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1 Introduction
In the past 20 years, fractional differential equations (FDEs for short) as mathematical
models have been successfully used in many fields of science and engineering (see [1–7]),
which have attracted considerable attention in studying FDEs. For example, Izhikevich
neuron model can be described by two fractional-order differential equations as the form

⎧
⎨

⎩

τCDαv(t) = f v2 + gv + h – u + RI,

τCDαu(t) = a(bv – u)I,

where α ∈ (0, 1], CDα is the Caputo fractional derivative of order α, v(t) represents the
membrane voltage and u(t) express the recovery variable (see [6]). Ates and Zegeling [7]
studied the following fractional-order advection–diffusion reaction boundary value prob-
lems (BVPs for short):

⎧
⎨

⎩

εCDαu + γ u′ + f (u) = S(x), x ∈ [0, 1],

u(0) = uL, u(1) = uR,

where 1 < α ≤ 2, 0 < ε ≤ 1, γ ∈ R, CDα is the Caputo fractional derivative of order α. The
function S(x) represents a spatially dependent source term.

Recently, fractional differential equations with various kinds of boundary conditions
(BCs for short) have been discussed widely and obtained numerous valuable results (see

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-018-0954-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-018-0954-6&domain=pdf
mailto:liuwenbin-xz@163.com


Zhang and Liu Boundary Value Problems  (2018) 2018:36 Page 2 of 16

[8–31]). It is worth mentioning that the discuss of fractional differential equations with in-
finite point BCs have been attracted many scholars’ attention over the past two years (see
[18–31]). These work studied on many subjects, such as: existence of solutions, positive
solutions, multiple solutions, unique solution. In [18, 19] Zhang and Zhai et al. considered
the following fractional differential equation with infinite point BCs:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+u(t) + q(t)f (t, x(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

u(i)(1) =
∑∞

j=1 αju(ξj),

respectively, where α > 2, n – 1 < α ≤ n, i ∈ [1, n – 2] is a fixed integer, αj ≥ 0, 0 < ξ1 <
ξ2 < · · · < ξj–1 < ξj < · · · < 1 (j = 1, 2 . . .), Dα

0+ is the standard Riemann–Liouville fractional
derivative of order α. By employing the fixed-point theorem in cones, Zhang established
the existence and multiplicity of positive solutions theorems and Zhai et al. obtained the
existence and uniqueness result on positive solutions.

In [20], Guo et al. investigated the following infinite point fractional BVPs:

⎧
⎨

⎩

CDα
0+u(t) + f (t, u(t), u′(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) =
∑∞

j=1 ηju(ξj),

where 2 < α ≤ 3, ηj ≥ 0, 0 < ξ1 < ξ2 < · · · < ξj–1 < ξj < · · · < 1 (j = 1, 2, . . .), CDα
0+ is the Caputo

fractional derivative of order α. The authors obtained the existence of multiple positive
solutions by means of Avery–Peterson’s fixed-point theorem.

Although many papers dealing with fractional infinite points BVPs, only a few papers
consider FDEs with infinite point BCs at resonance (see [21–23]). In [21], Ge et al. dis-
cussed the following coupled FDEs with infinitely points BCs at resonance:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+x1(t) = f1(t, x1(t), Dβ–1

0+ x2(t)),

Dβ
0+x2(t) = f2(t, x2(t), Dα–1

0+ x1(t)),

x1(0) = 0, limt→∞ Dα–1
0+ x1(t) =

∑+∞
i=1 γix1(ηi),

x2(0) = 0, limt→∞ Dβ–1
0+ x2(t) =

∑+∞
i=1 σix2(ξi),

where 1 < α,β ≤ 2, 0 < η1 < η2 < · · · < ηi < · · · , 0 < ξ1 < ξ2 < · · · < ξi < · · · , limi→∞ηi = ∞,
limi→∞ξi = ∞ and

∑+∞
i=1 |γi|ηα

i < ∞,
∑+∞

i=1 |σi|ξβ

i < ∞, Dα
0+ and Dβ

0+ are standard Riemann–
Liouville fractional derivative. By using Mawhin’s continuous theorem the authors ob-
tained the existence result.

Thus, motivated by the results mentioned, the purpose of this paper is to present the ex-
istence of solutions for the following infinite point BVPs by applying Mawhin’s continuous
theorem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+x(t) = f (t, x(t), Dα–2

0+ x(t), Dα–1
0+ x(t)), t ∈ (0, 1),

x(0) = 0, Dα–1
0+ x(0) =

∑+∞
i=1 αiDα–1

0+ x(ξi),

Dα–1
0+ x(1) =

∑+∞
i=1 βiDα–1

0+ x(γi),

(1.1)
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where 2 < α ≤ 3, Dα
0+ is the standard Riemann–Liouville fractional derivative of order α,

f ∈ [0, 1] × R
3 → R is a Carathéodory function, ξi,γi ∈ (0, 1) and {ξi}+∞

i=1 , {γi}+∞
i=1 are two

monotonic sequence with limi→+∞ξi = a, limi→+∞γi = b, a, b ∈ (0, 1), αi,βi ∈R.
Throughout this paper, we assume that the following condition holds:
(H1)

∑+∞
i=1 αi = 1,

∑+∞
i=1 βi = 1,

∑+∞
i=1 |αi| < +∞,

∑+∞
i=1 |βi| < +∞, 
 �= 0, where


 = a11a22 – a12a21, a11 =
+∞∑

i=1

αiξi, a12 =
+∞∑

i=1

αiξ
2
i ,

a21 = 1 –
+∞∑

i=1

βiγi, a22 = 1 –
+∞∑

i=1

βiγ
2
i .

Remark 1.1 Here, if we let αi,βi ∈ R
+, a2 ≤ ξ1, γ 2

1 ≤ b and assume that {ξi}+∞
i=1 , {γi}+∞

i=1 are
monotonically increasing sequence and monotonically decreasing sequence, respectively,
then, by (H1), we have 
 > 0.

In fact, since {ξi}+∞
i=1 monotone increasing and {γi}+∞

i=1 monotone decreasing with
limi→+∞ξi = a, limi→+∞γi = b, a, b ∈ (0, 1), then by (H1) we have


 = a11a22 – a12a21

=
+∞∑

i=1

αiξi

(

1 –
+∞∑

i=1

βiγ
2
i

)

–
+∞∑

i=1

αiξ
2
i

(

1 –
+∞∑

i=1

βiγi

)

> ξ1
(
1 – γ 2

1
)

– a2(1 – b) ≥ 0.

A boundary value problem is called resonance if the corresponding homogeneous
boundary value problem has a nontrivial solution. We point out that if condition (H1)
holds, the BVP (1.1) happens to be at resonance in the sense that the following infinite
point boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+x(t) = 0, t ∈ (0, 1),

x(0) = 0, Dα–1
0+ x(0) =

∑+∞
i=1 αiDα–1

0+ u(ξi),

Dα–1
0+ x(1) =

∑+∞
i=1 βiDα–1

0+ x(γi),

has x(t) = a1tα–1 +a2tα–2, a1, a2 ∈R as a nontrivial solution. That means the linear operator
Lx = Dα

0+x is non-invertible.
Even though in the papers [21, 22] and [23] authors have investigated the resonance

case with dimKer L = 2, all of them considered with the coupled fractional differential
equations, in which the linear operator L defined as L(x, y) = (L1x, L2y) and dimKer L1 =
dimKer L2 = 1. In our paper, we study the one fractional differential equation resonance
case with dimKer L = 2, which is obviously different from papers [21, 22] and [23]. Com-
pared with previous work the main difficulties in this paper are as follows. First, resonance
BVPs cannot be dealt with fixed-point theorem directly. Second, the theory of Mawhin’s
continuation theorem is characterized by the higher dimension of kernel space on reso-
nance BVPs, the more difficult to construct the projections P and Q. Third, we give an
example to support our main result, and we should point out that to give an example for
BVPs (1.1) is very difficult.
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The rest of this paper is organized as follows. In Sect. 2, we recall some preliminary
definitions and lemmas. In Sect. 3, based on Mawhin’s continuation theorem, we establish
an existence theorem for problem (1.1). In Sect. 4, we present an example to demonstrate
the results. In the last section, brief conclusions are given.

2 Preliminaries
In this section, we recall some definitions and lemmas which are used throughout this
paper. First, we present here the results of coincidence degree theory due to Mawhin which
can be found in [32, 33].

Let (X,‖ · ‖X) and (Y ,‖ · ‖Y ) are two real Banach spaces. Define L : dom L ⊂ X → Y to be
a Fredholm operator with index zero, then there exist two continuous projectors P : X →
X and Q : Y → Y such that

Im P = Ker L, Im L = Ker Q, X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q,

and L|dom L∩Ker P : dom L → Im L is invertible. We denote its inverse by Kp. Let � be an open
bounded subset of X and dom L ∩ �̄ �= ∅, then the map N : X → Y is called L-compact on
�̄, if QN(�̄) is bounded and KP,QN = Kp(I – Q)N : �̄ → X is compact.

Theorem 2.1 Let L : dom L ⊂ X → Y be a Fredholm operator of index zero and N : X → Y
be L-compact on �̄. Assume that the following conditions are satisfied:

(i) Lu �= λNu for any u ∈ (dom L \ Ker L) ∩ ∂�, λ ∈ (0, 1);
(ii) Nu /∈ Im L for any u ∈ Ker L ∩ ∂�;

(iii) deg(QN |Ker L,� ∩ Ker L, 0) �= 0.
Then the equation Lx = Nx has at least one solution in dom L ∩ �̄.

Next, we recall some basic knowledge about the fractional calculus. For more details we
refer the reader to [2].

Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 for a function
x : (0, +∞) → R is given by

Iα
0+x(t) =

1
�(α)

∫ t

0
(t – s)α–1x(s) ds

provided that the right-hand side integral is pointwise defined on (0, +∞).

Definition 2.2 The Riemann–Liouville fractional derivative of order α > 0 for a function
x : (0, +∞) → R is given by

Dα
0+x(t) =

dn

dtn In–α
0+ x(t) =

1
�(n – α)

dn

dtn

∫ t

0
(t – s)n–α–1x(s) ds,

where n = [α] + 1, provided that the right-hand side integral is pointwise defined on
(0, +∞).
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Lemma 2.1 Let α > 0. Assume that x, Dα
0+x ∈ L1(0, 1), then

Iα
0+Dα

0+x(t) = x(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where n = [α] + 1, ci ∈R (i = 1, 2, . . . , n) are arbitrary constants.

Lemma 2.2 Let α > β > 0. Assume that x ∈ L1(0, 1), then

Iα
0+Iβ

0+x(t) = Iα+β
0+ x(t), Dβ

0+Iα
0+x(t) = Iα–β

0+ x(t),

in particular Dα
0+Iα

0+x(t) = x(t).

Lemma 2.3 Let α > 0, n ∈ N and D = d/dx. If the fractional derivatives (Dα
0+x)(t) and

(Dα+n
0+ x)(t) exist, then

(
DnDα

0+x
)
(t) =

(
Dα+n

0+ x
)
(t).

Lemma 2.4 (see [2, 34]) Assume that α > 0, λ > –1, t > 0, then

Iα
0+tλ =

�(λ + 1)
�(λ + 1 + α)

tα+λ, Dα
0+tλ =

�(λ + 1)
�(λ + 1 – α)

tλ–α ,

in particular Dα
0+tα–m = 0, m = 1, 2, . . . , n, where n = [α] + 1.

3 Main result
Let

X =
{

x : x, Dα–2
0+ x, Dα–1

0+ x ∈ C[0, 1]
}

, Y = L1[0, 1].

It is easy to check that X is a Banach space with norm

‖x‖X = max
{‖x‖∞,

∥
∥Dα–2

0+ x
∥
∥∞,

∥
∥Dα–1

0+ x
∥
∥∞

}
,

where ‖x‖∞ = supt∈[0,1] |x(t)|, and Y is a Banach space with norm ‖y‖Y = ‖y‖1 =
∫ 1

0 |y(t)|dt.
Define the linear operator L : dom L ⊂ X → Y and the nonlinear operator N : X → Y as

follows:

Lx(t) = Dα
0+x(t), x(t) ∈ dom L, Nx(t) = f

(
t, x(t), Dα–2

0+ x(t), Dα–1
0+ x(t)

)
, x(t) ∈ X,

where

dom L =
{

x ∈ X : Dα
0+x(t) ∈ Y , x satisfies boundary value conditions of (1.1)

}
.

Then BVP (1.1) is equivalent to the operator equation Lx = Nx, x ∈ dom L.
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Lemma 3.1 Assume that (H1) holds, then the operator L : dom L ⊂ X → Y satisfies

Ker L =
{

x ∈ dom L : x(t) = a1tα–1 + a2tα–2, a1, a2 ∈ R
}

, (3.1)

Im L = {y ∈ Y : T1y = T2y = 0}, (3.2)

where

T1y =
+∞∑

i=1

αi

∫ ξi

0
y(s) ds, T2y =

+∞∑

i=1

βi

∫ 1

γi

y(s) ds.

Proof If Lx = Dα
0+x = 0, by Lemma 2.1, we have

x(t) = a1tα–1 + a2tα–2 + a3tα–3, a1, a2, a3 ∈R.

Considering that boundary condition x(0) = 0, one has a3 = 0, then

x(t) = a1tα–1 + a2tα–2.

So, Ker L ⊂ {x ∈ dom L : x(t) = a1tα–1 + a2tα–2, a1, a2 ∈R}. Conversely, for any a1, a2 ∈ R,
take x(t) = a1tα–1 + a2tα–2, it is easy to check that Dα

0+x(t) = 0 and x(t) satisfies boundary
value conditions of (1.1). Thus, (3.1) holds. For y ∈ Im L, there exists x ∈ dom L such that
Dα

0+x(t) = y(t). Again by Lemma 2.1 and combining with the boundary condition x(0) = 0,
one gets

x(t) = Iα
0+y(t) + a1tα–1 + a2tα–2.

Noting that

Dα–1
0+ x(0) =

+∞∑

i=1

αiDα–1
0+ x(ξi), Dα–1

0+ x(1) =
+∞∑

i=1

βiDα–1
0+ x(γi),

by Lemmas 2.2 and 2.4, we obtain

Dα–1
0+ x(0) = a1�(α) =

+∞∑

i=1

αiDα–1
0+ x(ξi)

=
+∞∑

i=1

αi

[∫ ξi

0
y(s) ds + a1�(α)

]

=
+∞∑

i=1

αi

∫ ξi

0
y(s) ds + a1�(α)

and

Dα–1
0+ x(1) =

∫ 1

0
y(s) ds + a1�(α) =

+∞∑

i=1

βiDα–1
0+ x(γi)

=
+∞∑

i=1

βi

[∫ γi

0
y(s) ds + a1�(α)

]

=
+∞∑

i=1

βi

∫ γi

0
y(s) ds + a1�(α).
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Thus,

T1y = T2y = 0, (3.3)

that is,

Im L ⊂ {y ∈ Y : T1y = T2y = 0}.

Conversely, let y ∈ Y satisfy (3.3) and take x(t) = Iα
0+y(t). Obviously, we have x(t) ∈ dom L

and Lx(t) = y(t). Then, {y ∈ Y : T1y = T2y = 0} ⊂ Im L. Therefore, (3.2) holds. �

Let Q1, Q2 : Y → Y be two linear operators defined as follows:

Q1y =
1



(a22T1y – a12T2y), Q2y =
2



(a11T2y – a21T1y).

Lemma 3.2 Assume that (H1) holds, then L : dom L ⊂ X → Y is a Fredholm operator of
index zero. The linear projector operator P : X → X and Q : Y → Y defined as follows:

(Px)(t) =
1

�(α)
Dα–1

0+ x(0)tα–1 +
1

�(α – 1)
Dα–2

0+ x(0)tα–2,

Qy(t) = Q1y(t) +
(
Q2y(t)

)
t.

Proof By the definition of P we can check that P is a continuous linear projector operator
and satisfies Im P = Ker L, X = Ker P ⊕ Ker L. It is clear that Q is a continuous linear opera-
tor and dim Im Q = 2. By the definitions of Q1, Q2, we can calculate the following equations
hold:

Q1
(
Q1y(t)

)
= Q1y(t), Q1

((
Q2y(t)

)
t
)

= 0,

Q2
(
Q1y(t)

)
= 0, Q2

((
Q2y(t)

)
t
)

= Q2y(t).

Thus,

Q2y(t) = Q
(
Qy(t)

)
= Q1

(
Qy(t)

)
+

(
Q2

(
Qy(t)

))
t

= Q1
[
Q1y(t) +

(
Q2y(t)

)
t
]

+
{

Q2
[
Q1y(t) +

(
Q2y(t)

)
t
]}

t

= Q1y(t) +
(
Q2y(t)

)
t = Qy(t).

So, Q is a projector operator. From Lemma 3.1, we have Im L ⊂ Ker Q. Now, we show the
fact that Ker Q ⊂ Im L. In fact, for y ∈ Ker Q, i.e., Qy = 0, then we get a system of linear
equations with respect to T1y, T2y as follows:

⎧
⎨

⎩

a11T2y – a21T1y = 0,

a22T1y – a12T2y = 0,
(3.4)

Since the determinant of coefficient for (3.4) is 
 �= 0, we get T1y = T2y = 0, thus Ker Q ⊂
Im L. Therefore, Ker Q = Im L. For y ∈ Y , set y = (y – Qy) + Qy, then (y – Qy) ∈ Ker Q = Im L,
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Qy ∈ Im Q. So, y = Im L + Im Q. Furthermore, for any y ∈ Im L ∩ Im Q, there exist constants
c1, c2 ∈ R such that y(t) = c1 + c2t and T1y = T2y = 0. Then we also get a system of linear
equations with respect to c1, c2 as follows:

⎧
⎨

⎩

2a11c1 + a12c2 = 0,

2a21c1 + a22c2 = 0.
(3.5)

Because the determinant of coefficient for (3.5) is 2
 �= 0. Thus, c1 = c2 = 0. It means
that Im Q ∩ Im L = {0}. Therefore, Y = Im Q ⊕ Im L. Furthermore, dimKer L = dim Im Q =
co dim Im L = 2. So, L is a Fredholm operator of index zero. �

Lemma 3.3 Assume that (H1) holds, define the linear operator Kp : Im L → dom L ∩ Ker P
by

(Kpy)(t) =
1

�(α)

∫ t

0
(t – s)α–1y(s) ds, y ∈ Im L,

then Kp is the inverse of L|dom L∩Ker P and ‖Kpy‖X ≤ ‖y‖1, for all y ∈ Im L.

Proof For y ∈ Im L, then T1y = T2y = 0, which is combined with the definition of Kp and
Lemma 2.2, we can check that Kpy ∈ dom L ∩ Ker P. So, Kp is well defined on Im L. Obvi-
ously, (LKp)y(t) = y(t), ∀y ∈ Im L. For x(t) ∈ dom L, by Lemma 2.1, we have

(KpL)x(t) = Iα
0+Dα

0+x(t)

= x(t) + a1tα–1 + a2tα–2, a1, a2 ∈R.

It follows from P[(KpL)x(t)] = 0 and a1tα–1 + a2tα–2 ∈ Ker L = Im P that c1tα–1 + c2tα–2 =
–Px(t). That is, (KpL)x(t) = x(t) – Px(t). Therefore, if x(t) ∈ dom L ∩ Ker P, we have
(KpL)x(t) = x(t). So, Kp is the inverse of L|dom L∩Ker P . By Lemma 2.2, we have the follow-
ing inequalities:

|Kpy| ≤ 1
�(α)

∫ t

0
(t – s)α–1∣∣y(s)

∣
∣ds ≤ 1

�(α)

∫ 1

0

∣
∣y(s)

∣
∣ds ≤ ‖y‖1,

∣
∣Dα–2

0+ Kpy
∣
∣ ≤

∫ t

0
(t – s)

∣
∣y(s)

∣
∣ds ≤

∫ 1

0

∣
∣y(s)

∣
∣ds = ‖y‖1,

∣
∣Dα–1

0+ Kpy
∣
∣ ≤

∫ t

0

∣
∣y(s)

∣
∣ds ≤

∫ 1

0

∣
∣y(s)

∣
∣ds = ‖y‖1.

So, ‖Kpy‖X ≤ ‖y‖1, for all y ∈ Im L. �

Lemma 3.4 Assume that (H1) holds and � ⊂ X is an open bounded subset with dom L ∩
�̄ �= ∅, then N is L-compact on �̄.

Proof According to f ∈ [0, 1] × R
2 → R satisfies the Carathéodory conditions, we can

get QN(�̄) and (I – Q)N(�̄) are bounded almost everywhere on [0, 1], that is, there exist
constants m, m̃ > 0 such that |QNx(t)| ≤ m̃, |(I – Q)Nx(t)| ≤ m, x ∈ �̄, a.e. t ∈ [0, 1]. Next,
we show that Kp(I – Q)N : �̄ → X is compact. In fact, by Lemma 3.3, Kp(I – Q)N(�̄) is
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uniformly bounded. It follows from the Lebesgue dominated convergence theorem that
Kp(I – Q)N : �̄ → X is continuous. For 0 ≤ t1 < t2 ≤ 1, x ∈ �̄, we have

∣
∣Kp(I – Q)Nx(t1) – Kp(I – Q)Nx(t2)

∣
∣

=
1

�(α)

∣
∣
∣
∣

∫ t1

0
(t1 – s)α–1(I – Q)Nx(s) ds –

∫ t2

0
(t2 – s)α–1(I – Q)Nx(s) ds

∣
∣
∣
∣

≤ 1
�(α)

∣
∣
∣
∣

∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1](I – Q)Nx(s) ds

∣
∣
∣
∣

+
1

�(α)

∣
∣
∣
∣

∫ t2

t1

(t2 – s)α–1(I – Q)Nx(s) ds
∣
∣
∣
∣

≤ m
�(α)

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]ds +

m
�(α)

∫ t2

t1

(t2 – s)α–1 ds

=
m

�(α + 1)
(
tα
2 – tα

1
)
.

Since tα is uniformly continuous on [0, 1], Kp(I – Q)N(�̄) is equicontinuous. In addition,
by Lemma 2.3 we see that the following equation holds:

Dα–2
0+ Kp(I – Q)Nx(t2) – Dα–2

0+ Kp(I – Q)Nx(t1) =
∫ t2

t1

Dα–1
0+ Kp(I – Q)Nx(s) ds.

So, it suffices to show that Dα–1
0+ Kp(I – Q)N(�̄) is equicontinuous. In fact,

∣
∣Dα–1

0+ Kp(I – Q)Nx(t1) – Dα–1
0+ Kp(I – Q)Nx(t2)

∣
∣

=
∣
∣
∣
∣

∫ t2

t1

(I – Q)Nx(s) ds
∣
∣
∣
∣ ≤ m(t2 – t1).

Since t is uniformly continuous on [0, 1], thus Dα–1
0+ Kp(I – Q)Nx(�) is equicontinuous. By

the Ascoli–Arzelà theorem, we see that Kp(I – Q)N : �̄ → X is compact. �

In order to obtain our main results, we suppose that the following conditions are satis-
fied:

(H2) There exist nonnegative functions p(t), q(t), r(t), e(t) ∈ Y such that, for all (u, v, w) ∈
R

3, t ∈ (0, 1),

∣
∣f (t, u, v, w)

∣
∣ ≤ p(t)|u| + q(t)|v| + r(t)|w| + e(t)

and

‖p‖1 + ‖q‖1 + ‖r‖1 <
�(α – 1)

�(α – 1) + 2
.

(H3) There exist constants k1, k2 > 0 such that, for all t ∈ (0, 1), x ∈ dom L, if |Dα–2
0+ x(t)| >

k1 or |Dα–1
0+ x(t)| > k2, then either T1(Nx(t)) �= 0 or T2(Nx(t)) �= 0.

(H4) There exists a constant g > 0 such that, for all a1, a2 ∈ R, x(t) = a1tα–1 + a2tα–2 ∈
Ker L, if |a1| > g or |a2| > g then either

a1T1Nx(t) + a2T2Nx(t) > 0, (3.6)
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or

a1T1Nx(t) + a2T2Nx(t) < 0. (3.7)

Lemma 3.5 Suppose that (H1)–(H3) hold, set

�1 =
{

x ∈ dom L \ Ker L : Lx = λNx,λ ∈ (0, 1)
}

.

Then �1 is bounded.

Proof For x ∈ �1, we have Nx ∈ Im L = Ker Q. Then T1(Nx(t)) = T2(Nx(t)) = 0. Thus, from
(H3), there exist t0, t1 ∈ [0, 1] such that |Dα–2

0+ x(t0)| ≤ k1 and |Dα–1
0+ x(t1)| ≤ k2. Then, by

Lemma 2.3 we have

∣
∣Dα–1

0+ x(t)
∣
∣ =

∣
∣
∣
∣D

α–1
0+ x(t1) +

∫ t

t1

Dα
0+x(s) ds

∣
∣
∣
∣

≤ ∣
∣Dα–1

0+ x(t1)
∣
∣ +

∫ t

t1

∣
∣Dα

0+x(s)
∣
∣ds

≤ k2 + ‖Nx‖1

and

∣
∣Dα–2

0+ x(0)
∣
∣ =

∣
∣
∣
∣D

α–2
0+ x(t0) –

∫ t0

0
Dα–1

0+ x(s) ds
∣
∣
∣
∣

≤ ∣
∣Dα–2

0+ x(t0)
∣
∣ +

∫ t0

0

∣
∣Dα–1

0+ x(s)
∣
∣ds

≤ k1 +
∥
∥Dα–1

0+ x
∥
∥∞ ≤ k1 + k2 + ‖Nx‖1.

By the definition of P and Lemma 2.4, we get

Dα–2
0+ Px(t) = Dα–1

0+ x(0)t + Dα–2
0+ x(0),

and

Dα–1
0+ Px(t) = Dα–1

0+ x(0).

Thus,

∣
∣Dα–2

0+ Px
∣
∣ ≤ ∣

∣Dα–1
0+ x(0)

∣
∣ +

∣
∣Dα–2

0+ x(0)
∣
∣ ≤ k1 + 2k2 + 2‖Nx‖1,

∣
∣Dα–1

0+ Px
∣
∣ =

∣
∣Dα–1

0+ x(0)
∣
∣ ≤ k2 + ‖Nx‖1.

We have

|Px| ≤ 1
�(α)

∣
∣Dα–1

0+ x(0)
∣
∣ +

1
�(α – 1)

∣
∣Dα–2

0+ x(0)
∣
∣

≤ 1
�(α – 1)

(
k1 + 2k2 + 2‖Nx‖1

)
.
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Therefore,

‖Px‖X = max
{‖Px‖∞,

∥
∥Dα–2

0+ Px
∥
∥∞,

∥
∥Dα–1

0+ Px
∥
∥∞

}

≤ 1
�(α – 1)

(
k1 + 2k2 + 2‖Nx‖1

)
. (3.8)

Also, for x ∈ �1, then (I – P)x ∈ dom L ∩ Ker P, LPx = 0, from Lemma 3.3, we have

∥
∥(I – P)x

∥
∥

X =
∥
∥KpL(I – P)x

∥
∥

X = ‖KpLx‖X ≤ ‖Lx‖1 ≤ ‖Nx‖1. (3.9)

Then, from (3.8) and (3.9), we see that

‖x‖X =
∥
∥Px + (I – P)x

∥
∥

X ≤ ‖Px‖X +
∥
∥(I – P)x

∥
∥

X

≤ 1
�(α – 1)

(
k1 + 2k2 + 2‖Nx‖1

)
+ ‖Nx‖1. (3.10)

By (H2), we have

‖Nx‖1 ≤ ‖p‖1‖x‖∞ + ‖q‖1
∥
∥Dα–2

0+ x
∥
∥∞ + ‖r‖1

∥
∥Dα–1

0+ x
∥
∥∞ + ‖e‖1

≤ (‖p‖1 + ‖q‖1 + ‖r‖1
)‖x‖X + ‖e‖1. (3.11)

Substituting (3.11) into (3.10), one gets

‖x‖X ≤ k1 + 2k2 + (�(α – 1) + 2)‖e‖1

�(α – 1) – [�(α – 1) + 2](‖p‖1 + ‖q‖1 + ‖r‖1)
.

So, �1 is bounded. �

Lemma 3.6 Suppose that (H3) holds, set

�2 = {x ∈ Ker L : Nx ∈ Im L}.

Then �2 is bounded.

Proof For x ∈ �2, we have x(t) = a1tα–1 + a2tα–2, a1, a2 ∈ R and T1Nx(t) = T2Nx(t) = 0.
From (H3), there exist t2, t3 ∈ [0, 1] such that |Dα–2

0+ x(t2)| ≤ k1 and |Dα–1
0+ x(t3)| ≤ k2, that is,

∣
∣Dα–1

0+ x(t3)
∣
∣ =

∣
∣a1�(α)

∣
∣ ≤ k2,

∣
∣Dα–2

0+ x(t2)
∣
∣ =

∣
∣a1�(α)t2 + a2�(α – 1)

∣
∣ ≤ k1.

Thus,

|a1| ≤ k2/�(α), |a2| ≤ (k1 + k2)/�(α – 1).
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Therefore,

‖x‖∞ ≤ |a1| + |a2| ≤ k2

�(α)
+

k1 + k2

�(α – 1)
=

1
�(α)

[
k2 + (α – 1)(k1 + k2)

]
,

∥
∥Dα–2

0+ x
∥
∥∞ ≤ �(α)|a1| + �(α – 1)|a2| ≤ 2k2 + k1,

∥
∥Dα–1

0+ x
∥
∥∞ ≤ �(α)|a| ≤ k2.

So, �2 is bounded. �

Lemma 3.7 Suppose that (H4) holds, we set

�3 =
{

x ∈ Ker L : ϑλJx + (1 – λ)QNx = 0,λ ∈ [0, 1]
}

.

Then �3 is bounded, where ϑ = 1, if (3.6) holds and ϑ = –1, if (3.7) holds, J : Ker L → Im Q
is the linear isomorphism defined by

J
(
a1tα–1 + a2tα–2) =

1



[
(a22a1 – a12a2) + 2(a11a2 – a21a1)t

]
, ∀a1, a2 ∈R.

Proof Without loss of generality, we suppose that (3.7) holds, then, for any x ∈ �3,
there exist constants a1, a2 ∈ R, λ ∈ [0, 1] such that x(t) = a1tα–1 + a2tα–2 and –λJx +
(1 – λ)QNx = 0. By Lemma 3.6, in order to prove Lemma 3.7, it suffices to show that
|a1| ≤ g , |a2| ≤ g . In fact, if λ = 0 then QNx = 0, which means T1Nx = T2Nx = 0. From
(H4), we get |a1| ≤ g , |a2| ≤ g . If λ = 1 then Jx = 0, that is, a1 = a2 = 0. Obviously, |a1| ≤ g ,
|a2| ≤ g . For λ ∈ (0, 1), by λJx = (1 – λ)QNx one has

⎧
⎨

⎩

λ(a22a1 – a12a2) = (1 – λ)(a22T1Nx – a12T2Nx),

λ(a11a2 – a21a1) = (1 – λ)(a11T2Nx – a21T1Nx).

Because 
 �= 0, we have

⎧
⎨

⎩

λa1 = (1 – λ)T1Nx,

λa2 = (1 – λ)T2Nx.

Then, if |a1| > g or |a2| > g , by (3.7), we get a contradiction,

0 < λ
(
a2

1 + a2
2
)

= (1 – λ)(a1T1Nx + a2T2Nx) < 0.

Thus, |a1| ≤ g , |a2| ≤ g . So, �3 is bounded. If (3.6) holds, by a similar method, we can see
that �3 is bounded. �

Theorem 3.1 Suppose that (H1)–(H4) hold. Then problem (1.1) has at least on solution
in X.

Proof Let � be a bounded open set of X such that
⋃3

i=1 �̄i ⊂ �. By Lemma 3.4, N is L-
compact on �̄. From Lemmas 3.5 and 3.6, we get
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(i) Lx �= λNx for any (x,λ) ∈ [(dom L \ Ker L) ∩ ∂�] × (0, 1),
(ii) Nx ∈ Im L for any x ∈ Ker L ∩ ∂�.
Thus, we only need to show that (iii) of Theorem 2.1 is satisfied. Take

H(x,λ) = ϑλJx + (1 – λ)QNx,

where ϑ is defined as before. According to Lemma 3.7, we derive H(x,λ) �= 0 for all x ∈
Ker L ∩ ∂�. Thus, it follows from the homotopy of degree that

deg{QN |Ker L,� ∩ Ker L, 0} = deg
{

H(·, 0),� ∩ Ker L, 0
}

= deg
{

H(·, 1),� ∩ Ker L, 0
}

= deg(ϑJ ,� ∩ Ker L, 0) �= 0.

Then, by Theorem 2.1, we can see that the operator function Lx = Nx has at least one
solution in dom L∩�̄, which, equivalently to problem (1.1), has at least one solution in X. �

4 Example
Example 4.1 Consider the following fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

D2.5
0+ x(t) = f (t, x(t), D0.5

0+ x(t), D1.5
0+ x(t)), t ∈ (0, 1),

x(0) = 0, D1.5
0+ x(0) =

∑+∞
i=1 αiD1.5

0+ x(ξi),

D1.5
0+ x(1) =

∑+∞
i=1 βiD1.5

0+ x(γi),

(4.1)

where we take

αi =
1
2i , βi =

1
2i , ξi =

i
2i + 1

, γi =
i + 1

2i + 1
,

f
(
t, x(t), D0.5

0+ x(t), D1.5
0+ x(t)

)

= m(t)
[

t2 + 1 +
1
8

cos2x(t) +
1

24
D0.5

0+ x(t)
]

–
1

12
(
1 – m(t)

)
D1.5

0+ x(t),

m(t) =

⎧
⎨

⎩

1, [0, 1/2),

0, [1/2, 1].

Obviously, we have

αi,βi ∈R
+, a2 =

1
4

≤ 1
3

= ξ1, γ 2
1 =

4
9

≤ 1
2

= b,

and {ξi}+∞
i=1 is a monotone increasing sequence and {γi}+∞

i=1 is a monotone decreasing se-
quence. Applying Remark 1.1 we conclude that 
 > 0. Let

p(t) = 1/8, q(t) = 1/24, r(t) = 1/12, e(t) = 2.

Then

∣
∣f (t, u, v, w)

∣
∣ ≤ p(t)|u| + q(t)|v| + r(t)|w| + e(t)
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and

‖p‖1 + ‖q‖1 + ‖r‖1 =
1
4

<
�(α – 1)

�(α – 1) + 2
=

√
π√

π + 4
.

Take k1 = 48, k2 = 24. Then, if |D0.5
0+ x(t)| > k1, one has

T1
(
Nx(t)

)
=

+∞∑

i=1

αi

∫ ξi

0
f
(
s, x(s), D0.5

0+ x(s), D1.5
0+ x(s)

)
ds �= 0,

and if |D1.5
0+ x(t)| > k2, one gets

T2
(
Nx(t)

)
=

+∞∑

i=1

βi

∫ 1

γi

f
(
s, x(s), D0.5

0+ x(s), D1.5
0+ x(s)

)
ds �= 0.

Let g = 261. Then if |a1| > g , we have

a1T1Nx(t) + a2T2Nx(t)

= a1

+∞∑

i=1

αi

∫ ξi

0
f
(
s, x(s), D0.5

0+ x(s), D1.5
0+ x(s)

)
ds

+ a2

+∞∑

i=1

βi

∫ 1

γi

f
(
s, x(s), D0.5

0+ x(s), D1.5
0+ x(s)

)
ds

= a1

+∞∑

i=1

αi

∫ ξi

0

[

s2 + 1 +
1
8

cos2x(s) +
1

24
(
a1�(1.5)s + a2�(0.5)

)
]

ds

–
a2

12

+∞∑

i=1

βi

∫ 1

γi

a1�(1.5) ds

= a1

+∞∑

i=1

αi

∫ ξi

0

(

s2 + 1 +
1
8

cos2x(s)
)

ds +
1

48
�(1.5)a2

1

+∞∑

i=1

αiξ
2
i

+
1

24
a1a2�(0.5)

+∞∑

i=1

αiξi –
1

12
a1a2�(1.5)

+∞∑

i=1

βi(1 – γi)

= a1

+∞∑

i=1

αi

∫ ξi

0

(

s2 + 1 +
1
8

cos2x(s)
)

ds +
1

48
�(1.5)a2

1

+∞∑

i=1

αiξ
2
i

≥ 1
864

a2
1 –

29
48

a1 > 0.

In view of Theorem 3.1, boundary value problem (4.1) has at least one solution.

Remark 4.1 By the example, we find that it is more difficult to give an infinite series
∑+∞

i=1 αi

(
∑+∞

i=1 αi = 1,
∑+∞

i=1 |αi| < +∞) than to give a function g(t) ∈ L1[0, 1] (
∫ 1

0 g(t) dt = 1). For
example, for

∫ 1
0 g(t) = 1, we can take g(t) ≡ 1.

5 Conclusion
In this paper, we are focused on investigating the existence of solutions for a class of FDEs
with infinite point BCs. By using Mawhin’s continuation theorem, an existence theorem
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is established and we also give an example to illustrate the application of the theorem. To
the best of our knowledge, the issue on the existence of solutions for infinite point BVPs
was first studied by Ma (see [35]) and discussed widely in recent years. It is an interesting
question and there is some work to be done in the future, such as: discussing the exis-
tence of solutions for p-Laplacian FDEs with infinite point BCs at resonance in the case
dimKer L = 2 for one fractional differential equation.
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