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Abstract
The degenerate parabolic equation with a convection term is considered. Let � be a
bounded domain with C2 smooth boundary and d(x) = dist(x,∂�) be the distance
function from the boundary. If �d ≤ 0 when x is near to the boundary, then the
stability of the entropy solutions is proved independent of the boundary value
conditions. The degeneracy of the convection term on the boundary can take place
of the usual boundary value condition.
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1 Introduction
The degenerate parabolic equation

∂u
∂t

= �A(u) + div
(
b(u, x, t)

)
, (x, t) ∈ � × (0, T), (1.1)

comes from many reaction–diffusion problems [1]. It has been widely researched for a
long time, the first well-known paper goes back to the work [2] by Vol’pert and Hudjaev
in 1967. Let

A(u) =
∫ u

0
a(s) ds, a(s) ≥ 0, a(0) = 0. (1.2)

Then the degeneracy of a(s) may lead to the equation with the hyperbolic characteristic,
and the uniqueness of the usual weak solution is not true. In other words, the usual weak
solution (for example, the measured value solution) is so weak that it lacks the regularity to
ensure the stability or the uniqueness. The entropy condition is considered in this context.
Till now, this has been one of the most well-known conditions in the degenerate parabolic
equation theory. In the sense of the entropy solution, there are a lot of important papers
devoted to equation (1.1), one can refer to [3–15] and the references therein. Based on the
papers, we can conclude that the initial value condition

u(x, 0) = u0(x), x ∈ �, (1.3)
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is always indispensable, while the usual Dirichlet boundary value condition

u(x, t) = 0, (x, t) ∈ ∂� × (0, T), (1.4)

might be overdetermined. Instead of (1.4), a partial boundary value condition

u(x, t) = 0, (x, t) ∈ �1 × (0, T), (1.5)

should be imposed, where �1 is a relative open subset of ∂�. If

bi(u, x, t) ≡ bi(u), (1.6)

the explicit formula of �1 was studied in our previous works [16–18].
For small η > 0, let

Sη(s) =
∫ s

0
hη(τ ) dτ , hη(s) =

2
η

(
1 –

|s|
η

)

+
.

Then hη(s) ∈ C(R), and

hη(s) ≥ 0,
∣
∣shη(s)

∣
∣ ≤ 1,

∣
∣Sη(s)

∣
∣ ≤ 1;

lim
η→0

Sη(s) = sgn s, lim
η→0

sS′
η(s) = 0.

(1.7)

The definition of the entropy solution of equation (1.1) is given as follows.

Definition 1.1 A function u is said to be the entropy solution of equation (1.1) with the
initial value condition (1.3) if

1. u satisfies

u ∈ BV(QT ) ∩ L∞(QT ),
∂

∂xi

∫ u

0

√
a(s) ds ∈ L2(QT ).

2. For any ϕ ∈ C2
0(QT ), ϕ ≥ 0, for any k ∈ R, for any small η > 0, u satisfies

∫∫

QT

[

Iη(u – k)ϕt –
N∑

i=1

Bi
η(u, x, t, k)ϕxi + Aη(u, k)�ϕ

– S′
η(u – k)

∣∣∣
∣∇

∫ u

0

√
a(s) ds

∣∣∣
∣

2

ϕ

]

dx dt

–
N∑

i=1

∫∫

QT

∫ u

k
bixi S

′
η(s – k) dsϕ dx dt

≥ 0. (1.8)

3. Condition (1.3) is true in the sense that

lim
t→0

∫

�

∣∣u(x, t) – u0(x)
∣∣dx = 0, a.e. x ∈ �. (1.9)
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Here,

Bi
η(u, x, t, k) =

∫ u

k

∂bi(s, x, t)
∂s

Sη(s – k) ds,

Aη(u, k) =
∫ u

k
a(s)Sη(s – k) ds,

and

Iη(u – k) =
∫ u–k

0
Sη(s) ds.

We would like to suggest that these kinds of entropy solutions were introduced by the
author in [14, 15]. For any small η > 0, any k ∈R, by multiplying with ϕSη(u–k) in equation
(1.1), we can obtain the entropy inequality (1.8).

Definition 1.2 Let u(x, t) be the entropy solution of equation (1.1) with the initial value
condition (1.3). If, moreover, the partial boundary value condition (1.5) is satisfied in the
sense of the trace, then we say that u(x, t) is the entropy solution of the initial-boundary
value problem of equation (1.1).

If bi(u, x, t) ≡ bi(u) is independent of the variables (x, t), the existence of the entropy
solution of initial-boundary value problem was obtained in [18]. By the aid of Fichera–
Oleinik theory, we conjectured that the partial boundary value condition (1.5) should be

u(x, t) = 0, (x, t) ∈ �1 × (0, T), �1 =
{

x ∈ ∂� : bi(0)ni < 0
}

, (1.10)

where �n = {ni} is the inner normal vector of �, and proved the following theorem.

Theorem 1.3 . Suppose that A(s) is C2 and bi(s, x, t) ≡ bi(s) is C1. Let u(x, t) and v(x, t)
be two entropy solutions of equation (1.1) with the different initial values u0(x) and v0(x),
respectively, and with the same partial homogeneous boundary value condition

γ u = γ v = 0, x ∈ �1. (1.11)

If � is with the property

|�d| ≤ c,
1
λ

∫

�λ

dx dt ≤ c,

then

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

|u0 – v0|dx + ess sup
(x,t)∈�2×(0,T)

∣
∣u(x, t) – v(x, t)

∣
∣, (1.12)

where (x, t) ∈ R
N+1, �2 = ∂� \ �1, ess sup(x,t)∈�2×(0,T) |u(x, t) – v(x, t)| is in the sense of N-

dimensional Hausdorff measure.
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If � ⊂ R
N is a bounded domain, Theorem 1.3 can be found in [16]. If � = R

N
+ is the

half space, Theorem 1.3 can be found in [17]. Also, if � is some special given domains,
Theorem 1.3 was obtained in [19].

However, since there is an unknown term ess sup(x,t)∈�2×(0,T) |u(x, t) – v(x, t)| in (1.12),
Theorem 1.3 is far from perfection. The root of the problem lies in that equation (1.1) is
with strong nonlinearity, it is almost impossible to verify whether conjecture (1.10) is true
or not.

In this paper, we leave conjecture (1.10) out of consideration. We suppose that the con-
vection term satisfies bi(·, x, t) = 0 when x ∈ ∂�. By ingeniously choosing the test function
ϕ in the entropy inequality (1.8), we can deduce an explicit formula of �1 and establish the
stability of the entropy solutions based on a partial boundary value condition (1.5). This
is the following theorem.

Theorem 1.4 Let the domain � be with a C2 smooth boundary ∂�, A(s) be C2 and bi(s, x, t)
be C1. Let u(x, t) and v(x, t) be two solutions of equation (1.1) with the different initial values
u0(x) and v0(x), respectively, with the same partial boundary value condition (1.5), and

�1 = {x ∈ ∂� : �d > 0}. (1.13)

If u0(x), v0(x) ∈ L∞(�), and bi(s, x, t) satisfies

∣∣bi(u, x, t) – bi(v, x, t)
∣∣ ≤ cd(x), (1.14)

then
∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤ c

∫

�

|u0 – v0|dx. (1.15)

Theorem 1.4 is proved by Kruzkov’s bi-variables method. Comparing (1.15) with (1.12),
we find that the unperfect term ess sup(x,t)∈�2×(0,T) |u(x, t) – v(x, t)| in (1.12) has disap-
peared. Considering different typical techniques used in [14–19], the novelty of this paper
lies in that we endow condition (1.14), and by this assumption, we can choose a suitable
test function ϕ in (1.8) to obtain the perfect stability (1.15).

A direct corollary of Theorem 1.4 is the following theorem.

Theorem 1.5 Let the domain � be with a C2 smooth boundary ∂�, A(s) be C2, and
bi(s, x, t) be C1. Let u(x, t) and v(x, t) be solutions of equation (1.1) with the different initial
values u0(x) and v0(x), respectively, but without any boundary value condition. Suppose
u0(x), v0(x) ∈ L∞(�), when x is near to the boundary,

�d ≤ 0, (1.16)

and bi(s, x, t) satisfies (1.14), then the stability (1.15) is true.

One can see that, since u0(x), v0(x) ∈ L∞(�) , bi(s, x, t) is C1, then

∣∣bi(u, x, t) – bi(v, x, t)
∣∣ ≤ c|u – v|
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is always true. If we assume that

∣∣u(x, t)
∣∣ ≤ cd(x),

∣∣v(x, t
∣∣ ≤ cd(x),

which is stronger than the homogeneous boundary value condition (1.4), then condition
(1.14) is true naturally. However, the condition has its independent significance. In fact,
only if

∣∣bi(s, x, t)
∣∣ ≤ cd(x), (1.17)

is true, when |s| ≤ c and x is near to the boundary ∂�, then condition (1.14) can be
guaranteed. Certainly, if condition (1.14) is not true, how to clarify the partial bound-
ary �1 remains an open problem. If possible, we will present a follow-up work in the fu-
ture.

Let us give two examples of the domains which satisfy condition (1.16). For example, if
� = D1 = {x ∈R

N : x2
1 + x2

2 + · · · + x2
N < 1} is the unit disc, then

d(x) = 1 –
√(

x2
1 + x2

2 + · · · + x2
N
)
. (1.18)

For another example, if � = {x ∈ R
N : 0 < xi < 1, i = 1, 2, . . . , N} is the N-dimensional unit

cube, then

d(x) = xi or (1 – xi), (1.19)

when x = (x1, x2, . . . , xN ) is near to the hyperplane {xi = 0} or {xi = 1} respectively. The
distance functions (1.18)–(1.19) all satisfy that

�d ≤ 0.

The following example shows what �1 is. Let � = {x ∈ R
N : r2

0 < x2
1 + x2

2 + · · · + x2
N < R2

0}.
When x is near to {x ∈R

N : x2
1 + x2

2 + · · · + x2
N = R2

0},

�d ≤ 0.

But when x is near to {x ∈R
N : x2

1 + x2
2 + · · · + x2

N = r2
0},

0 < �d =
N – 1

r
,

then

�1 =
{

x ∈R
N : x2

1 + x2
2 + · · · + x2

N = r2
0
}

.

In Sect. 2, we will introduce Kruzkov’s bi-variables method. Theorem 1.4 and Theo-
rem 1.5 are proved in Sect. 3.
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2 Kruzkov’s bi-variables method
The context in this section is just a minor version of Kruzkov’s bi-variables method used
in our previous works [14–19].

Let �u be the set of all jump points of u ∈ BV(QT ), v be the normal of �u at X = (x, t),
u+(X) and u–(X) be the approximate limits of u at X ∈ �u with respect to (v, Y – X) >
0 and (v, Y – X) < 0, respectively. For a continuous function p(u, x, t) and u ∈ BV(QT ),
define

p̂(u, x, t) =
∫ 1

0
p
(
τu+ + (1 – τ )u–, x, t

)
dτ , (2.1)

which is called the composite mean value of p. For given t, we denote �t
u, Ht , (vt

1, . . . , vt
N )

and ut± as all jump points of u(·, t), Hausdorff measure of �t
u, the unit normal vector of

�t
u, and the asymptotic limit of u(·, t), respectively. Moreover, if f (s) ∈ C1(R), u ∈ BV(QT ),

then f (u) ∈ BV(QT ) and

∂f (u)
∂xi

= f̂ ′(u)
∂u
∂xi

, i = 1, 2, . . . , N , N + 1, (2.2)

where xN+1 = t as usual.

Lemma 2.1 Let u be a solution of equation (1.1). Then

a(s) = 0, s ∈ I
(
u+(x, t), u–(x, t)

)
a.e. on �u, (2.3)

where I(α,β) denotes the closed interval with endpoints α and β , and (2.3) is in the sense
of Hausdorff measure HN (�u).

Now, let u(x, t) and v(x, t) be two entropy solutions of equation (1.1) with initial values

u(x, 0) = u0(x), v(x, 0) = v0(x),

respectively.
By Definition 1.1, for ϕ ∈ C2

0(QT ), we have

∫∫

QT

[

Iη(u – k)ϕt –
N∑

i=1

Bi
η(u, x, t, k)ϕxi + Aη(u, k)�ϕ

– S′
η(u – k)

∣
∣∣
∣∇

∫ u

0

√
a(s) ds

∣
∣∣
∣

2

ϕ

]

dx dt

–
N∑

i=1

∫∫

QT

∫ u

k
bixi (s, x, t)S′

η(s – k) dsϕ dx dt

≥ 0, (2.4)



Zhan Boundary Value Problems  (2018) 2018:30 Page 7 of 13

∫∫

QT

[

Iη(v – l)ϕτ –
N∑

i=1

Bi
η(v, y, τ , l)ϕyi + Aη(v, l)�ϕ

– S′
η(v – l)

∣
∣∣
∣∇

∫ v

0

√
a(s) ds

∣
∣∣
∣

2

ϕ

]

dy dτ

–
N∑

i=1

∫∫

QT

∫ v

l
biyi (s, y, τ )S′

η(s – l) dsϕ dx dt

≥ 0. (2.5)

Let ψ(x, t, y, τ ) = φ(x, t)jh(x – y, t – τ ). Here, φ(x, t) ≥ 0, φ(x, t) ∈ C∞
0 (QT ), and

jh(x – y, t – τ ) = ωh(t – τ )
N∏

i=1

ωh(xi – yi), (2.6)

ωh(s) =
1
h
ω

(
s
h

)
, ω(s) ∈ C∞

0 (R), ω(s) ≥ 0,

ω(s) = 0 if |s| > 1,
∫ ∞

–∞
ω(s) ds = 1.

(2.7)

We choose k = v(y, τ ), l = u(x, t), ϕ = ψ(x, t, y, τ ) in (2.4), (2.5), integrate over QT respec-
tively, add them together. Then

∫∫

QT

∫∫

QT

[
Iη(u – v)(ψt + ψτ ) + Aη(u, v)�xψ + Aη(v, u)�yψ

]

–
N∑

i=1

[
Bi

η(u, x, t, v)ψxi + Bi
η(v, y, τ , u)ψyi

]

–
N∑

i=1

[∫ u

k
bixi (s, x, t)S′

η(s – k) ds +
∫ v

l
biyi (s, y, τ )S′

η(s – l) ds
]

– S′
η(u – v)

(∣
∣∣
∣∇

∫ u

0

√
a(s) ds

∣
∣∣
∣

2

+
∣
∣∣
∣∇

∫ v

0

√
a(s) ds

∣
∣∣
∣

2)
ψ dx dt dy dτ

≥ 0. (2.8)

Clearly,

∂jh
∂t

+
∂jh
∂τ

= 0,
∂jh
∂xi

+
∂jh
∂yi

= 0, i = 1, . . . , N ;

∂ψ

∂t
+

∂ψ

∂τ
=

∂φ

∂t
jh,

∂ψ

∂xi
+

∂ψ

∂yi
=

∂φ

∂xi
jh.

Noticing that

lim
η→0

Bi
η(u, x, t, v) = lim

η→0
Bi

η(v, y, τ , u)

= sgn(u – v)
(
bi(u, x, t) – bi(v, y, τ )

)
,
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then

lim
η→0

∫∫

QT

∫∫

QT

[
Bi

η(u, x, t, v)ψxi + Bi
η(v, y, τ , u)ψyi

]
dx dt dy dτ

=
∫∫

QT

∫∫

QT

sgn(u – v)
[
bi(u, x, t) – bi(v, y, τ )

]
φxi jh dx dt dy dτ

and

lim
h→0

∫∫

QT

∫∫

QT

sgn(u – v)
[
bi(u, x, t) – bi(v, y, τ )

]
φxi jh dx dt dy dτ

=
∫∫

QT

sgn(u – v)
[
bi(u, x, t) – bi(v, x, t)

]
φxi dx dt. (2.9)

Once more, we have

∫∫

QT

[
Aη(u, v)�xψ + Aη(v, u)�yψ

]
dx dt dy dτ

=
∫∫

QT

∫∫

QT

{

Aη(u, v)

(

�xφjh + 2
N∑

i=1

φxi jhxi + φ�jh

)

+ Aη(v, u)φ�yjh

}

dx dt dy dτ

=
∫∫

QT

∫∫

QT

{

Aη(u, v)�xφjh +
N∑

i=1

[
Aη(u, v)φxi jhxi + Aη(v, u)φxi jhyi

]
}

dx dt dy dτ

–
N∑

i=1

∫∫

QT

∫∫

QT

{[
̂a(u)Sη(u – v)

∂u
∂xi

–
̂

∫ v

u
a(s)S′

η(s – v) ds
∂u
∂xi

]
φjhxi

}
dx dt dy dτ , (2.10)

where

̂a(u)Sη(u – v) =
∫ 1

0
a
(
su+ + (1 – s)u–)

Sη

(
su+ + (1 – s)u– – v

)
ds,

∫ v

u
̂a(s)S′

η(s – v) ds =
∫ 1

0

∫ v

su++(1–s)u–
a(σ )Sη

(
σ – su+ – (1 – s)u–)

dσ ds.

Notice that

∫∫

QT

∫∫

QT

S′
η(u – v)

(∣
∣∣
∣∇x

∫ u

0

√
a(s) ds

∣
∣∣
∣

2

+
∣
∣∣
∣∇y

∫ v

0

√
a(s) ds

∣
∣∣
∣

2)
ψ dx dt dy dτ

=
∫∫

QT

∫∫

QT

S′
η(u – v)

(∣∣
∣∣∇x

∫ u

0

√
a(s) ds

∣∣
∣∣ –

∣∣
∣∣∇y

∫ v

0

√
a(s) ds

∣∣
∣∣

)2

ψ dx dt dy dτ

+ 2
∫∫

QT

∫∫

QT

S′
η(u – v)∇x

∫ u

0

√
a(s) ds · ∇y

∫ v

0

√
a(s) dsψ dx dt dy dτ , (2.11)
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and, by Lemma 2.1, we can show that

N∑

i=1

∫∫

QT

∫∫

QT

(
̂a(u)Sη(u – v)

∂u
∂xi

–
̂

∫ v

u
a(s)S′

η(s – u) ds
∂u
∂xi

)
jhxiφ dx dt dy dτ

+ 2
∫∫

QT

∫∫

QT

S′
η(u – v)∇x

∫ u

0

√
a(s) ds · ∇y

∫ v

0

√
a(s) dsψ dx dt dy dτ

= –
N∑

i=1

∫∫

QT

∫∫

QT

∫ 1

0

∫ v

su++(1–s)u–

[√
a(σ ) –

√
a
(
su+ + (1 – s)u–

)]

× S′
η

(
σ – su+ – (1 – s)u–)

dσ ds
∂u
∂xi

jhxiφ dx dt dy dτ

→ 0 (2.12)

as η → 0.
Moreover, since

lim
η→0

Aη(u, v) = lim
η→0

Aη(v, u) = sgn(u – v)
[
A(u) – A(v)

]
,

we have

lim
η→0

[
Aη(u, v)φxi jhxi + Aη(u, v)φyi jhyi

]
= 0. (2.13)

Combining (2.8)–(2.13) and letting η → 0, h → 0 in (2.8), we get
∫∫

QT

[∣∣u(x, t) – v(x, t)
∣∣φt +

∣∣A(u) – A(v)
∣∣�φ

]
dx dt

–
N∑

i=1

∫∫

QT

sgn(u – v)
[
bi(u, x, t) – bi(v, x, t)

]
φxi dx dt

–
N∑

i=1

∫∫

QT

[
bixi (v, x, t) sgn(u – v)φ + bixi (u, x, t) sgn(v – u)φ

]
dx dt

≥ 0. (2.14)

By (2.14), by choosing a suitable test function ϕ, one may obtain the stability of the entropy
solution.

3 Proofs of Theorem 1.4 and Theorem 1.5

Proof of Theorem 1.4 For small enough λ, we set

ϕλ(x) =

⎧
⎨

⎩
sin d(x)

λ
, if 0 ≤ d(x) < πλ

2 ,

1, if d(x) ≥ πλ
2 .

(3.1)

Let 0 ≤ η(t) ∈ C2
0(t) and

φ(x, t) = η(t)ϕλ(x).
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By (3.1), when 0 ≤ d(x) < πλ
2 , we clearly have

∂xiφ(x, t) = η(t)∂xiϕλ(x) = η(t)
1
λ

cos
d(x)
λ

dxi (x) (3.2)

and

�φ(x, t) =
1
λ

η(t)

[

–
1
λ

sin
d(x)
λ

N∑

i=1

d2
xi

+ cos
d(x)
λ

�d(x)

]

= –
1
λ2 η(t) sin

d(x)
λ

N∑

i=1

d2
xi

+
1
λ

η(t) cos
d(x)
λ

�d(x). (3.3)

In another place, i.e., when d(x) ≥ πλ
2 ,

∂xiφ(x, t) = 0 = �φ(x, t), i = 1, 2, . . . , N . (3.4)

If we denote �1λ = {x ∈ � : d(x) < λπ
2 }, by that |∇d| = 1, according to (3.3)–(3.4), we have

∫∫

QT

∣
∣A(u) – A(v)

∣
∣�φ dx dt

= –
1
λ2

∫ T

0

∫

�1λ

∣∣A(u) – A(v)
∣∣η(t) sin

d(x)
λ

dx dt

+
1
λ

∫ T

0

∫

�1λ

η(t)
∣∣A(u) – A(v)

∣∣ cos
d(x)
λ

�d(x) dx dt. (3.5)

Substituting into (2.14), we have

∫∫

QT

∣∣u(x, t) – v(x, t)
∣∣ηtϕλ(x) dx dt

–
N∑

i=1

∫ T

0

∫

�1λ

η(t)
λ

sgn(u – v)
(
bi(u, x, t) – bi(v, x, t)

)
cos

d(x)
λ

dxi (x) dx dt

+
∫ T

0

∫

�1λ

η(t)
λ

∣∣A(u) – A(v)
∣∣ cos

d(x)
λ

�d(x) dx dt

–
N∑

i=1

∫∫

QT

[
bixi (v, x, t) sgn(u – v) + bixi (u, x, t) sgn(v – u)

]
η(t)ϕλ(x) dx dt

≥ 0. (3.6)

Let

�+ = �1λ ∩ {x ∈ � : �d > 0}, �– = �1λ ∩ {x ∈ � : �d < 0}.
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Then
∫∫

QT

∣∣u(x, t) – v(x, t)
∣∣ηtϕλ(x) dx dt

–
N∑

i=1

∫ T

0

∫

�1λ

η(t)
λ

sgn(u – v)
(
bi(u, x, t) – bi(v, x, t)

)
cos

d(x)
λ

dxi (x) dx dt

+
∫ T

0

∫

�λ+

η(t)
λ

∣∣A(u) – A(v)
∣∣�d(x) dx dt

–
N∑

i=1

∫∫

QT

[
bixi (v, x, t) sgn(u – v) + bixi (u, x, t) sgn(v – u)

]
η(t)ϕλ(x) dx dt

≥ 0. (3.7)

In the first place, by that |dxi (x)| ≤ |∇d| = 1, by condition (1.14),

∣
∣∣∣

∫ T

0

∫

�1λ

η(t)
λ

sgn(u – v)
(
bi(u, x, t) – bi(v, x, t)

)
cos

d(x)
λ

dxi (x)
∣
∣∣∣

≤ c
∫ T

0

∫

�1λ

η(t)
λ

d(x) dx dt

≤ c
∫ T

0

∫

�1λ

η(t) dx dt (3.8)

goes to zero when λ → 0.
In the second place, by the partial boundary value condition (1.5), we have

lim
λ→0

1
λ

∫ T

0

∫

�λ–+

η(t)
λ

∣∣A(u) – A(v)
∣∣ cos

d(x)
λ

�d dx dt

≤ c lim
λ→0

1
λ

∫ T

0

∫

�λ+

|u – v|dx dt

= c
∫ T

0

∫

�1

|u – v|dσ dt = 0. (3.9)

Moreover,

lim
λ→0

∣
∣∣
∣

∫∫

Qt

[
bixi (v, x, t) sgn(u – v) + bixi (u, x, t) sgn(v – u)

]
η(t)ϕλ(x) dx dt

∣
∣∣
∣

≤ c
∫∫

QT

η(t)|u – v|dx dt. (3.10)

By (3.6)–(3.10), letting λ → 0, we can deduce that

∫∫

QT

∣∣u(x, t) – v(x, t)
∣∣η′

t dx dt + c
∫ T

0

∫

�

|u – v|η(t) dx dt. (3.11)

Let 0 < s < τ < T , and

η(t) =
∫ s–t

τ–t
αε(σ ) dσ , ε < min{τ , T – s}.
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Here, αε(t) is the kernel of mollifier with αε(t) = 0 for t /∈ (–ε, ε). Then

c
∫ T

0
η(t)|u – v|dx dt +

∫ T

0

[
αε(t – s) – αε(t – τ )

]|u – v|L1(�) dt ≥ 0.

Let ε → 0. Then

∣∣u(x, τ ) – v(x, τ )
∣∣
L1(�) ≤ ∣∣u(x, s) – v(x, s)

∣∣
L1(�) + c

∫ t

0

∫

�

|u – v|dx dt.

By Gronwall’s inequality, we have

∫

�

∣∣u(x, τ ) – v(x, τ )
∣∣dx ≤ c

∫

�

∣∣u(x, s) – v(x, s)
∣∣dx.

Let s → 0. Then
∫

�

∣
∣u(x, τ ) – v(x, τ )

∣
∣dx ≤ c

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx.

The proof is complete. �

Proof of Theorem 1.5 If, when x is near to the boundary, condition (1.16)

�d ≤ 0

is true, then �1 = ∅. By Theorem 1.4, we have the conclusion of Theorem 1.5, i.e., the
stability of the entropy solutions is true independent of the boundary value conditions. �

4 Conclusion
The equation considered in this paper comes from many applied fields. It is of a
hyperbolic–parabolic mixed type, and only has a discontinuous solution generally. The
most characteristic feature of the equation lies in that the usual Dirichlet boundary value
condition may be overdetermined. Using Kruzkov’s bi-variables method, by choosing a
suitable test function, the stability of the entropy solutions is proved based on the partial
boundary value condition, provided that the convection term has the degeneracy on the
boundary.
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