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Abstract
In this paper, by a constructive proof based on the homotopy continuation method,
we prove that the second order system x′′ = g(t, x) admits rotating periodic solutions
with form u(t + T ) = Qu(t) for any orthogonal matrix Q when the nonlinearity g admits
the Hartman-type condition.
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1 Introduction and main results
In this paper we study the following second order system:

x′′ = g(t, x), (1.1)

where g is continuous from [0, T] × R
n to R

n and satisfies the following Hartman-type
condition:

(H) there exists η > 0 such that

g(t, x) · x ≥ 0, ∀t ∈ [0, T],∀x ∈R with |x| = η. (1.2)

In 1960, Hartman [1] firstly studied the existence of system (1.1) with Dirichlet boundary
value conditions under the assumption (1.2). In 1971, Knobloch [2] obtained the existence
of periodic solutions for (1.1) under the Hartman-type condition (H) when g is locally
Lipschitzian in x. The result was extended to the case that g is continuous by Rouche and
Mawhin [3] in 1973. In [4], Mawhin applied the Schauder fixed point theorem to obtain
periodic solutions of p-Laplacian ordinary differential systems under assumption (H). In
[5, 6], some results are obtained on periodic solutions of ordinary differential systems in-
volving singular φ-Laplace operator and φ(t)-Laplace operator under the Hartman-type
condition (H). For some variants and extensions, one can see [7–11] and the references
therein.

This paper is devoted to showing that, under the Hartman condition (H), the system
(1.1) admits the type of solutions with form u(t + T) = Qu(t) for any Q ∈ O(n) when the

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-018-0955-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-018-0955-5&domain=pdf
mailto:changxj1982@hotmail.com


Li et al. Boundary Value Problems  (2018) 2018:37 Page 2 of 11

nonlinearity g amidts the corresponding rotating periodic structure. Here O(n) denotes
the orthogonal group on R

n. Usually, we call the solutions by rotating periodic solutions
(or Q-rotating periodic solutions related to the matrix Q).

Theorem 1.1 Assume that g ∈ C(R × R
n,Rn) and there exists some Q ∈ O(n) such that

g(t + T , x) = Qg(t, Q–1x),∀t ∈ R. If the assumption (H) holds, then (1.1) has at least one
Q-rotating periodic solution.

Example 1.2 Define g(t, x) = a(t)|x|p–2x,∀x ∈ R
n, where a ∈ C(R,R) with a(t) > 0 and a(t +

T) = a(t) for all t ∈ R, p ≥ 2. Clearly, by Theorem 3.1 in [4] we can obtain the existence
of at least one periodic solution, while here by Theorem 1.1 we can get infinitely many
periodic solutions and quasi-periodic solutions of (1.1) by taking different Q. It should be
noticed that if Q ≡ In, then the corresponding rotating periodic solution is just a periodic
solution of (1.1), while if Q �≡ In, we may obtain some existence results on quasi-periodic
solutions of (1.1). In fact, we can take Q by

�1
.=

⎛
⎜⎝

R(θ1)
· · ·

R(θm)

⎞
⎟⎠

if n = 2l for some m, l ∈ Z
+, or

�2
.=

⎛
⎜⎜⎜⎝

R(θ1)
· · ·

R(θm)
1

⎞
⎟⎟⎟⎠

if n = 2l + 1 for some m, l ∈ Z
+, where θi ∈ [0, 2π ], i = 1, 2, . . . , m, and there exist i ∈

{1, 2, . . . , m} such that θi is an irrational multiplier of π
T . Here R(θ ) =

( cos θ – sin θ

sin θ cos θ

)
.

Our proof is based on the homotopy continuation method together with a prior es-
timate. This method was introduced by Kellogg, Li and Yorke [12] and afterward many
authors applied this method to obtain a constructive proof for the existence of periodic
solutions of second order ordinary differential, one can see [13–15] and the references. For
the periodic solution case, i.e., Q ≡ In, as shown in [15], one can transform the problem
into one of finding certain solutions of the Cauchy problem by introducing a homotopy pa-
rameter λ ∈ [0, 1]. Following the C1 path of solutions of the Cauchy problem starting from
a simpler auxiliary equation corresponding to λ = 0, one can obtain the desired periodic
solutions corresponding to λ = 1. However, when Ker(In – Q) �≡ R

n, it seems difficult to
apply this idea to our problem directly. Here we modify this idea and gluing two C1 paths
of solutions together to obtain a continuous path of solutions, by which we can track along
the trajectory to obtain the rotating periodic solutions (specially, quasi-periodic solutions)
of (1.1). For some recent work on rotating periodic solutions of ODEs, one can see [16–19]
and the references.

Remark In [15], Lu, Li and Su applied the homotopy continuation method to give a con-
structive proof of Mawhin’s continuation theorem in [20], and thus established a global
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method for finding periodic solutions of ordinary differential equations (systems). Our
results can be seen as a generalization of the results in [15] from periodic solutions case
to the rotating periodic case when g satisfies the Hartman-type nonlinearity.

This paper is organized as follows. In Sect. 2 we give a prior estimate and obtain the
proof of Theorem 1.1 by applying the homotopy continuation method. In Sect. 3, some
useful facts for the homotopy continuation method are collected. For convenience, we
introduce some notations and definitions. Lp(0, T) (1 < p ≤ ∞) denotes the usual Lebesgue
measurable space with norm ‖ · ‖p. Cm .= Cm(R,Rn) (m ∈N) denotes the space of m-times
continuously differential real functions from R to R

n with norm

‖u‖Cm = max
t∈R

∣∣u(t)
∣∣ + max

t∈R
∣∣u′(t)

∣∣ + · · · + max
t∈R

∣∣u(m)(t)
∣∣.

Specially, we denote ‖ · ‖ = ‖u‖C1 .

2 Main results
Firstly, we consider the following auxiliary problem:

⎧⎨
⎩

x′′ = λ[x – φη(x) + g(t,φη(x))],

x(T) = Qx(0),
(2.1)

where λ ∈ (0, 1] and φη : Rn →R
n is defined by

φη(x) =

⎧⎨
⎩

x if |x| ≤ η,

η x
|x| if |x| > η,

where η is taken in (H).

Lemma 2.1 Assume that (λ, x) is a solution pair of (2.1). Then there exists ρ > 0 such that
‖x‖ < ρ . Furthermore, if x is a solution of (2.1) with λ = 1, then x is a Q-rotating periodic
solution of (1.1).

Proof
Assume that (λ, x) is a solution pair of (2.1). Multiplying (2.1) with x, by Q ∈ O(n) we get

∫ T

0

∣∣x′(s)
∣∣2 ds + λ

∫ T

0

∣∣x(s)
∣∣2 ds

= λ

∫ T

0
φη(x) · x(s) ds – λ

∫ T

0
g
(
s,φη(x)

) · x(s) ds

≤ λ

[(∫ T

0

∣∣φη(x)
∣∣2 ds

) 1
2

+
(∫ T

0

∣∣g(
s,φη(x)

)∣∣2 ds
) 1

2
](∫ T

0

∣∣x(s)
∣∣2 ds

) 1
2

.

By λ ∈ (0, 1], we have

∫ T

0

∣∣x(s)
∣∣2 ds ≤

[(∫ T

0

∣∣φη(x)
∣∣2 ds

) 1
2

+
(∫ T

0

∣∣g(
s,φη(x)

)∣∣2 ds
) 1

2
]2
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and

∫ T

0

∣∣x′(s)
∣∣2 ds ≤

[(∫ T

0

∣∣φη(x)
∣∣2 ds

) 1
2

+
(∫ T

0

∣∣g(
s,φη(x)

)∣∣2 ds
) 1

2
](∫ T

0

∣∣x(s)
∣∣2 ds

) 1
2

≤
[(∫ T

0

∣∣φη(x)
∣∣2 ds

) 1
2

+
(∫ T

0

∣∣g(
s,φη(x)

)∣∣2 ds
) 1

2
]2

.

Since φη is continuous and bounded, it follows that there exists some C1 > 0 independent
of λ and x such that

∥∥x′∥∥
2 + ‖x‖2 ≤ C1, (2.2)

which implies that there exist σ1,σ2 ∈ [0, T] such that max{|x(σ1)|, |x′(σ2)|} ≤ 2 C1√
T

. Denote
h(t, x) = x – φη(x) + g(t,φη(x)). Then

h(t + T , x) = x – φη(x) + g
(
t + T ,φη(x)

)

= Q
[
Q–1x – φη

(
Q–1x

)]
+ Qg

(
t + T , Q–1φη(x)

)

= Q
[
Q–1x – φη

(
Q–1x

)
+ g

(
t,φη

(
Q–1x

))]

= Qh
(
t, Q–1x

)
. (2.3)

It is not difficult to see that x(t + T) = Qx(t) for any t ∈R. By Q ∈ O(n) we can see that

∣∣x(t + mT)
∣∣ =

∣∣Qmx(t)
∣∣ =

∣∣x(t)
∣∣, ∀t ∈R,∀m ∈ Z

+. (2.4)

By x(t) = x(σ1) +
∫ t
σ1

x′(s) ds and (2.2) it follows that

‖x‖∞ ≤ C2 (2.5)

for some C2 > 0 independent of λ and x. Integrating (2.1) from σ2 to t, we obtain

x′(t) = x′(σ2) + λ

∫ t

σ2

[
x(s) – φη

(
x(s)

)
+ g

(
t,φη

(
x(s)

))]
ds.

Similar arguments to above imply that

∥∥x′∥∥∞ ≤ C3 (2.6)

for some C3 > 0 independent of λ and x. Denote ρ = max{C2, C3,η + 1} + 1. Then we get
‖x‖ < ρ .

We claim that |x(t)| ≤ η for all t ∈ [0, T], i.e., if x is a solution of (2.1) with λ = 1, then x
is a Q-rotating periodic solution of (1.1). Indeed, for each t ∈ [0, T] such that |x(t)| > η, by
(2.1) with λ = 1 it follows that

d
dt

[
x′(t) · x(t)

]
= x′′(t) · x(t) +

∣∣x′(t)
∣∣2

=
[∣∣x(t)

∣∣2 – φη

(
x(t)

) · x(t) + g
(
t,φη

(
x(t)

)) · x(t)
]

+
∣∣x′(t)

∣∣2
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≥
[∣∣x(t)

∣∣2 – η
x(t)
|x(t)| · x(t) + g

(
t,η

x(t)
|x(t)|

)
·
(

η
x(t)
|x(t)|

|x(t)|
η

)]

≥ ∣∣x(t)
∣∣(∣∣x(t)

∣∣ – η
)

> 0. (2.7)

If |x(t)| > η for all t ∈R, then (2.7) holds for all t ∈ R, which is contrary to (2.4). If |x(t1)| ≤ η

for some t1 ∈ [0, T] and |x(t2)| > η for some t2 ∈ [0, T], then we can find τ , ξ ∈R with ξ > τ

such that

∣∣x(τ )
∣∣ = η,

∣∣x(ξ )
∣∣ = max

t∈R
∣∣x(t)

∣∣ > η,
∣∣x(t)

∣∣ > η, ∀t ∈ (τ , ξ ). (2.8)

Clearly,

d
dt

[∣∣x(t)
∣∣2]|t=ξ = 2x(ξ ) · x′(ξ ) = 0.

Then, by (2.7) it follows that

d
dt

[
1
2
∣∣x(t)

∣∣2
]

= x(t) · x′(t) < x(ξ ) · x′(ξ ) = 0, ∀t ∈ (τ , ξ ),

which together with (2.8) implies that

η2 <
∣∣x(ξ )

∣∣2 <
∣∣x(τ )

∣∣2 = η2.

This is a contradiction. Hence, |x(t)| ≤ η for all t ∈ R. Thus x satisfies x′′ = g(t, x) and
x(t + T) = Qx(t), i.e., x is a Q-rotating periodic solution of (1.1). �

Proof of Theorem 1.1 By Q ∈ O(n) and the knowledge in linear algebra, there exist an
invertible matrix A and an orthogonal matrix B such that Q = A–1BA, where B has the
form

B =

(
Iα1

Q̂

)
,

where α1 = dim Ker(In – B), Q̂ is a β1 × β1 orthogonal matrix with β1 = n – α1 such that 1
is not an eigenvalue of Q̂. Furthermore, we can get

R
n = Ker(In – B) ⊕ Im(In – B).

Let P̂1, P̂2 : Rn → R
n be orthogonal projectors such that Im P̂1 = Ker(In – B) and Im P̂2 =

Im(In – B), respectively. Let Bα1
r1 (0) be the open sphere in Ker(In – B) with center 0 and

radius r1 > 0, and Bβ1
r2 (0) be the open sphere in Im(In – B) with center 0 and radius r2 > 0.

In view of g(t + T , x) = Qg(t, Q–1x), letting f (t, x) = Ag(t, A–1x), we get

f (t + T , x) = Ag
(
t + T , A–1x

)

= AQg
(
t, Q–1A–1x

)
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= BAg
(
t, A–1B–1x

)

= Bf
(
t, B–1x

)
, ∀x ∈R

n. (2.9)

Set y = Ax. If x is a solution of (2.1), then y satisfies
⎧⎨
⎩

y′′ = λ[y – φη(y) + Ag(t, A–1φη(y))] .= λϕ(t, y),

y(T) = By(0).
(2.10)

By (2.9) it is clear that ϕ(t + T , y) = Bϕ(t, B–1y) for all t ∈R and y ∈R
n.

Case 1: Ker(In – B) �= {0}.
Define

H(ξ ,μ) = μξ + (1 – μ)
1
T

∫ T

0
P̂1ϕ(s, ξ ) ds, ∀ξ ∈ Ker(In – B),∀μ ∈ [0, 1].

For ξ ∈ Ker(In – B) with |ξ | ≥ ρ , where ρ is taken from Lemma 2.1, we have

H(ξ ,μ) · ξ = μ|ξ |2 + (1 – μ)
1
T

∫ T

0
P̂1ϕ(s, ξ ) ds · ξ

= μ|ξ |2 + (1 – μ)
1
T

∫ T

0

[
|ξ |2 – η|ξ | + P̂1g

(
s,η

ξ

|ξ |
)

· η ξ

|ξ |
|ξ |
η

]
ds

> 0.

Then, for any r ≥ ρ ,

degB
(
�, Bα1

r (0), 0
) �= 0, (2.11)

where �(ξ ) .= 1
T

∫ T
0 P̂1ϕ(s, ξ ) ds,∀ξ ∈ Ker(In – B).

Applying the Weierstrass’s theorem, we can approximate ϕ by a C2 function sequence
{ϕk} such that

lim
k→+∞

ϕk(t, y) = ϕ(t, y), (2.12)

uniformly in t ∈ [0, T] and y ∈ Bρ(0). Without loss of generality, we may assume that

‖ϕk – ϕ‖∞ ≤ 1
2

, ∀k ∈ Z
+. (2.13)

By the continuation and definition of the Brouwer degree, there exists a constant σ1 > 0
sufficiently small such that

degB
(
�k , Bα1

ρ (0), d
) �= 0 (2.14)

for all d ∈ Bα1
σ1 (0) \ {0}, where �k(ξ ) .= 1

T
∫ T

0 P̂1ϕk(s, ξ ) ds,∀ξ ∈ Ker(In – B). Then the per-
turbed boundary value problem

⎧⎨
⎩

y′′ = λϕk(t, y) + (1 – λ) 1
T

∫ T
0 P̂ϕk(s, y(s)) ds – (1 – λ)d,

y(T) = By(0),
(2.15)
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has at least one solution y0(t) ≡ ξ0 ∈ Bα1
ρ (0) for any d ∈ Bα1

σ1 (0) \ {0} when λ = 0.
For λ ∈ (0, 1], denote yk(t, ξ ,λ) as the solution of y′′ = λϕk(t, y) with initial value

yk(0, ξ ,λ) = ξ for ξ ∈ R
n.

By the Sard’s theorem, for almost all d ∈ Bα1
σ1 (0), d is a regular value of �k . Denote the

set of all such points of d′s by �. Denote �1 ≡ � ⊕ Bβ1
ρ (0). For ξ ∈ R

n we can write it
as ξ = ξ̂ + ξ̆ , where ξ̂ ∈ Ker(In – B) and ξ̆ ∈ Im(In – B). Define the homotopy map Hk :
�1 ×R

n × [0, 1] by

Hk(d, ξ ,λ) = �k(ξ ,λ) – (1 – λ)d,

where �k(ξ ,λ) : Rn × [0, 1] → R
n is defined by

�k(ξ ,λ) =
(

1
T

∫ T

0
P̂1ϕk

(
s, yk(s, ξ ,λ)

)
ds,

1
T

(In – B)ξ̆ +
λ

T

∫ T

0
P̂2ϕk

(
s, yk(s, ξ ,λ)

)
ds

)
.

By (2.14), for any d ∈ �, it follows that

degB
(
Hk(d, ·, 0), Bα1

ρ (0) ⊕ Bβ1
ρ (0), d

)

= degB
(
�k , Bα1

ρ (0), d
) · degB

(
1
T

(In – B)ξ̆ , Bβ1
ρ (0), 0

)
�= 0. (2.16)

It is easily seen that there exists λ0 > 0 small enough such that, for all d ∈ �, 0 is a regu-
lar value of Hk(d, ξ ,λ) for any λ ∈ [0,λ0). Denote the set of all such points of d′s by �∗

1.
For any d ∈ �∗

1, denote Hk,d(ξ ,λ) = Hk(d, ξ ,λ) for all (ξ ,λ) ∈ R
n × [0, 1). Applying the

parametrized Sard theorem, we know that for almost all the points d ∈ �∗
1, 0 is a regu-

lar value of Hk,d(ξ ,λ)|Rn×(0,λ0). Denote the set of all such points of d′s as �∗
2. Clearly, for

any d ∈ �∗
2, 0 is a regular value of Hk,d(ξ ,λ)|Rn×[0,λ0). Then, by Lemma 3.3, for every d ∈ �∗

2,
there exists a C1 curve (ξ (s),λ(s)) (s ≥ 0) such that

Hk,d
(
ξ (s),λ(s)

)
= 0, 0 ≤ λ < λ0,

(
ξ (0),λ(0)

)
= (ξ0, 0).

By Lemma 3.5 we can see that (ξ (s),λ(s)) satisfies the following differential equation:

⎧⎪⎪⎨
⎪⎪⎩

dξi
ds (s) = (–1)i+1 det H ′

k,d,i, i = 1, . . . , n,
dλ
ds (s) = (–1)n+2 det H ′

k,d,n+1,

(ξ (0),λ(0)) = (ξ0, 0).

(2.17)

Now we show that the curve (ξ (s),λ(s)) is not a loop. In fact, since Bα1
ρ (0) is compact, it is

not difficult to see that the number of such ξ0 is finite, without loss of generality, we denote
them as ξ01, ξ02, . . . , ξ0m. Let (ξ (s, ξ0i),λ(s, ξ0i)) be a path of the homotopy Hk,d(ξ (s),λ(s))
with (ξ (0),λ(0)) = (ξ0i, 0). When λ = 0 and d ∈ �∗

2, denoting H ′
k,d,ξ (ξ0i) = ∂Hk,d

∂ξ
|ξ=ξ0i , by

the fact that 0 is a regular value of Hk,d(ξ ,λ)|Rn×[0,λ0) for any d ∈ �∗
2 it follows that
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det H ′
k,d,ξ (ξ0i) �= 0 for i = 1, 2, . . . , m. By the implicit function theorem we can see that the

conclusion follows.
Using Lemma 3.4 it follows that each curve (ξ (s, ξ0i),λ(s, ξ0i)) (i ∈ {1, 2, . . . , m}) is an

interval, which maybe open, closed or semi-closed. We claim there exists some i0 ∈
{1, 2, . . . , m} such that the curve (ξ (s, ξ0i0 ),λ(s, ξ0i0 )) starts from Bα1

ρ (0) × {0} and doesn’t
end on Bρ(0) × {0}. Indeed, if not, then m = 2l for some l ∈ Z

+. Without loss of gener-
ality, we may assume that (ξ (s, ξ0i),λ(s, ξ0i)) starts from (ξ0i, 0) ∈ Bα1

ρ (0) × {0} and ends at
(ξ0(l+i), 0) ∈ Bρ(0) × {0} for all i = 1, 2, . . . , l. By Lemma 3.6 we can get that

sign det H ′
k,d,ξ (ξ0i) = – sign det H ′

k,d,ξ (ξ0(l+i)), i = 1, 2, . . . , l.

Thus by the continuation and definition of the Brouwer degree it follows that, for d ∈ �,

degB
(
Hk(d, ·, 0), Bα1

ρ (0) ⊕ Bβ1
ρ (0), d

)

= degB
(
Hk,d(·, 0), Bα1

ρ (0) ⊕ Bβ1
ρ (0), 0

)
=

2l∑
i=1

sign det H ′
k,d,ξ (ξ0i) = 0.

However, this is contrary to (2.16).
Note that ξ0 ∈ Bα1

ρ (0), we can see that there exists λ∗ ∈ (0,λ0) small enough such that
the curve ξ (s) will stay in Bα1

ρ (0) when 0 < λ(s) ≤ λ∗. Denote the position ξ (s∗) by ξ ∗ such
that λ∗ = λ(s∗) for some s∗ > 0. Clearly, by the homotopy invariance of Brouwer degree and
(2.16), we get

degB
(
Hk,d

(·,λ∗), Bα1
ρ (0) ⊕ Bβ1

ρ (0), d
)

= degB
(
Hk,d(·, 0), Bα1

ρ (0) ⊕ Bβ1
ρ (0), 0

) �= 0, ∀d ∈ �∗
2. (2.18)

For any λ ∈ [λ∗, 1) and ξ ∈ R
n, since ( ∂Hk

∂d , ∂Hk
∂ξ

, ∂Hk
∂λ

) = (–(1 – λ)In, ∂Hk
∂ξ

, ∂Hk
∂λ

), we can see
that, for all d ∈ �∗

2, 0 is a regular value of Hk,d(ξ ,λ) for any λ ∈ [λ∗, 1). Denote the set of
all such points of d′s by �∗

1 . Applying the parametrized Sard theorem, we know that for
almost all the points d ∈ �∗

1 , 0 is a regular value of Hk,d(ξ ,λ)|Rn×[λ∗ ,1). Denote the set of all
such points of d′s as �∗

2 . Clearly, for any d ∈ �∗
2 , 0 is a regular value of Hk,d(ξ ,λ)|Rn×[λ∗ ,1).

Then, by Lemma 3.3, for every d ∈ �∗
2 , there exists a C1 curve (ξ̃ (s), λ̃(s)), such that

Hk,d
(
ξ̃ (s), λ̃(s)

)
= 0, λ∗ ≤ λ̃ < 1,

(
ξ̃ (0), λ̃(0)

)
=

(
ξ ∗,λ∗).

By Lemma 3.5 we can see that (ξ̃ (s), λ̃(s)) satisfies the following differential equation:

⎧⎪⎪⎨
⎪⎪⎩

dξ̃i
ds (s) = (–1)i+1 det H ′

k,d,i, i = 1, . . . , n,
dλ̃
ds (s) = (–1)n+2 det H ′

k,d,n+1,

(ξ̃ (0), λ̃(0)) = (ξ ∗,λ∗).

(2.19)

Since ϕk is of C2 and (ξ ∗,λ∗) ∈ Bρ(0) × [λ∗, 1), it follows that Cauchy problem (2.19) has
the maximal solution (ξ̃ (s), λ̃(s))s∈[0,τ ) in Bρ(0) × [λ∗, 1). In what follows, we shall proceed
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to prove that the path tends to Bρ(0) × {1}. By similar arguments as above, together with
the implicit function theorem and (2.18), we get:

(a) The path (ξ̃ (s), λ̃(s))s∈[0,τ ) is not a loop.
(b) The path (ξ̃ (s), λ̃(s))s∈[0,τ ) will not return to some point (ξ1,λ∗).

Furthermore, by the above claim it follows that the path (ξ̃ (s), λ̃(s))s∈[0,τ ) will not touch
the boundary ∂Bρ(0) × [λ∗, 1). By the idea of the homotopy continuation method (see
[15, 21]), we can obtain that there exists j∗ ∈ {1, 2, . . . , m} such that λmax,j∗ = sup{λ(s, ξ0j∗ ) :
s ∈ [0, τ )} = 1. Hence Hk(d, ξ0,j∗ , 1) = 0 and yk(t, ξ0,j∗ , 1) is a solution of (2.1) with λ = 1.

Assume that {yk} is a solution sequence of (2.10) with λ = 1 corresponding to {ϕk}. Firstly,
it is easily seen that {yk} ⊂ � and thus is uniformly bounded. Secondly, to show {yk} is
equicontinuous on [0, T], we can obtain by (2.12)–(2.13) and the smooth of ϕk that

∣∣ϕk(t, yk) – ϕ(t, yk)
∣∣ ≤ 1

2
,

∣∣ϕ(t, yk)
∣∣ ≤ M,

which implies |ϕk(t, yk)| ≤ M + 1
2 , ∀k ∈ Z

+. By (2.10) with λ = 1 corresponding to {ϕk} we
get |y′′

k | ≤ M + 1
2 . Then {yk} and {y′

k} are uniformly bounded and equicontinuous on [0, T].
By the Arzela–Ascoli theorem it follows that there is a uniformly convergent subsequence
of {yk} on [0, T], which is still denoted by {yk}, such that

lim
k→+∞

yk(t) = y∗(t), lim
k→+∞

y′
k(t) =

(
y∗)′(t).

Hence limk→+∞ ϕk(t, yk(t)) = ϕ(t, y∗(t)) and we can easily verify that x∗ = Ay∗ is a solution
of (2.1) with λ = 1.

Case 2: Ker(In – B) = {0}.
In this case α1 = 0. By approximating ϕ by a C2 function sequence {ϕk}, we can consider

the homotopy map

H̃k(d, ξ ,λ) = �̃k(ξ ,λ) – (1 – λ)d,

where �̃k(ξ ,λ) : Rn × [0, 1] → R
n is defined by

�̃k(ξ ,λ) =
1
T

(In – B)ξ +
λ

T

∫ T

0
ϕk

(
s, yk(s, ξ ,λ)

)
ds.

By similar arguments as above we can obtain the existence of Q-rotating periodic solutions
of (1.1). This completes the proof. �

3 Appendix
In this section, we collect some basic results on the homotopy continuation method.

Lemma 3.1 ([22] Sard’s theorem) If � : U ⊂ R
m →R

n is a Ck map on an open set U with
k > max{0, m – n}, then the set of singular values of � has n-dimensional Lebesgue measure
zero. Consequently, the set of regular values of � is dense in R

n.



Li et al. Boundary Value Problems  (2018) 2018:37 Page 10 of 11

Lemma 3.2 ([23] Parametrized Sard’s theorem) Let V ⊂ R
n, U ⊂ R

m be open sets and
� : V × U →R

k a Cr map, where r > max{0, m – k}. If 0 ∈R
k is a regular value of �, then

for almost all a ∈ V , 0 is a regular value of �a = �(a, ·).

Lemma 3.3 ([22]) Let � : Rn+1 → Rn be a C1 map and 0 a regular value of �. Then �–1(0)
is a C1-manifold of dimension 1.

Lemma 3.4 ([22]) A C1-manifold of dimension 1 is homeomorphic to a loop or an interval
(open, closed, or semiclosed).

Lemma 3.5 ([21]) Let the homotopy � : Rn+1 → Rn be a C1 map and 0 be regular value
of �. Then each solution x(s) of the Cauchy problem

dxi

ds
= (–1)i+1 det�i

′, xi(0) = xi0 (i = 1, . . . , n + 1)

is a C1 path of �–1(0), where s is a parameter and

�′
i = (�x1 , . . . ,�xi–1 ,�xi+1 , . . . ,�xn+1 ).

Lemma 3.6 ([21]) Let V ⊂ Rn be an open bounded set, H : V × [0, 1] → Rn a C1 homotopy,
0 a regular value of H, and the Jacobi matrices H ′

p(p, 0) (p ∈ H–1
0 (0)), H ′

p(p, 1) (p ∈ H–1
0 (0))

be nonsingular, where

H0 = H(·, 0), H1 = H(·, 1).

If a path solution (p(s),λ(s)) connects point (p0, 0) with (p1, 0), then

sgn det H ′
λ(P0, 0) = – sgn det H ′

λ(P1, 0).

If a path solution (p(s),λ(s)) of H connects point (p0, 0) with (p1, 1), then

sgn det H ′
λ(P0, 0) = sgn det H ′

λ(P1, 0).

4 Conclusions
In this paper, by a constructive proof based on the homotopy continuation method, we
prove that the second order system x′′ = g(t, x) admits rotating periodic solutions with
form u(t + T) = Qu(t) for any orthogonal matrix Q when the nonlinearity g admits the
Hartman-type condition. In [3], Rouche and Mawhin obtained the existence of periodic
solutions of second order system under the Hartman-type condition. In [15], Lu, Li and
Su applied the homotopy continuation method to give a constructive proof of Mawhin’s
continuation theorem in [20], which can be used to obtain the periodic solutions by track
along a C1 trajectory. However, when Ker(In – Q) �≡R

n, it seems difficult to apply this idea
to our problem directly. Here we modify this idea and gluing two C1 paths of solutions
together to obtain a continuous path of solutions, by which we can obtain the rotating
periodic solutions (specially, quasi-periodic periodic solutions) of (1.1). Our results can be
seen as a generalization of the results in [15] from periodic solutions case to the rotating
periodic case when g satisfies the Hartman-type nonlinearity.
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