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Abstract
We study the non-local reaction–diffusion system with Neumann boundary
conditions

ut(x, t) =
∫

�

J(x – y)(u(y, t) – u(x, t))dy + vp(x, t), (x, t) ∈ � × (0, T ),

vt(x, t) =
∫

�

J(x – y)(v(y, t) – v(x, t))dy + uq(x, t), (x, t) ∈ � × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

where p,q > 0, u0(x), v0(x) ∈ C(�) are nonnegative and nontrivial functions, � ∈ R
N a

bounded connected and smooth domain. We determine the existence and
uniqueness of the solution. The blow-up phenomenon is considered and the
blow-up rates are obtained.
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1 Introduction
The following coupled parabolic system with Neumann boundary conditions:

ut = �u + vp, (x, t) ∈ � × (0, T),

vt = �v + uq, (x, t) ∈ � × (0, T),

∂u
∂η

(x, t) = 0,
∂u
∂η

(x, t) = 0, (x, t) ∈ ∂� × (0, T),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(1.1)

where p, q > 0 and � ⊂ R
N (N ≥ 1) is a bounded domain with smooth boundary with η

the outer normal, has been studied recently. In particular, the existence and uniqueness of
the solution and the blow-up phenomena have been analyzed in Refs. [1–8].

Pao [5], analyzes the system (1.1) in the case the reaction terms f and g are quasi-
monotone nondecreasing functions. The existence and uniqueness of the solution is stud-
ied using the technique of approximation by upper and lower solutions. Moreover, have
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been showed, for any nonnegative initial conditions u0 �= 0, v0 �= 0 and pq > 1 the solution
(u, v) of (1.1) blows up at a finite time T .

In the case of a single equation

ut = �u + up, (x, t) ∈ � × (0, T),

∂u
∂η

(x, t) = 0, (x, t) ∈ ∂� × (0, T); u(x, 0) = u0(x), x ∈ �,
(1.2)

Friedman et al. [9] have found for p > 1 that the solution blows up in a finite time, moreover,
they gave the blow-up rates [10–12].

Shahmurov [13] studied the Dirichlet and Neumann problems for a special Helmholtz
equation on an annulus. The aim of that work was to measure smoothness of solutions for
the boundary datum in Besov spaces. The author used the operators theory for handle this
problem. The advantage of that technique is that we can consider equations with vector-
valued.

We said the solution (u, v) blows up in finite time if only if exists a finite time T > 0 such
that

lim
t↗T

sup
(∥∥u(x, t)

∥∥
L∞(�) +

∥∥v(x, t)
∥∥

L∞(�)

)
= ∞.

If T = ∞ the solution (u, v) is global, i.e. the solution exists for all t ≥ 0.
Equations of the form

ut(x, t) = J ∗ u – u(x, t) =
∫
Rn

J(x – y)u(y, t) dy – u(x, t), (1.3)

and variations of it, have been widely used in the last decade to model diffusion processes,
see for instance Refs. [14–17]. As stated in [17] if J : Rn → R be a nonnegative, smooth,
symmetric (J(–z) = J(z)) and strictly decreasing function, with

∫
Rn J(x) dx = 1, J supported

in the unit ball and if u(x, t) is thought of as a density at the point x at time t, and if J(x – y)
is thought of as the probability distribution of jumping from location y to location x, then
(J ∗ u)(x, t) is the rate at which individuals are arriving to position x from all other places
and –u(x, t) = –

∫
Rn J(y – x)u(x, t) dy is the rate at which they are leaving location x to travel

to all other sites. This consideration, in the absence of external sources, leads immediately
to the fact that the density u satisfies Eq. (1.3). This equation is called a non-local diffusion
equation since the diffusion of the density u at a point x and time t does not only depend
on u(x, t), but also on all the values of u in a neighborhood of x through the convolution
term J ∗ u. This equation shares many properties with the classical heat equation ut = �u:
bounded stationary solutions are constant, a maximum principle holds for both of them,
and even if J is compactly supported, perturbations propagate with infinite speed; see [17].
However, there is no regularizing effect in general [18].

Chasseigne et al. [18] studied the Neumann boundary conditions problem

ut(x, t) =
∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy, x ∈ �, t > 0,

u(x, 0) = u0(x), x ∈ �,
(1.4)
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where u0 ∈ L1(�) is a nonnegative function and � ⊂R
N a bounded connected and smooth

domain. Since the integration is in �, they impose the requirement that the diffusion takes
place only in �. The individuals may not enter nor leave �. This is the analogous of what
is called homogeneous Neumann boundary conditions in the literature. One analyzed the
existence and uniqueness of solutions for (1.4) and found an exponential convergence to
the mean value of the initial condition.

Pérez-Llanos and Rossi [19] studied the equation with a reaction term,

ut(x, t) =
∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy + up(x, t), (x, t) ∈ � × (0, T),

u(x, 0) = u0(x), x ∈ �,
(1.5)

for p > 0, � ⊂R
N a bounded connected and smooth domain and u0 ∈ C(�) a nonnegative

function. They proved the nonnegative and nontrivial solutions blow up in finite time if
and only if p > 1. Moreover, they find the blow-up rate is the same as the one that holds
for the ODE ut = up, that is, limt→T– (T – t)1/(p–1)‖u(·, t)‖∞ = (1/(p – 1))1/(p–1).

The problem (1.5) shares properties with the corresponding local diffusion problem
(1.2). García Melián and Quiróz [20] studied Eq. (1.5) in the case � = R

N .
Our main objective in this paper is the study of the following non-local reaction–

diffusion system with Neumann boundary conditions:

ut(x, t) =
∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy + vp(x, t), (x, t) ∈ � × (0, T),

vt(x, t) =
∫

�

J(x – y)
(
v(y, t) – v(x, t)

)
dy + uq(x, t), (x, t) ∈ � × (0, T),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(1.6)

with p, q > 0, u0(x), v0(x) ∈ C(�) nonnegative and nontrivial functions and � ⊂R
N (N ≥ 1)

a bounded connected and smooth domain. We are imposing the requirement that diffu-
sion takes place only in �, no individual may enter or leave the domain, that is, we have
Neumann boundary conditions.

First, we analyze existence of nonnegative solutions (u, v) of (1.6). We show the solution
(u, v) is unique if pq ≥ 1 or if at least one of the initials conditions is not zero for pq < 1.
Next, we analyze the globally existence. We show that if pq > 1 and u0, v0 are nonnegative
and nontrivial functions the solution (u, v) blows up in finite time T , and if pq ≤ 1 the
solution (u, v) exists globally. Finally, we analyze the blow-up rate. The results obtained
allow us to conclude the system (1.6) shares important properties with the corresponding
local diffusion coupled parabolic system with Neumann boundary conditions (1.1).

Non-local reaction–diffusion systems have applications concerned with thermal prop-
erties of visco-elastics and materials that have memory. Amann [21] presents a survey of
the most common approaches to quasi-linear parabolic evolution equations, a discussion
of their advantages and drawbacks, and a entirely new approach based on maximal Lp
regularity.

The paper is organized as follows. In Sect. 2, we show the existence and uniqueness of
solutions of (1.6). In Sect. 3, we study the global existence and the blow-up phenomenon.
The blow-up rates are given.
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2 Existence and uniqueness
In this section, we show the existence and uniqueness of nonnegative solutions (u, v) of
(1.6) using the Banach fixed point theorem.

Let t0 > 0 be fixed and

Xt0 = C
(
[0, t0] : C(�) × C(�)

)
=

{
(u, v) : [0, t0] → C(�) × C(�) : (u, v) continuos

}
,

the Banach space with the norms
∣∣∣∣∣∣(u, v)

∣∣∣∣∣∣ = max
0≤t≤t0

∥∥(
u(·, t), v(·, t)

)∥∥
I , I = L∞(�) × L∞(�),

and
∥∥(

u(·, t), v(·, t)
)∥∥

I = max
x∈�

∣∣u(x, t)
∣∣ + max

x∈�

∣∣v(x, t)
∣∣.

Let Pt0 = {(u, v) ∈ Xt0 : u ≥ 0, v ≥ 0} subspace of Xt0 which is a closed subspace. We define
the operator

ψ : Pt0 → Pt0 , as ψ(u0,v0)(u, v) =
(
Tu0 (u), Sv0 (v)

)
,

where

Tu0 (u)(x, t) =
∫ t

0

∫
�

J(x – y)
(
u(y, s) – u(x, s)

)
dy ds +

∫ t

0
|v|p–1v(x, s) ds + u0(x),

Sv0 (v)(x, t) =
∫ t

0

∫
�

J(x – y)
(
v(y, s) – v(x, s)

)
dy ds +

∫ t

0
|u|q–1u(x, s) ds + v0(x).

(2.1)

We denote ‖u‖κ = max0≤t≤t0 ‖u(·, t)‖L∞(�).

Lemma 2.1 Let p, q ≥ 1, (u0, v0), (w0, z0) ∈ C(�) × C(�) and (u, v), (w, z) ∈ Pt0 . Then there
exists a positive constant C = C(p, q,‖u‖κ ,‖v‖κ ,‖w‖κ ,‖z‖κ ,�, J) such that

∣∣∣∣∣∣ψ(u0,v0)(u, v) – ψ(w0,z0)(w, z)
∣∣∣∣∣∣ ≤ Ct0

∣∣∣∣∣∣(u, v) – (w, z)
∣∣∣∣∣∣ +

∥∥(u0, v0) – (w0, z0)
∥∥

I . (2.2)

Proof For any (x, t) ∈ � × [0, t0] we have

∣∣Tu0

(
u(x, t)

)
– Tw0

(
w(x, t)

)∣∣

≤ ∣∣u0(x) – w0(x)
∣∣ +

∫ t

0

∫
�

J(x – y)
∣∣u(y, s) – w(y, s)

∣∣dy ds

+
∫ t

0

∫
�

J(x – y)
∣∣u(x, s) – w(x, s)

∣∣dy ds +
∫ t

0

∣∣|v|p–1v(x, s) – |z|p–1z(x, s)
∣∣ds

≤ ‖u0 – w0‖L∞(�) + 2
∫ t

0

∥∥u(·, s) – w(·, s)
∥∥

L∞(�) ds
∫

�

J(x – y) dy

+ pμp–1
∫ t

0

∣∣v(x, s) – z(x, s)
∣∣ds

≤ ‖u0 – w0‖L∞(�) + 2Kt|�|‖u – w‖κ + tpμp–1‖v – z‖κ ,

where K = ‖J‖∞ and μ = max{‖v‖κ ,‖z‖κ}.
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Analogously we have

∣∣Sv0

(
v(x, t)

)
– Sz0

(
z(x, t)

)∣∣ ≤ ‖v0 – z0‖L∞(�) + 2Kt|�|‖v – z‖κ + tqνq–1‖u – w‖κ ,

where ν = max{‖u‖κ ,‖w‖κ}. Therefore, we obtain

∣∣∣∣∣∣ψ(u0,v0)(u, v) – ψ(w0,z0)(w, z)
∣∣∣∣∣∣

= max
0≤t≤t0

(‖Tu0 u – Tw0 w‖L∞(�) + ‖Sv0 v – Sz0 z‖L∞(�)
)

≤ ∥∥(u0, v0) – (w0, z0)
∥∥

I +
(
2K |�| + qνq–1)t0|||u – w||| +

(
2K |�| + pμp–1)t0|||v – z|||

=
(
2K |�| + k1

)
t0

∣∣∣∣∣∣(u, v) – (w, z)
∣∣∣∣∣∣ +

∥∥(u0, v0) – (w0, z0)
∥∥

I ,

where k1 = max{pμp–1, qνq–1}. If C = 2K |�| + k1 we have

∣∣∣∣∣∣ψ(u0,v0)(u, v) – ψ(w0,z0)(w, z)
∣∣∣∣∣∣ ≤ Ct0

∣∣∣∣∣∣(u, v) – (w, z)
∣∣∣∣∣∣ +

∥∥(u0, v0) – (w0, z0)
∥∥

I . �

Remark 2.1 In [18], we find

ut(x, t) =
∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy, x ∈ �, t > 0,

u(x, 0) = h(x), x ∈ �,

where h(x) ∈ L1(�), and (x, t) ∈ � × (0, t0) the solution is given by

u(x, t) = h(x) +
∫ t

0

∫
�

J(x – y)
(
u(y, s) – u(x, s)

)
dy ds =: Au(x, t)h, (2.3)

Remark 2.2 Let f (m) = ms, for m > 0 and s ∈ R. For x ∈ �, we consider �+ = {y ∈ � :
u(y, t) ≥ u(x, t)}, �– = {y ∈ � : u(y, t) < u(x, t)}. Let wθ (x, t) = θu(y, t) + (1 – θ )u(x, t), for
θ ∈ (0, 1). We have

(
us(x, t) – ws

θ (x, t)
)∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy

=
(
us(x, t) – ws

θ (x, t)
)∫

�+
J(x – y)

(
u(y, t) – u(x, t)

)
dy

+
(
us(x, t) – ws

θ (x, t)
)∫

�–
J(x – y)

(
u(y, t) – u(x, t)

)
dy ≤ 0.

In what follows, we use the ideas of [3].

Lemma 2.2 For any nonnegative and integrable functions f , g and any r ≥ 1, we have

Au(x, t)fg ≤ ‖f ‖∞
(
Au(x, t)gr)1/r . (2.4)

Proof Let u(x, t) = Au(x, t)f (x)g(x) and v(x, t) = ‖f ‖r∞(Au(x, t)gr(x)). Using the mean value
theorem and by Remark 2.2, we have

(
ur(x, t)

)
t –

∫
�

J(x – y)
(
ur(y, t) – ur(x, t)

)
dy
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= rur–1(x, t)ut(x, t) – r
∫

�

J(x – y)
(
wθ (x, t)

)r–1(u(y, t) – u(x, t)
)

dy

= r
(
ur–1(x, t) – wr–1

θ (x, t)
)∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy ≤ 0,

with wθ (x, t) = θu(y, t) + (1 – θ )u(x, t), for θ ∈ (0, 1). Therefore ur(x, t) is a sub-solution
of (1.4). Analogously, we have v(x, t) is solution of (1.4). Moreover, ur(x, 0) = f r(x)gr(x) ≤
‖f ‖r∞gr(x) = v(x, 0), then, by the comparison principle ur(x, t) ≤ v(x, t) for all (x, t) ∈ � ×
(0, T). Therefore Au(x, t)fg ≤ ‖f ‖∞(Au(x, t)gr)1/r . �

Now, we will study the existence and uniqueness of the solution for (1.6).

Theorem 2.1 If pq ≥ 1 and (u0, v0) ∈ C(�) × C(�) are nonnegative real functions then
there exist a unique solution (u, v) of (1.6) such that (u, v) ∈ Pt0 .

Proof We shall proceed by considering various cases.
Case 1. Let p, q ≥ 1. Then the operator ψ : Pt0 → Pt0 is well defined. In fact, for any

(x, t) ∈ � × [0, t0] we have

∣∣Tu0 (u)(x, t) – u0(x)
∣∣

≤
∫ t

0

∫
�

J(x – y)
∣∣u(y, s) – u(x, s)

∣∣dy ds +
∣∣∣∣
∫ t

0
|v|p–1v(x, s) ds

∣∣∣∣

≤ K |�|
∫ t

0

∥∥u(·, s)
∥∥

L∞(�) ds +
∫ t

0

∥∥v(·, s)
∥∥p

L∞(�) ds

≤ max
{

1, K |�|}t
(‖u‖κ + ‖v‖p

κ

)
. (2.5)

Analogously we have

∣∣Sv0 (v)(x, t) – v0(x)
∣∣ ≤ max

{
1, K |�|}t

(‖v‖κ + ‖u‖q
κ

)
. (2.6)

Therefore from (2.5) and (2.6) we conclude that ψ is continuous at t = 0. Now, for
(x, t1), (x, t2) ∈ � × (0, t0] with t1 < t2, we have

∣∣Tu0

(
u(x, t1)

)
– Tu0

(
u(x, t2)

)∣∣

≤
∫ t2

t1

∫
�

J(x – y)
∣∣u(y, s) – u(x, s)

∣∣dy ds +
∣∣∣∣
∫ t2

t1

|v|p–1v(x, s) ds
∣∣∣∣

≤ 2k|�|
∫ t2

t1

∥∥w(·, s)
∥∥

L∞(�) +
∫ t2

t1

∥∥v(·, s)
∥∥p

L∞(�) ds

≤ 2 max
{

1, K |�|}(t2 – t1)
(‖u‖κ + ‖v‖p

κ

)
. (2.7)

Analogously, we obtain

∣∣Sv0

(
v(x, t2)

)
– Sv0

(
v(x, t1)

)∣∣ ≤ 2 max
{

1, K |�|}(t2 – t1)
(‖v‖κ + ‖u‖q

κ

)
. (2.8)

Therefore using (2.7) and (2.8) we see that ψ is continuous at t ∈ (0, t0]. Since J ∗ u for
u ∈ C(�) is also uniformly continuous, we have ψ(u, v) is a continuous function of x.
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Therefore for any (u0, v0) ∈ C(�) × C(�) and (u, v) ∈ Pt0 we have ψ(u, v) ∈ Pt0 . Taking
(u0, v0) = (w0, z0) in Lemma 2.1 and choosing t0 such that Ct0 < 1, ensures that ψ(u, v) is
a strict contraction in the ball B = B((u0, v0); 2‖(u0, v0)‖I) in Pt0 . Indeed, for (u, v), (w, z) in
the ball we have μ,ν ≤ C‖(u0, v0)‖I (with ν = max{‖u‖κ ,‖w‖κ}, μ = max{‖v‖κ ,‖z‖κ}), we
obtain ψ(u, v) is a strict contraction of Pt0 ∩B into itself and therefore there exists a unique
fixed point (u, v) of ψ(u, v) in Pt0 ∩B according with the Banach fixed point theorem, which
also give us the uniqueness of solution of (1.6) in [0, t0]. If |||(u, v)||| < ∞, taking as initial
datum (u(·, t0), v(·, t0)) ∈ C(�) × C(�) and arguing as before, it is possible to extend the
solution up to some interval [0, t1), for certain t1 > t0. Hence, we conclude the maximal
existence time of the solution, 0 < T ≤ ∞.

Case 2. Now, we consider p ≤ 1 or q ≤ 1. Following the ideas of the authors of [3]
and taking by convenience p < 1 and q ≥ 1, we have 0 < p < 1 < 1/p ≤ q. For t0 >
0, let Yt0 = {u : [0, t0] → C(�) : u is continuous} the Banach space with norm ‖u‖κ =
max0≤t≤t0 ‖u(·, t)‖L∞(�) and Y +

t0 = {u ∈ Yt0 : u ≥ 0} a closed subspace of Yt0 and let BR =
{u ∈ Xt0 : ‖u‖κ < R} with R > 0.

Recalling (2.1), we define the following operator Lu0 : Y +
t0 → Y +

t0 ,

Lu0 (u)(x, t) = Au(x, t)u0 +
∫ t

0

(
Av(x, s)v0 +

∫ s

0
uq(x, τ ) dτ

)p

ds. (2.9)

We show that, for R > 0 large enough and t0 small enough, the mapping Lu0 (u)(x, t) is a
strict contraction from Y +

t0 ∩ BR into itself. Let u, w ∈ Y +
t0 , using the mean value theorem

we have

∣∣Lu0

(
u(x, t)

)
– Lw0

(
w(x, t)

)∣∣

≤
∫ t

0

∣∣∣∣
(

Av(x, s)v0 +
∫ s

0
uq(x, τ ) dτ

)p

–
(

Az(x, s)z0 +
∫ s

0
wq(x, τ ) dτ

)p∣∣∣∣ds

≤ p
∫ t

0

(∫ s

0

∣∣θu(x, τ ) + (1 – θ )w(x, τ )
∣∣q dτ

)p–1

·
(

q
∫ s

0

∣∣θu(x, τ ) + (1 – θ )w(x, τ )
∣∣q–1∣∣u(x, τ ) – w(x, τ )

∣∣dτ

)
ds,

for some θ = θ (s) ∈ (0, 1). Applying Lemma 2.2 in the above inequality, we have, for u, w ∈
Y +

t0 ∩ BR,

∥∥Lu0 (u) – Lw0 (w)
∥∥

κ
≤ pqRpq–1C(t0)‖u – w‖κ ,

where C(t0) → 0 as t0 → 0. �

Remark 2.3 We observe that the same argument as in the proof of Theorem 2.1 shows
the existence of a unique solution of (1.6) if the reaction terms are replaced by f (v), g(u)
locally Lipschitz functions, respectively.

Theorem 2.2 Let pq < 1 and (u0, v0) ∈ C(�) × C(�) nonnegative functions, then there
exists a solution (u, v) ∈ Pt0 of (1.6).
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Proof The existence of a solution for (1.6) is obtained by means of an approximation pro-
cedure as in [2]. We assume that 0 < p < 1 ≤ q, let (fn)n be a sequence of globally Lipschitz
functions such that, for n fixed, fn(s) = 0, if s ≤ 0, fn(s) = sp if s ≥ 1

2n , with fn nondecreasing
and limn→∞ fn(s) = sp for s ≥ 0. Consider the problems

ut(x, t) =
∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy + fn(v),

vt(x, t) =
∫

�

J(x – y)
(
v(y, t) – v(x, t)

)
dy + |u|q–1(x, t)u(x, t),

u(x, 0) = u0(x), vn(x, 0) = v0(x) +
1
n

, x ∈ �.

(2.10)

Arguing as Lemma 2.1 and Theorem 2.1, we see that (2.10) have a unique solution
(un(x, t), vn(x, t)). As vn(0) > vm(0) for n < m, we have um(x, t) < un(x, t) and vm(x, t) <
vn(x, t), therefore (un(x, t))n and (vn(x, t))n are nondecreasing and bounded sequences.
Therefore letting n → ∞, there exists (u(x, t), v(x, t)), a solution of (1.6). �

Now, as before, we obtain the following results.

Corollary 2.1 The solution (u, v) of (1.6) depends continuously on the initial data. In fact
if (u, v) and (w, z) are solutions of (1.6) with initial data (u0, v0) and (w0, z0), respectively,
then there exists a constant C̃ = C̃(t0, K) such that

∣∣∣∣∣∣(u, v) – (w, z)
∣∣∣∣∣∣ ≤ C̃

∥∥(u0, v0) – (w0, z0)
∥∥

I .

Corollary 2.2 (u(x, t), v(x, t)) ∈ Pt0 is a solution of (1.6):

u(x, t) =
∫ t

0

∫
�

J(x – y)
(
u(y, s) – u(x, s)

)
dy ds +

∫ t

0
vp(x, s) ds + u0(x),

v(x, t) =
∫ t

0

∫
�

J(x – y)
(
v(y, s) – v(x, s)

)
dy ds +

∫ t

0
uq(x, s) ds + v0(x).

(2.11)

Remark 2.4 Let us consider the following ODE system:

u′(t) = vp(t), v′(t) = uq(t) for t > 0,

u(0) = a ≥ 0, v(0) = b ≥ 0.
(2.12)

If pq > 1, the solution of (2.12) is

u(t) = C1

(
(pq – 1)(p+1)/(pq–1)

((p + 1)(q + 1)p)1/(pq–1)a(pq–1)/(p+1) – t
)–(p+1)/(pq–1)

,

C1 =
(

(p + 1)(q + 1)p

(pq – 1)(p+1)

)1/(pq–1)

,

v(t) = C2

(
(pq – 1)(q+1)/(pq–1)

((p + 1)q(q + 1))1/(pq–1)b(pq–1)/(q+1) – t
)–(q+1)/(pq–1)

,

C2 =
(

(p + 1)q(q + 1)
(pq – 1)(q+1)

)1/(pq–1)

.

(2.13)
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If pq < 1, the solution of (2.12) is

u(t) =
(
a(1–pq)/(p+1) + C1t

)(p+1)/(1–pq), C1 =
(

1 – pq
p + 1

)(
p + 1
q + 1

)p/(p+1)

,

v(t) =
(
b(1–pq)/(q+1) + C2t

)(q+1)/(1–pq), C2 =
(

1 – pq
q + 1

)(
q + 1
p + 1

)q/(q+1)

.

(2.14)

If pq = 1, the solution of (2.12) is

u(t) = aeC1t , C1 =
(

p + 1
q + 1

)p/(p+1)

; v(t) = beC2t , C2 =
(

q + 1
p + 1

)q/(q+1)

. (2.15)

Remark 2.5 A flat solution of (1.6) is a solution that does not depend on x. (u(t), v(t)) is
a flat solution of (1.6) with initial datum u(x, 0) = u(0) = a, v(x, 0) = v(0) = b if and only if
(u(t), v(t)) is a solution of (2.12).

Remark 2.6 If pq < 1, the solution of (1.6) is not unique. A solution of (1.6) with initial
condition (u0, v0) = (0, 0) is given by (u(x, t), v(x, t)) = (0, 0) for all (x, t) ∈ � × (0, T). On
the other hand, by (2.14) we see that u(t) = (C1t)(p+1)/(1–pq), v(t) = (C2t)(q+1)/(1–pq) it is also a
positive solution of (1.6) with initial condition (u0, v0) = (0, 0).

We will use the notation (a, b) ≥ (c, d) to indicate that a ≥ c and b ≥ d.

Definition 2.1 Let u, v ∈ C1([0, T); C(�)). (u, v) is called a super-solution of (1.6) if

ut(x, t) ≥
∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy + vp(x, t),

vt(x, t) ≥
∫

�

J(x – y)
(
v(y, t) – v(x, t)

)
dy + uq(x, t),

u(x, 0) ≥ u0(x), v(x, 0) ≥ v0(x), x ∈ �.

(2.16)

Analogously (u, v) ∈ Pt0 is called a sub-solution of (1.6) if it satisfies the opposite inequal-
ities.

Lemma 2.3 (Comparison principle) Let (u, v) and (u, v) be a sub-solution and super-
solution of (1.6), respectively. If (u0(x), v0(x)) ≤ (u0(x), v0(x)) for all x ∈ �, then (u(x, t),
v(x, t)) ≤ (u(x, t), v(x, t)) for all (x, t) ∈ � × (0, T).

Proof Let w(x, t) = u(x, t) – u(x, t), z(x, t) = v(x, t) – v(x, t). Assume first that w(x, 0), z(x, 0) >
0 for x ∈ �. We observe that w and z verify

wt(x, t) ≥
∫

�

J(x – y)
(
w(y, t) – w(x, t)

)
dy +

(
vp(x, t) – vp(x, t)
v(x, t) – v(x, t)

)
z(x, t),

zt(x, t) ≥
∫

�

J(x – y)
(
z(y, t) – z(x, t)

)
dy +

(
uq(x, t) – uq(x, t)
u(x, t) – u(x, t)

)
w(x, t).

Now, set 0 < δ = min{w(x, 0), z(x, 0)} and suppose that the conclusion of the lemma is false.
Thus, let t1 be the first time that δ/2 = min{w(x, t1), z(x, t1)}. We can assume that w attains
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the minimum. In that time, there exists x1 ∈ � such that w(x1, t1) = δ/2. However, we have
wt(x1, t1) ≤ 0 and, on the other hand,

wt(x1, t1) ≥
∫

�

J(x1 – y)
(
w(y, t) – w(x1, t1)

)
dy +

(
vp(x1, t1) – vp(x1, t1)
v(x1, t1) – v(x1, t1)

)
z(x1, t1)

≥ pηp–1(x1, t1)z(x1, t1) > 0,

where v(x1, t1) < η(x1, t1) < v(x1, t1), which is a contradiction. Using the continuity of so-
lutions of (1.6) with respect to the initial condition and an approximation argument, the
result follows for the general initial condition. �

Corollary 2.3 Let (u, v) ∈ Pt0 a super-solution of (1.6). Them, if (u0, v0) ≥ (0, 0) for x ∈ �

we have (u(x, t), v(x, t)) ≥ (0, 0) for all (x, t) ∈ � × (0, T) and, moreover, a strict inequality
holds if (u0, v0) is positive.

Remark 2.7 Consider the problem (1.6) with initial datum (u0, v0). Let pq < 1, by Re-
mark 2.4, we see that (u(t), v(t)) is the solution of (2.12) with a ≥ u0, b ≥ v0. Then,
(u(t), v(t)) is a super-solution of (1.6). If (u(x, t), v(x, t)) is a solution of (1.6) with initial con-
ditions (u0(x), v0(x)), then by the comparison principle Lemma 2.3 we have u(x, t) ≤ u(t)
and v(x, t) ≤ v(t) in �× (0, T). Therefore any solution of (1.6) can be continued for al times
in the case pq < 1.

The following lemma confirms the existence of a maximal solution of (1.6) if pq < 1. Its
proof is analogous to those given in Lemma 2.4 in [3]; therefore we omit here.

Lemma 2.4 Let 0 < pq < 1. Then there exists a maximal solution (uM(x, t), vM(x, t)) of (1.6)
in the sense that if (u(x, t), v(x, t)) is any other solution we have

u(x, t) ≤ uM(x, t), v(x, t) ≤ vM(x, t) in � × (0,∞). (2.17)

Moreover, uM(x, t) > 0, vM(x, t) > 0 for all (x, t) ∈ � × (0,∞).

Theorem 2.3 Let (u0, v0) = (0, 0).
1. If pq ≥ 1, then the unique solution of (1.6) is (u, v) = (0, 0).
2. If pq < 1, then there exists exactly one solution (u, v) of (1.6) such that u and v are

positive.

Proof 1. If pq ≥ 1, the uniqueness of solution of (1.6) is given in Theorem 2.1.
2. Let pq < 1 and (μ(t),ν(t)) be the positive solution given in Remark 2.6. Let 0 <

a, b < 1 be constants such that (u(x, t), v(x, t)) = (aμ(t), bν(t)) is a sub-solution of (1.6) in
� × (0, t0). Let n ∈ N be given and consider locally Lipschitz functions fn, gn such that
fn(s) = sp, gn(s) = sq for s ≥ 1/2n. It follows from Remark 2.3 there exists a unique so-
lution (un(x, t), vn(x, t)) of (1.6) with the reaction terms replaced by fn(s), gn(s) and ini-
tial conditions un(x, 0) = vn(x, 0) = 1/n. By the comparison principle Lemma 2.3, we have
(un(x, t), vn(x, t)) ≥ (u(x, t), v(x, t)) and the sequences (un), (vn) are monotone decreasing
in n. We have (un, vn) for every n is defined on the interval [0, t1] where (u1, v1) are defined.
Then, by the monotone convergence theorem, we obtain limn→∞ un = u, limn→∞ vn = v,
u(x, 0) = 0, v(x, 0) = 0. By Corollary 2.2, (u, v) is a positive solution of (1.6) with initial con-
ditions (u0, v0) = (0, 0).
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In remains to prove the statement about uniqueness. Suppose for contradiction, there
exists another positive solution (w, z) of (1.6) with initial conditions (u0, v0) = (0, 0). Using
the comparison principle u(x, t) ≤ w(x, t +τ ), v(x, t) ≤ z(x, t +τ ) for all τ > 0. Letting τ → 0,
we see that u(x, t) ≤ w(x, t), v(x, t) ≤ z(x, t). Analogously, we have u(x, t) ≥ w(x, t), v(x, t) ≥
z(x, t), therefore u(x, t) = w(x, t), v(x, t) = z(x, t) for all (x, t) ∈ � × (0,∞). �

Theorem 2.4 If (u0, v0) �= (0, 0), then the solution of problem (1.6) is unique.

Proof We shall proceed by considering various cases.
Case 1. If pq ≥ 1, its conclusion is obtained from Theorem 2.1.
Case 2. Let pq < 1 and p < 1, q ≤ 1. We argue again by contradiction, and assume

that (1.6) has two different solutions with (u0, v0) �= (0, 0) initials conditions. Namely
(uM(x, t), vM(x, t)) the maximal solution constructed in Lemma 2.4 and (̃u(x, t), ṽ(x, t)).
We have (̃u(x, t), ṽ(x, t)) ≤ (uM(x, t), vM(x, t)) in � × [0,∞). We prove (̃u(x, t), ṽ(x, t)) ≥
(uM(x, t), vM(x, t)) in �× [0,∞). To this end, let w(x, t) = uM(x, t) – ũ(x, t), z(x, t) = vM(x, t) –
ṽ(x, t), we have

wt(x, t) =
∫

�

J(x – y)
(
w(y, t) – w(x, t)

)
dy + vp

M(x, t) – ṽp(x, t)

≤
∫

�

J(x – y)
(
w(y, t) – w(x, t)

)
dy + zp(x, t),

zt(x, t) ≤
∫

�

J(x – y)
(
z(y, t) – z(x, t)

)
dy + wq(x, t),

w(x, 0) = z(x, 0) = 0, x ∈ �.

Therefore (w(x, t), z(x, t)) is a sub-solution of (1.6) with (w0(x), z0(x)) ≤ (u0(x), v0(x)) for
x ∈ �. Them by Lemma 2.3, we have (w(x, t), z(x, t)) ≤ (u(x, t), v(x, t)) in � × [0,∞), where
(u(x, t), v(x, t)) is the unique solution, positive, of (1.6).

Let f (x, t) = u(x, t) – w(x, t) ≥ 0, g(x, t) = v(x, t) – z(x, t) ≥ 0. As p < 1, q ≤ 1, v, vM , ṽ,
u, uM , ũ are nonnegative and uM ≥ ũ, vM ≥ ṽ, then (vp – vp

M + ṽp) ≥ (v – vM + ṽ)p and
(uq – uq

M + ũq) ≥ (u – uM + ũ)q. Therefore

ft(x, t) ≥
∫

�

J(x – y)
(
f (y, t) – f (x, t)

)
dy + gp(x, t),

gt(x, t) ≥
∫

�

J(x – y)
(
g(y, t) – g(x, t)

)
dy + f q(x, t),

with f (x, 0) = g(x, 0) = 0, x ∈ �. We claim that f (x, t) > 0, g(x, t) > 0 for all (x, t) ∈ �× (0,∞).
Indeed if not, suppose there exists 0 < t0 such that f (x, t) = g(x, t) = 0 for all (x, t) ∈ � ×
(0, t0]. We have

(
v(x, t) + ṽ(x, t)

)p

= vp
Mx, t) = (uM)t(x, t) –

∫
�

J(x – y)
(
uM(y, t) – uM(x, t)

)
dy

=
(
ut(x, y) + ũt(x, t)

)

–
(∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy –

∫
�

J(x – y)
(̃
u(y, t) – ũ(x, t)

)
dy

)

= vp(x, t) + ṽp(x, t).
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Therefore (v(x, t) + ṽ(x, t))p = vp(x, t) + ṽp(x, t) for all (x, t) ∈ � × (0, t0]. Analogously, we
have (u(x, t) + ũ(x, t))q = uq(x, t) + ũq(x, t) for all (x, t) ∈ � × (0, t0]. This is a contradiction
since u(x, t) > 0, v(x, t) > 0 for all (x, t) ∈ � × (0,∞) and p < 1. The claim is proved.

By the comparison principle Lemma 2.3, we have f (x, t) ≤ u(x, t), g(x, t) ≤ u(x, t) in � ×
(0,∞). This implies (̃u, ṽ) ≥ (uM, vM) in � × [0,∞).

Case 3. Let pq < 1, with 0 < p < 1 < q. We reduce this case to Case 2. Let w(x, t) =
μ(uM(x, t) – ũ(x, t)), z(x, t) = ν(vM(x, t) – ṽ(x, t)) in � × [0,∞), with μ, ν constant to be
determined. Since p < 1, we have

wt(x, t) –
∫

�

J(x – y)
(
w(y, t) – w(x, t)

)
dy = μ

(
vp

M(x, t) – ṽp(x, t)
) ≤ νμ–pz(x, t),

zt(x, t) –
∫

�

J(x – y)
(
z(y, t) – z(x, t)

)
dy = ν

(
uq

M(x, t) – ũq(x, t)
)
,

w(x, 0) = z(x, 0) = 0, x ∈ �.

As q > 1, we have

uq
M(x, t) – ũq(x, t) =

uq
M(x, t) – ũq(x, t)

uM(x, t) – ũ(x, t)
(
uM(x, t) – ũ(x, t)

) ≤ μ–1Mw(x, t)

for some constant M > 0 that depends on the bound for uM on �× [0,∞) and of q. There-
fore, μ, ν can be chosen to be positive and such that (w, z) satisfies w(x, t) ≤ νμ–pz(x, t),
z(x, t) ≤ νμ–1Mw(x, t), w(x, 0) = z(x, 0) in �. Now, we argue as in Case 2, and we find
(̃u, ṽ) ≥ (uM, vM) in � × [0,∞). �

3 Global existence and blow-up
In this section, we study the conditions under which the solutions of Eq. (1.6) blow up in
finite time or are global.

Theorem 3.1 Let pq > 1 and u0, v0 ∈ C(�) nonnegative and nontrivial functions. The so-
lution (u, v) of (1.6) blows up in finite time T .

Proof Let pq > 1 and u0(x), v0(x) ∈ C(�) be nonnegative and nontrivial functions and (u, v)
solution of (1.6). We shall proceed by considering various cases.

Case 1. Suppose there exists a constant c > 0 such that u0 ≥ c > 0 and v0 ≥ c > 0 for all
x ∈ �. Let (w(t), z(t)) a solution of (2.12) with w(0) = z(0) = c initial condition. Moreover,
we have (w(t), z(t)) is solution of (1.6), then by the comparison principle Lemma 2.3 we
have (w(t), z(t)) ≤ (u(x, t), v(x, t)). As pq > 1 and by (2.13) we have (w(t), z(t)) blows up in
finite time T̃ > 0, then (u, v) blows up in finite time T < T̃ .

Case 2. Suppose that u0 �= 0. As the solutions (u, v) of (1.6) are nonnegative, by (1.6) we
have

ut(x, t) ≥
∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy. (3.1)

Consider the problem

ut(x, t) =
∫

�

J(x – y)
(
u(y, t) – u(x, t)

)
dy, x ∈ �, t > 0,

u(x, 0) = u0(x), x ∈ �.
(3.2)
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From (3.1) we see that u is a super-solution of (3.2), by the comparison principle (see [18])
we have u(x, t) ≤ u(x, t).

Now, we assert that, for δ > 0, we obtain u(x, δ) ≥ c > 0 in �. In fact, otherwise, there
exists x0 ∈ � such that u(x0, δ) = 0 and

0 ≥ ut(x0, δ) =
∫

�

J(x0 – y)
(
u(y, δ) – u(x0, δ)

)
dy ≥ 0. (3.3)

As J is supported in the unitary ball, then
∫
�

J(x0 – y)(u(y, δ)) dy = 0 in B(x0, 1) (unit ball
with center in x0). Repeating the above analysis in any x ∈ B(x0, 1), we obtain

∫
�

J(x0 –
y)(u(y, δ)) dy = 0 for all x0 ∈ �, since � is connected, therefore

∫
�

u(y, δ) dy = 0 for all
x0 ∈ �. By the conservation of mass (see [18]), we have

0 =
∫

�

u(x, δ) dx =
∫

�

u(x, 0) dx =
∫

�

u0(x) dx > 0,

which is a contradiction.
Therefore, for δ > 0, we obtain u(x, δ) ≥ c > 0 and v(x, δ) ≥ c > 0, which leads to Case 1,

therefore (u, v) blows up in finite time. Let us see that v(x, δ) ≥ c > 0. Suppose that v0 = 0
in � and for δ > 0, let δ/2 ≤ t with u(x, t) ≥ c > 0. From (1.6), we have

vt(x, t) ≥
∫

�

J(x – y)
(
v(y, t) – u(x, t)

)
dy + cq. (3.4)

Consider the problem

vt(x, t) =
∫

�

J(x – y)
(
v(y, t) – v(x, t)

)
dy, x ∈ �, t > δ/2,

v(x, δ/2) = 0, x ∈ �.
(3.5)

Therefore v(x, t) = cqδ/2 for t > δ/2. Moreover, from (3.4), v(x, t) is a super-solution of (3.5)
then by the comparison principle (see [18]) we have v(x, t) ≤ v(x, t), then v(x, t) ≥ c > 0. �

Theorem 3.2 Let pq ≤ 1 and u0(x), v0(x) ∈ C(�) be nonnegative and nontrivial functions.
Then the solution (u, v) of (1.6) exists globally.

Proof Let pq ≤ 1 and u0(x), v0(x) ∈ C(�) nonnegative and nontrivial functions and (u, v)
solution of (1.6). We shall proceed by considering various cases.

Case 1. Let assume pq < 1. Let (w(t), z(t)) the solution of (2.12) with (w(0), z(0)) initial
condition such that u0 ≤ w(0), v0 ≤ z(0). As pq < 1, by (2.14), we see that (w(t), z(t)) ex-
ists for all t > 0. Moreover, (w(t), z(t)) is a super-solution of (1.6), then u(x, t) ≤ w(t) and
v(x, t) ≤ z(t) for all (x, t) ∈ � × [0,∞).

Case 2. Suppose now pq = 1 and q ≥ 1. We see that, for all a > 0, (u(x, t), v(x, t)) =
(aet , aqeqt) is a super-solution of (1.6). Indeed, replacing in (1.6) we have aet ≥ apqepqt ,
qaqeqt ≥ aqeqt if pq = 1 and q ≥ 1. Is suffices to choose a ≥ max(‖u0‖∞,‖v0‖1/q

∞ ). �

Next, we study the blow-up rate of the solutions of (1.6). We assume that x = 0 ∈ �.
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Theorem 3.3 Let pq > 1 and u0(x), v0(x) ∈ C(�) be nonnegative and nontrivial functions.
Let (u, v) be the solution of (1.6) such that the maximum is reached at x = 0. Them exist C1,
C2, C3, C4, positive constants such that

C1(T – t)–(p+1)/(pq–1) ≤ u(0, t) ≤ C2(T – t)–(p+1)/(pq–1),

C3(T – t)–(q+1)/(pq–1) ≤ v(0, t) ≤ C4(T – t)–(q+1)/(pq–1).
(3.6)

Proof As pq > 1, we see that (u, v), the solution of (1.6) blows up in finite time T . Let
u(0, t) = maxx∈� u(x, t) and v(0, t) = maxx∈� v(x, t). Due to (1.6), we have

ut(0, t) =
∫

�

J(0 – y)
(
u(y, t) – u(0, t)

)
dy + vp(0, t) ≤ vp(0, t),

vt(0, t) =
∫

�

J(0 – y)
(
v(y, t) – v(0, t)

)
dy + uq(0, t) ≤ uq(0, t).

(3.7)

As 1 =
∫
RN J(ζ ) dζ ≥ ∫

�
J(ζ ) dζ , we have

ut(0, t) =
∫

�

J(0 – y)
(
u(y, t) – u(0, t)

)
dy + vp(0, t)

≥ –u(0, t) + vp(0, t),

vt(0, t) =
∫

�

J(0 – y)
(
v(y, t) – v(0, t)

)
dy + uq(0, t)

≥ –v(0, t) + uq(0, t).

(3.8)

Therefore, we have for all 0 < t < T

–u(0, t) + vp(0, t) ≤ ut(0, t) ≤ vp(0, t) (3.9)

and

–v(0, t) + uq(0, t) ≤ vt(0, t) ≤ uq(0, t). (3.10)

Multiplying the second inequality of (3.9) with uq(0, t) and the first inequality of (3.10)
with vp(0, t), we have

ut(0, t)uq(0, t) ≤ vt(0, t)vp(0, t) + vp+1(0, t),

which is equivalent to

(
uq+1(0, t)

q + 1

)
t
≤

(
vp+1(0, t)

p + 1

)
t

+ vp+1(0, t).

Multiplying the inequality with (p + 1)e(p+1)t and integrating on [0, t], t < T , we have

uq(0, t) ≤ (
(q + 1)e(p+1)tvp+1(0, t) + C

)q/(q+1)

≤ (
(q + 1)e(p+1)T vp+1(0, t) + C

)q/(q+1)

≤ C
(
v(0, t)

)(p+1)q/(q+1). (3.11)
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Replacing the second inequality of (3.10) by the inequality (3.11), we have

vt(0, t) ≤ C
(
v(0, t)

)(p+1)q/(q+1).

Integrating the inequality from above on [t, T), we obtain

v(0, t) ≥ C3(T – t)–β ,

where β = q+1
pq–1 .

In analogous form we obtain

u(0, t) ≥ C1(T – t)–α ,

where α = p+1
pq–1 .

Doing a similar analysis to the one developed above, we see that there exists a constant
C > 0 such that for 0 < t < T

C
(
v(0, t)

)(p+1)q/(q+1) ≤ uq(0, t). (3.12)

Replacing the first inequality of (3.10) with the inequality (3.12) and as pq > 1 we have
(p + 1)q/(q + 1) > 1 and

C
(
v(0, t)

)(p+1)q/(q+1) ≤ –v(0, t) + C
(
v(0, t)

)(p+1)q/(q+1) ≤ vt(0, t).

Integrating the inequality from above on [t, T), we obtain

v(0, t) ≤ C4(T – t)–β .

Analogously we obtain

u(0, t) ≤ C2(T – t)–α . �

Remark 3.1 If pq > 1, by Remark 2.4, we see that the flat solution (u(t), v(t)) of (1.6) blows
up in the whole �, in finite time T for any non-negative initial condition.

4 Conclusions
In this paper, we have studied the existence and uniqueness of nonnegative solutions (u, v)
for (1.6). We have showed the solution (u, v) is unique if pq ≥ 1 or if one of the initial condi-
tions is not zero for pq < 1. The global existence for the solution of (1.6) has been analyzed.
We have showed that if pq > 1 and u0, v0 are nonnegative and nontrivial functions, the so-
lution (u, v) of (1.6) blows up in finite time T , if pq ≤ 1 the solution (u, v) exists globally.
Finally, we studied the blow-up rates for the solution (u, v) of (1.6). The results obtained
allow us to conclude the system (1.6) shares many important properties with the corre-
sponding local diffusion coupled parabolic system with Neumann boundary conditions
(1.1).
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