-known paper [3],
Kolmogorov, Petrovsky, and Piskunov also described the solution to (1.1). Since then, the
equation is often referred to as the Fisher–KPP equation and has been widely used in the
study of traveling wave solutions and propagation problems (refer to [4–6] and so on).

Recently, Cao et al. [1] derived differential Harnack estimates for positive solutions to
(1.1) on Riemannian manifolds with nonnegative Ricci curvature. The idea comes from
[7, 8] where a systematic method was developed to find a Harnack inequality for geomet-
ric evolution equations. In the complete noncompact case, they obtained the following
theorem.

Theorem A (Cao et al.) Let (M, g) be an n-dimensional complete noncompact Riemannian
manifold with nonnegative Ricci curvature, and let u(x, t) : M × [0,∞) → R be a positive
solution to (1.1), where u is C2 in x and C1 in t.

Let f = log u, then we have

�f + α|∇f |2 + βef + φ(t) ≥ 0 (1.2)

for all x and t, provided that
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(i) 0 < α < 1,
(ii) β < –cn(1+α)

4α2–4α+2n < 0,
(iii) –cn(2+

√
2)

4(1–α) < β < –cn(2–
√

2)
4(1–α) ,

where

φ(t) =
μ( e2μωt

ν–ω
– 1

μ+ω
)

1 – e2μωt ,

with

μ = βc

√
2(1 – α)

c(–cn – 8β(1 – α))
,

ν =
(

4β(1 – α)
n

+ c
)

·
√

2(1 – α)
c(–cn – 8β(1 – α))

,

ω =
√

2(1 – α)
n

.

Using Theorem A, one can integrate along space-time curves to get a Harnack inequality,
but it is different from the classical Li–Yau Harnack [9] in form.

Gradient estimates play an important role in studying elliptic and parabolic operators.
The method originated first in [10] and [11], and was further developed by Li and Yau
[9], Li [12], Negrin [13], Souplet and Zhang [14], Yang [15], etc. Recent gradient estimates
under the geometric flow include [16] and [17]. For more results on the nonlinear PDEs,
one may refer to [18, 19].

In this paper, following the line in [12], we prove the following theorems.

Theorem 1.1 Let M be a complete Riemannian manifold with boundary ∂M (possibly
empty). We denote by Bp(2R) the geodesic ball of radius 2R around P ∈ M not intersecting
the boundary ∂M. Suppose that the Ricci curvature of M is bounded from below by –K(2R)
in Bp(2R), and K(2R) ≥ 0. Denote K = K(2R). If u(x, t) is a positive smooth solution of (1.1)
on M × [0,∞), then we have

|∇u|2
u2 + sc(1 – u) – s

ut

u

≤ ns2

2(1 – ε)
1
t

+
ns2

2(1 – ε)(s – 1)
K +

sc
q

√
n

2(1 – ε)
M1

+
ns2

2(1 – ε)R2

(
ns2

4(1 – ε)(s – 1)
C1 + (n + 1)C1

+ C1R(n – 1)
√

K + C2

)
(1.3)

on Bp(R) × (0, +∞), where C1, C2 are positive constants and 0 < ε < 1, s > 1, q > 0 such
that 2(1–ε)

n
s–1
sq ≥ 1

ε
– 1 + (2s–1)2

8 , M1 = sup(x,t)∈Bp(2R)×[0,∞) u(x, t). In particular, we can choose
q = 2(1–ε)(s–1)

ns[ 1
ε –1+ (2s–1)2

8 ]
.

Using Theorem 1.1, we get the classic Harnack inequality.
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Theorem 1.2 Let M be an n-dimensional complete noncompact Riemannian manifold
with Ricci tensor Rij ≥ –kgij (k ≥ 0). If u(x, t) is a positive solution of (1.1) and 0 < u < 1,
then

u(x1, t1) ≤ u(x2, t2)
(

t2

t1

) ns
2(1–ε)

× exp

(
sr2

4(t2 – t1)
+ (t2 – t1)

(
nsk

2(1 – ε)(s – 1)
+

c
q

√
n

2(1 – ε)

))
,

where x1, x2 ∈ M, 0 < t1 < t2 < ∞, and r(x1, x2) is the geodesic distance between x1 and x2.
In particular, taking s = 3/2 and ε = 1/4, we get

u(x1, t1) ≤ u(x2, t2)
(

t2

t1

)n

× exp

(
3r2

8(t2 – t1)
+ (t2 – t1)

(
2nk +

7
√

6n
√

nc
3

))
. (1.4)

The rest of the paper is arranged as follows. In Sect. 2, we get a technical lemma which
is important to the proof. In Sect. 3, we prove Theorems 1.1 and 1.2.

2 Technical lemma
As in [12], we define

W (x, t) = u–q,

where q is a positive constant to be fixed later. A direct computation shows that

∇W = –qu–q–1∇u,

|∇W |2 = q2u–2q–2|∇u|2,

|∇W |2
W 2 = q2u–2|∇u|2, (2.1)

Wt = –qu–q–1ut , (2.2)

Wt

W
= –q

ut

u
, (2.3)

�W = q(q + 1)u–q–2|∇u|2 – qu–q–1�u

=
q + 1

q
|∇W |2

W
+ cqW – cqW

q–1
q + Wt . (2.4)

Therefore
(

� –
∂

∂t

)
W =

q + 1
q

|∇W |2
W

+ cqW – cqW
q–1

q . (2.5)

We follow the line in [12]. Define three functions:

F0(x, t) =
|∇W |2

W 2 + αc
(
1 – W –1/q),
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F1 =
Wt

W
,

F = F0 + βF1, (2.6)

where α, β are two positive constants to be fixed later.
Let e1, e2, . . . , en be a local orthonormal frame field. We adopt the notation that sub-

scripts in i, j, and k, with 1 ≤ i, j, k ≤ n, denote covariant differentiations in the ei, ej, and
ek directions, respectively.

Calculate

∇F0(x, t) =
2WiWij

W 2 –
2W 2

i Wj

W 3 +
αc
q

W –(q+1)/qWj, (2.7)

�F0(x, t) =
2W 2

ij

W 2 +
2WiWijj

W 2 – 8
WiWijWj

W 3 + 6
W 4

i
W 4 – 2

W 2
i Wjj

W 3

–
αc(q + 1)

q2
W –1/q

W 2 W 2
j +

αc
q

W –(q+1)/qWjj, (2.8)

∂F0(x, t)
∂t

=
2WiWit

W 2 –
2W 2

i Wt

W 3 +
αc
q

W – q+1
q Wt , (2.9)

∇F1 =
WtiW – WtWi

W 2 ,

�F1 =
WWiit – 2WiWti – WtWii

W 2 +
2WtW 2

i
W 3 ,

∂F1

∂t
=

WttW – W 2
t

W 2 ,
(

� –
∂

∂t

)
F1 =

W (�W – Wt)t – Wt(�W – Wt) – 2WiWti

W 2 +
2WtW 2

i
W 3

=
2
q
∇ log W · ∇F1 + cW – 1

q –1Wt . (2.10)

We denote the Ricci tensor of M by Rjj:

2WiWijj

W 2 =
2WiWjji

W 2 +
2RijWiWj

W 2 .

It follows that

2WiWijj

W 2 –
2WiWit

W 2 =
2Wi

W 2 (�W – Wt)i +
2RijWiWj

W 2

=
4(q + 1)

q
WiWijWj

W 3 –
2(q + 1)

q
W 4

i
W 4

+
2cW 2

i
W 2

[
q – (q – 1)W –1/q] +

2RijWiWj

W 2 . (2.11)

Equalities (2.2) and (2.4) yield

–
2W 2

i Wjj

W 3 +
2W 2

i Wt

W 3 = –
2W 2

i
W 3 (�W – Wt)

= –
2(q + 1)

q
W 4

i
W 4 – 2cq

W 2
i

W 2 + 2cqW – 1
q

W 2
i

W 2 . (2.12)
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By Hölder’s inequality, we have

2εW 2
ij

W 2 +
2
ε

· W 4
i

W 4 ≥ 4
WiWijWj

W 3 .

So,

2W 2
ij

W 2 – 8
WiWijWj

W 3 + 6
W 4

i
W 4 ≥ 2(1 – ε)W 2

ij

W 2 – 4
WiWijWj

W 3 +
(

6 –
2
ε

)
W 4

i
W 4 ,

where 0 < ε < 1.
Noting the inequality W 2

ij ≥ 1
n (Wii)2, we obtain

2W 2
ij

W 2 – 8
WiWijWj

W 3 + 6
W 4

i
W 4

≥ 2(1 – ε)
n

(
�W
W

)2

– 4
(

WiWijWj

W 3 –
W 4

i
W 4

)
– 2

(
1
ε

– 1
)

W 4
i

W 4 . (2.13)

By (2.7), we have

∇F0 · ∇ log W =
2WiWijWj

W 3 –
2W 4

i
W 4 +

αc
q

W – 1
q

W 2
j

W 2 . (2.14)

Plugging (2.11), (2.12), (2.13), and (2.14) into (2.8) and (2.9), we have

(
� –

∂

∂t

)
F0 ≥ 2(1 – ε)

n

(
�W
W

)2

– 2
(

1
ε

– 1
)

W 4
i

W 4

+
2
q
∇F0 · ∇ log W

+ 2c
(

1 –
α

q2

)
W 2

i
W 2 W – 1

q

+
2RijWiWj

W 2 + αc2W – 1
q – αc2W – 2

q . (2.15)

Setting β = α/q and combining (2.10), we conclude that

(
� –

∂

∂t

)
F ≥ 2(1 – ε)

n

(
�W
W

)2

– 2
(

1
ε

– 1
)

W 4
i

W 4

+
2
q
∇F · ∇ log W

+ 2c
(

1 –
α

q2

)
W 2

i
W 2 W – 1

q

+
2RijWiWj

W 2 + αc2W – 1
q – αc2W – 2

q

+
αc
q

W – 1
q –1Wt . (2.16)
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By (2.4) and (2.6), we arrive at

�W
W

=
q
α

F +
(

q + 1
q

–
q
α

) |∇W |2
W 2 . (2.17)

Setting α = sq2 yields

�W
W

=
1
sq

F +
(

q + 1
q

–
1
sq

) |∇W |2
W 2

=
1
sq

F +
(

q + 1 – 1/s
q

) |∇W |2
W 2 . (2.18)

Substituting (2.18) into (2.16), we obtain

(
� –

∂

∂t

)
F ≥ 2(1 – ε)

n
1

s2q2 F2

+
[

2(1 – ε)
n

(sq + s – 1)2

s2q2 – 2
(

1
ε

– 1
)] |∇W |4

W 4

+
4(1 – ε)

n
(sq + s – 1)

s2q2 F
|∇W |2

W 2 +
2
q
∇F · ∇ log W

+ 2c(1 – s)
|∇W |2

W 2 W – 1
q +

2RijWiWj

W 2 + sq2c2W – 1
q

– sq2c2W – 2
q + sqcW – 1

q –1Wt . (2.19)

An immediate consequence is the following lemma.

Lemma 2.1 Let M be an n-dimensional complete Riemannian manifold with Ricci tensor
Rij. If F is defined by (2.6) where β = α/q, α = sq2, then we have

(
� –

∂

∂t

)
F ≥ 2(1 – ε)

n
1

s2q2 F2

+
[

2(1 – ε)
n

(sq + s – 1)2

s2q2 – 2
(

1
ε

– 1
)] |∇W |4

W 4

+
4(1 – ε)

n
(sq + s – 1)

s2q2 F
|∇W |2

W 2

+
2
q
∇F · log W + (c – 2cs)

|∇W |2
W 2 W – 1

q

+ cW – 1
q F +

2RijWiWj

W 2 . (2.20)

3 Main theorems
Theorem 3.1 Let M be a complete Riemannian manifold with boundary ∂M (possibly
empty). We denote by Bp(2R) the geodesic ball of radius 2R around P ∈ M not intersecting
the boundary ∂M. Suppose that the Ricci curvature of M is bounded from below by –K(2R)
in Bp(2R), and K(2R) ≥ 0. Denote K = K(2R). If u(x, t) is a positive smooth solution of (1.1)
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on M × [0,∞), then we have

|∇u|2
u2 + sc(1 – u) – s

ut

u

≤ ns2

2(1 – ε)
1
t

+
ns2

2(1 – ε)(s – 1)
K +

sc
q

√
n

2(1 – ε)
M1

+
ns2

2(1 – ε)R2

(
ns2

4(1 – ε)(s – 1)
C1 + (n + 1)C1

+ C1R(n – 1)
√

K + C2

)
(3.1)

on Bp(R) × (0, +∞), where C1, C2 are positive constants, 0 < ε < 1, s > 1, q > 0 such that
2(1–ε)

n
s–1
sq ≥ 1

ε
– 1 + (2s–1)2

8 , and M1 = sup(x,t)∈Bp(2R)×[0,∞) u(x, t). In particular, we can choose
q = 2(1–ε)(s–1)

ns[ 1
ε –1+ (2s–1)2

8 ]
.

Proof Let χ ∈ C2[0, +∞) be a cut-off function such that χ (r) = 1 for r ≤ 1, χ (r) = 0 for
r > 2, and 0 ≤ χ (r) ≤ 1. We choose χ satisfying –

√
C1χ

1/2(r) ≤ χ ′(r) ≤ 0, χ ′′(r) ≥ –C2,
where C1, C2 are positive constants.

Denote by r(x) the geodesic distance between x and some fixed point P. Set

φ(x) = χ

(
r(x)

R

)
.

By the conditions on χ and the Laplacian comparison theorem, we get

|∇φ|2 ≤ C1

R2 φ

and

�φ ≥ –
C2 + C1(n – 1)

R2 –
C1(n – 1)

√
K

R
.

Define the function H(x, t) := tF(x, t). Using the argument of Calabi [20], we assume
that the function φ(x) · H(x, t) with support in BP(2R) is smooth. For any fixed T > 0, let
(x0, t0) be the point where φ · H achieves its maximum in BP(2R) × [0, T]. Without loss of
generality, we assume that φ(x0) · H(x0, t0) > 0. Otherwise, (3.1) is obviously true. By the
maximum principle, at (x0, t0), we have

∇(φ · H) = 0, (3.2)

∂(φ · H)
∂t

≥ 0, (3.3)

�(φ · H) ≤ 0. (3.4)

By (3.2), we have

∇H = –
∇φ

φ
H . (3.5)
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By (3.4), we have

�φ · H + 2∇φ · ∇H + φ�H ≤ 0. (3.6)

It follows from (3.3) and (3.6) that

�φ · H + 2∇φ · ∇H + φ

(
� –

∂

∂t

)
H ≤ 0. (3.7)

Setting β = α/q, α = sq2, by Lemma 2.1 we have

(
� –

∂

∂t

)
H = t

(
� –

∂

∂t

)
F – F

≥ 2(1 – ε)
n

1
s2q2 H2 1

t
+

[
2(1 – ε)

n
(sq + s – 1)2

s2q2 – 2
(

1
ε

– 1
)] |∇W |4

W 4 t

+
4(1 – ε)

n
(sq + s – 1)

s2q2
|∇W |2

W 2 H +
2
q
∇H · ∇ log W + cW – 1

q H

– c(2s – 1)
|∇W |2

W 2 W –1/qt – 2K
|∇W |2

W 2 t –
H
t

. (3.8)

By Hölder’s inequality, we get

2Kt
|∇W |2

W 2 ≤ 2(1 – ε)
n

(s – 1)2

s2q2
|∇W |4

W 4 t +
n

2(1 – ε)
s2q2

(s – 1)2 K2t (3.9)

and

c(2s – 1)
|∇W |2

W 2 W –1/qt ≤ (2s – 1)2

4
|∇W |4

W 4 t + c2M2
1t. (3.10)

Substituting (3.9) and (3.10) into (3.8), and choosing s > 1 and q > 0 such that 2(1–ε)
n

s–1
sq ≥

1
ε

– 1 + (2s–1)2

8 , we have

(
� –

∂

∂t

)
H ≥ 2(1 – ε)

n
1

s2q2 H2 1
t

+
4(1 – ε)

n
(sq + s – 1)

s2q2
|∇W |2

W 2 H

+
2
q
∇H · ∇ log W –

H
t

–
n

2(1 – ε)
s2q2

(s – 1)2 K2t – c2M2
1t. (3.11)

Substituting (3.11) into (3.7) and using (3.5), we have

2(1 – ε)
n

1
s2q2 H2 1

t
φ +

4(1 – ε)
n

(sq + s – 1)
s2q2

|∇W |2
W 2 Hφ –

2
q

H∇φ · ∇W
W

–
H
t

φ –
n

2(1 – ε)
s2q2

(s – 1)2 K2φt – c2M2
1φt

–
(

C2 + C1(n + 1)
R2 +

C1(n – 1)
√

K
R

)
H ≤ 0, (3.12)

where we have used 2∇φ · ∇H = –2 |∇φ|2
φ

H ≥ – 2C1
R2 H .
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Clearly,

2
q

H∇φ · ∇W
W

≤ 4(1 – ε)
n

(sq + s – 1)
s2q2

|∇W |2
W 2 Hφ +

n
4(1 – ε)

s2H
(sq + s – 1)

|∇φ|2
φ

. (3.13)

Multiplying through by tφ at (3.12) and using (3.13), we arrive at

2(1 – ε)
n

1
s2q2 H2φ2 – Hφ

– t
(

ns2

4(1 – ε)(sq + s – 1)
C1

R2 +
C2 + (n + 1)C1

R2 +
C1(n – 1)

√
K

R

)
Hφ

– t2
(

n
2(1 – ε)

s2q2

(s – 1)2 K2 + c2M2
1

)
≤ 0. (3.14)

Equation (3.14) yields

Hφ ≤ ns2q2

2(1 – ε)

[
1 + t

(
ns2

4(1 – ε)(sq + s – 1)
C1

R2 +
C2 + (n + 1)C1

R2 +
C1(n – 1)

√
K

R

)]

+ t

√
ns2q2

2(1 – ε)

√
n

2(1 – ε)
s2q2

(s – 1)2 K2 + c2M2
1

at (x0, t0).
It is easy to see that

sup
x∈Bp(R)

H(x, T)

≤ H(x0, t0)φ(x0)

≤ ns2q2

2(1 – ε)

[
1 + T

(
ns2

4(1 – ε)(sq + s – 1)
C1

R2 +
C2 + (n + 1)C1

R2 +
C1(n – 1)

√
K

R

)]

+ T

√
ns2q2

2(1 – ε)

√
n

2(1 – ε)
s2q2

(s – 1)2 K2 + c2M2
1.

Then we get

|∇u|2
u2 + sc(1 – u) – s

ut

u

≤ ns2

2(1 – ε)
1
t

+
ns2

2(1 – ε)(s – 1)
K +

sc
q

√
n

2(1 – ε)
M1

+
ns2

2(1 – ε)R2

(
ns2

4(1 – ε)(s – 1)
C1 + (n + 1)C1 + C1R(n – 1)

√
K + C2

)

on Bp(R) × (0, +∞) since T > 0 is arbitrary. �

Using Theorem 3.1 and letting R → +∞, we can get the following corollary.
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Corollary 3.2 Let M be an n-dimensional complete Riemannian manifold with Ricci ten-
sor Rij ≥ –kgij (k ≥ 0). If u(x, t) is a positive solution of (1.1) and 0 < u < 1, then

|∇u|2
u2 – s

ut

u
≤ ns2

2(1 – ε)
1
t

+
ns2

2(1 – ε)(s – 1)
k +

sc
q

√
n

2(1 – ε)
. (3.15)

Remark 3.3 Let M be an n-dimensional complete Riemannian manifold with nonnegative
Ricci curvature. Suppose that u(x, t) is a positive solution of (1.1) and 0 < u < 1. Let f =
log u. Then we have

ft = �f + |∇f |2 + c
(
1 – ef ).

It follows from Corollary 3.2 that

�f +
s – 1

s
|∇f |2 +

ns
2(1 – ε)

1
t

+
c
q

√
n

2(1 – ε)
≥ 0.

In particular, taking s = 3/2 and ε = 1/4, we get

�f +
1
3
|∇f |2 +

n
t

+
7
√

6n
√

nc
3

≥ 0.

This estimate is simpler than (1.2) in form.

Theorem 3.4 Let M be an n-dimensional complete Riemannian manifold with Ricci tensor
Rij ≥ –kgij (k ≥ 0). If u(x, t) is a positive solution of (1.1) and 0 < u < 1, then

u(x1, t1) ≤ u(x2, t2)
(

t2

t1

) ns
2(1–ε)

× exp

(
sr2

4(t2 – t1)
+ (t2 – t1)

(
nsk

2(1 – ε)(s – 1)
+

c
q

√
n

2(1 – ε)

))
,

where x1, x2 ∈ M, 0 < t1 < t2 < ∞, and r(x1, x2) is the geodesic distance between x1 and x2.

Proof If we set f = log u, then

|∇f |2 – sft ≤ ns2

2(1 – ε)
1
t

+
ns2

2(1 – ε)(s – 1)
k +

sc
q

√
n

2(1 – ε)
(3.16)

for all (x, t) ∈ M × (0, +∞).
Fix points (x1, t1) and (x2, t2) in M × (0, +∞) with t1 < t2, and let r : [0, 1] → M be the

shortest geodesic joining x1 and x2 with r(0) = x2 and r(1) = x1.
Define the curve η : [0, 1] → M × (0, +∞) by η(y) = (r(y), (1 – y)t2 + yt1). It is clear that

η(0) = (x2, t2), η(1) = (x1, t1) and

f (x1, t1) – f (x2, t2) =
∫ 1

0

df (η(y))
dy

dy ≤
∫ 1

0

(
ρ|∇f | – (t2 – t1)ft

)
dy, (3.17)

where ρ = r(x1, x2).
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By inequality (3.16), we get

–ft ≤ –
|∇f |2

s
+

ns
2(1 – ε)t

+
nsk

2(1 – ε)(s – 1)
+

c
q

√
n

2(1 – ε)
.

Thus (3.17) becomes

f (x1, t1) – f (x2, t2)

≤
∫ 1

0

(
ρ|∇f | – (t2 – t1)

|∇f |2
s

+ (t2 – t1)
ns

2(1 – ε)t
+ (t2 – t1)

(
nsk

2(1 – ε)(s – 1)
+

c
q

√
n

2(1 – ε)

))
dy,

where t = (1 – y)t2 + yt1.
We can see that as a function of |∇f |, the quadratic

ρ|∇f | – (t2 – t1)
|∇f |2

s
+ (t2 – t1)

ns
2(1 – ε)t

+ (t2 – t1)
(

nsk
2(1 – ε)(s – 1)

+
c
q

√
n

2(1 – ε)

)

≤ sρ2

4(t2 – t1)
+ (t2 – t1)

ns
2(1 – ε)t

+ (t2 – t1)
(

nsk
2(1 – ε)(s – 1)

+
c
q

√
n

2(1 – ε)

)
.

So,

f (x1, t1) – f (x2, t2) ≤ sρ2

4(t2 – t1)
+ (t2 – t1)

(
nsk

2(1 – ε)(s – 1)
+

c
q

√
n

2(1 – ε)

)

+
ns

2(1 – ε)
log

(
t2

t1

)
,

i.e.,

u(x1, t1) ≤ u(x2, t2)
(

t2

t1

) ns
2(1–ε)

× exp

(
sr2

4(t2 – t1)
+ (t2 – t1)

(
nsk

2(1 – ε)(s – 1)
+

c
q

√
n

2(1 – ε)

))
. �

4 Conclusions
In this paper, we use the method of gradient estimates to study the Fisher–KPP equation.
We get the local gradient estimate (Theorem 1.1). Since the solution u of (1.1) often de-
scribes the density, it is natural to study solutions of which 0 < u < 1. We get the Harnack
estimate if 0 < u < 1 (Theorem 1.2). Our results can be used to study the solution of (1.1)
further. The similar method can be also applied to the following equation:

ut = �u + aup + buq,

where a, b, p, q are constants.
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