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Abstract
The being a wide range of applications of the Internet, social networks have become
an effective and convenient platform for information communication, propagation
and diffusion. Most of information exchange and spreading exist in social networks.
The issue of information diffusion in social networks is getting more and more
attention by government and individuals. The researchers investigated either
empirical studies or focused on ordinary differential equation (ODE) models with only
consideration of temporal dimension in most prior work. As is well known, partial
differential equations (PDEs) can describe temporal and spatial patterns of
information diffusion over online social networks; however, until now, results for
understanding information propagation of social networks over both temporal and
spatial dimensions are few. This paper is devoted to investigating a non-autonomous
diffusive logistic model with Dirichlet boundary conditions to describe the process of
information propagation in social networks. By constructing upper and lower
solutions we obtain the dynamic behavior of the solution to the non-autonomous
diffusive logistic model. Our results show that information diffusion is greatly affected
by the diffusion coefficient d(t) and the intrinsic growth rate r(t).
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1 Introduction
With the rapid development of Internet technology, a new platform for information com-
munication and diffusion has been constructed by online social networking which has
established a wider range of social relations [1–5]. Online social networks have better fea-
tures, including the speed and range of information transmission, rather than the tradi-
tional ways of information exchange. Moreover, social networks also play a significant role
in business negotiation and information sharing. A lot of people used some new social me-
dia sites such as Twitter, Facebook and Wechat as they first appeared. We believe that these
new social media sites will have in-depth development and play a key role in contemporary
society. Facing large amounts of data, the laws of communication for big data on online
social networks should be studied by the researchers. For reducing unwanted information
over social media, studying information diffusion process is necessary. However, due to
the complexity of the network structure and the rapid change of social network platforms,
for studying information spreading on online social networks there exist many difficulties.
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The mechanism of information diffusion on online social networks including charac-
terizing user behavior, characterizing social cascades in Flickr, network level footprints of
Facebook, applications etc. [6–15] has been studied by many authors. Recently, some re-
sults have been obtained by using mathematical models to predict information diffusion
over a time period in online social networks; see e.g. [16–20]. Inspired by empirical studies
of networked systems, Newman [21] studied the structure and function of complex net-
works. Banavar, Maritan and Rinaldo [22] derived a general relationship between size and
flow rates in general networks with local connectivity which can predict scaling relations
applicable to all efficient transportation networks.

A number of concerns in modeling information diffusion in online social networks have
been put forward on the basis of PDE-based models. Specially, PDEs can establish many
complex models. However, the results are uncommonly poor for the diffusion models by
PDEs in online social networks. Recently, both temporal and spatial patterns of informa-
tion diffusion process on social networks were studied by Wang et al. [23–25] through
constructing an intuitive cyber-distance among online users. Using real data coming from
Digg (an online social network), Wang verified the reliability of the PDE model. Zhu, Zhao
and Wang [26–28] studied several reaction–diffusion malware propagation models and
obtained some results for stability and bifurcation of positive equilibrium points. Dai et
al. [29] studied a partial differential equation with a Robin boundary condition in online
social networks and discussed temporal and spatial properties of social networks. Since
PDEs have complex natures and no standard characteristic equations, it is difficult to study
PDE models by using matrix theory. Hence, the authors only have begun to study propa-
gation models with PDEs in online social networks, and there are still many problems to
be solved.

As is well known, studying information diffusion in online social networks by PDE-based
models is very difficult, and this presents a new opportunity and challenge for mathemati-
cians. In the ecological and physics models, the researchers focused on different boundary
conditions, eigenvalue analysis and dynamic properties of diffusion. Cantrell and Cosner
[30] studied a diffusive logistic equation with spatially varying growth rate. The authors
obtained the theorem for the principal eigenvalue of the corresponding linearized equa-
tion, which is significant for the research of the dynamics of a population inhabiting a
heterogeneous environment. Afrozi and Brown [31] discussed the existence of principal
eigenvalues for Robin boundary conditions with an indefinite weight function.

This paper is devoted to investigating a non-autonomous diffusive logistic model with
Dirichlet boundary conditions. In view of Digg.com and the simulation, there exists a real
data set from an online social network for the above model. In [23], the overall accuracy for
the logistic model with the Robin boundary conditions is 96.61% and an overall accuracy
for the Neumann boundary condition of 92.85% was obtained. Moreover, the dynamic
properties of a non-autonomous logistic model with Dirichlet boundary conditions are
obtained by constructing upper and lower solutions. In this paper, our main contributions
are summarized as follows.

(1) We develop a non-autonomous model with Dirichlet boundary conditions by using
PDEs on social networks. To the best of our knowledge, few results have been
obtained for our model. Our new model is more accurate as regards the actual
situation; hence, it will be more important for the applications.
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(2) We study the sensitivity of some parameters in the present model, guaranteeing the
controllability of the model. Thus, we can control the stability interval by sensitive
parameters which have important implications for practical applications.

(3) It makes a lot of sense to establish a unified framework to handle the
reaction–diffusion terms and the influence of the variable coefficients. We develop
some mathematical techniques (including upper and lower solutions method,
comparison principle, and the like) for overcoming these difficulties.

(4) Our model is based on non-autonomous partial differential equations which are
proposed to characterize temporal and spatial patterns of information diffusion over
online social networks.

The remaining structure of this paper is arranged as follows. In Sect. 2, a non-
autonomous PDE model with Dirichlet boundary conditions is developed in n-dimensional
space Rn. In Sect. 3, a number of dynamic properties for the present model are presented.
Finally, conclusions are drawn in Sect. 4.

2 Non-autonomous PDE model in social networks
In view of the PDE model, by constructing an intuitive cyber-distance among online users,
Wang et al. [23] studied both temporal and spatial patterns of information diffusion pro-
cess in social media. In generally, we divide the information diffusion into two sections:
content-based and structure-based processes in an online social network. Myers, Zhu and
Leskovec [20] pointed out that the content-based and structure-based processes are anal-
ogous to the external and internal influences, respectively. It is challenging to reflect the
above two process of information propagation in a mathematical model. PDEs can com-
bine with time scale and space scale effectively and characterize the space-time developing
properties of the complex models.

In generally, the spatial distance and abstractly translated information propagation pro-
cess can be described by friendship hops which play dominant roles in social networks. In
the social network graph, we describe the number of friendship links by using the shortest
path from one user to another for defining the distance between two users. Particularly,
the social distance is defined by x-axis and the density at the location x is defined by Ux.
Let I(t, x) be the density of influenced users at distance x during time t. The flux of the in-
fluenced users at distance x during time t can be denoted by J = –c ∂I

∂x , where c represents
the popularity of information. In Twitter, marking keywords or topics can be described
by a hashtag. Since online users in social media show heterogeneity, c can be controlled
by the distance x from the source in the content-based process. The distance metric can
characterize the shortest friendship hops, and the average distance on Twitter is 4.67 [32].
Wang et al. [23] studied the following diffusion model:

⎧
⎪⎪⎨

⎪⎪⎩

It = d�I – rI(1 – I
K ), t > 0,

I(x, 1) = φ(x), l < x < L,

Ix(l, t) = Ix(L, t) = 0, t ≥ 0.

Specifically, the majority of online social network users in Digg have a distance of 2 to 5
from the initiators and the predicted results for the most popular news with 24,099 votes
in Digg.com can be found in [23].
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In [33], Tang and Lin studied a nonlinear reaction–diffusion equation as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ut = d�u + u(a – buq), x ∈ �, t > 0,

u(x, t) = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �,

(2.1)

where d, a and b are positive constants, � is an open subset of Rn with smooth boundary
∂�. Then they changed (2.1) into a non-autonomous reaction–diffusion problem:

⎧
⎪⎪⎨

⎪⎪⎩

vt = d
ρ2(t)�u – nρ̇(t)

ρ(t) + v(a – bvq), y ∈ �(0), t > 0,

v(y, t) = 0, y ∈ ∂�(0), t > 0,

v(y, 0) = v0(y), y ∈ �(0),

(2.2)

where

�(t) ⊂R
nis a simply connected bounded growing domain at time t ≥ 0

with its growing boundary ∂�(t).
(2.3)

For more details as regards �(t) in (2.3), see [34]. The model (2.1) is an insect dispersal
model on a growing domain. By constructing upper and lower solutions of (2.2), the au-
thors obtained the asymptotic behavior of the solution to (2.1). From the research of [34],
we find that the properties of solutions for non-autonomous reaction–diffusion model
(2.2) are key to the asymptotic behavior of the solution to (2.1).

Motivated by the above work, this paper is devoted to investigating the following non-
autonomous PDE model with Dirichlet boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

ut – d(t)�u = r(t)u(a – buq), t > 0, x ∈ �(0),

u(t, x) = 0, t > 0, x ∈ ∂�(0),

u(0, x) = u0(x), x ∈ �(0),

(2.4)

where �(t) is defined by (2.3), q is positive constant, u(t, x) represents the density of influ-
enced users with a distance of x at time t. For the other parameters’ meanings, see Table 1.

Remark 2.1 When q = 1, d(t) and r(t) are constants, system (2.4) is a classic diffusive lo-
gistic equation which has been widely studied in [35–37]. When d(t) and r(t) are not con-
stants, system (2.4) is a non-autonomous reaction–diffusion system. For a general non-
autonomous reaction–diffusion system, Rodriguez-Bernal and Vidal-Lopez [38] studied

Table 1 Symbols and their meanings of system (2.4)

Parameters Meaning

d(t) The popularity of information which promotes the spread of the information
r(t) The intrinsic growth rate of influenced users with the same distance
b The carrying capacity which is the maximum possible density of users
a The intra-specific competition rate with influenced users at a given distance
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the following general non-autonomous reaction–diffusion problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut = d�u + a(t, x)u – b(t, x)uq+1, t > 0, x ∈ �,

u(t, x) = 0, t > 0, x ∈ ∂�,

u(0, x) = u0(x) ≥ 0, x ∈ �,

and they obtained some dynamic properties of positive complete trajectories for the above
problem.

Firstly, we consider the following eigenvalue problem:

⎧
⎨

⎩

–�u = λu, x ∈ �,

u(x) = 0, x ∈ ∂�.
(2.5)

For problem (2.1), the following result is well known.

Theorem 2.1 ([39]) Let λ1 be the principal positive eigenvalue of (2.5).
(1) If a ≤ dλ1, then (2.1) admits only one nonnegative steady state solution u = 0, which

is globally asymptotically stable.
(2) If a > dλ1, then (2.1) has only one positive steady state solution u = u∗(x), which is

globally asymptotically stable.

3 Dynamic analysis for a diffusion logistic model
In this section we will study the dynamic behavior of the solution of (2.4). First we give the
following assumptions:

(H1) d(t) is continuous differentiable decreasing positive function on [0, +∞) and satis-
fies

lim
t→+∞ d(t) = d∞.

(H2) r(t) is continuous differentiable function on [0, +∞) and satisfies

r1 ≤ lim
t→+∞ r(t) ≤ r2,

where r1, r2 are positive constants.

Definition 3.1 A function û ∈ C2,1(�(0) × (0,∞)) ∩ C(�̄(0) × [0,∞)) is called an upper
solution of (2.4) if it satisfies

⎧
⎪⎪⎨

⎪⎪⎩

ût – d(t)�û ≥ f (t, û), t > 0, x ∈ �(0),

û(t, x) ≥ 0, t > 0, x ∈ ∂�(0),

û(0, x) ≥ u0(x), x ∈ �(0),

(3.1)

where f (t, u) = r(t)u(a – buq). Similarly, ǔ is called a lower solution of (2.4) if it satisfies all
the reversed inequalities in (3.1).
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Lemma 3.1 (Comparison principle) Let v(t, x) be a solution of (2.4), v̂(t, x) and v̌(t, x) are
upper and lower solutions of (2.4) respectively, then v̌(t, x) ≤ v(t, x) ≤ v̂(t, x) in �̄× [0, +∞).

Lemma 3.2 Let u(t, x) be a nonnegative nontrivial solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut = d(t)�u + r(t)u(a – buq), t > 0, x ∈ �(0),

u(t, x) = 0, t > 0, x ∈ ∂�(0),

u(0, x) = u0(x) ≥ 0, x ∈ �(0).

(3.2)

If u0(x) ∈ C2(�̄(0)), u0(x) = �u(0, x) = 0 for x ∈ ∂�(0) and �u(0, x) ≤ 0 for x ∈ �̄(0), then
u(t, x) ∈ C2,1(�(0) × (0,∞)) and

�u(t, x) ≤ 0 for x ∈ �(0), t > 0.

Proof In view of u0 being smooth and for x ∈ ∂�(0), d(t)u0(x) + r(t)u0(a – buq
0) = 0, by

the standard parabolic regularity theory it follows that the solution u(t, x) ∈ C2,1(�(0) ×
(0,∞)). Denote ω = �u. For t > 0, x ∈ �(0), we have

ωt ≤ d(t)�ω +
(
r(t)a – b(q + 1)uq)ω.

From the condition �u(x, 0) ≤ 0 for x ∈ �(0), we have

ω(0, x) ≤ 0 for x ∈ �(0).

By u(t, x) = 0 for x ∈ ∂�(0), t > 0, we have

ω(t, x) =
1

d(t)
[
ut – r(t)u

(
a – buq)] = 0, x ∈ ∂�(0), t > 0.

By Lemma 3.1, we can obtain that

ω(t, x) ≤ 0 for x ∈ ∂�(0), t > 0,

which implies that �u(t, x) ≤ 0 for x ∈ ∂�(0), t > 0. The proof is completed. �

Let λ1 be the principal positive eigenvalue of the problem

⎧
⎨

⎩

–�u = λu, y ∈ �(0),

u(t, y) = 0, y ∈ ∂�(0).

Theorem 3.1 If the assumptions (H1) and (H2) hold and a ≤ d∞λ1
r2

, then the solution of
problem (2.4) satisfies

lim
t→∞ u(t, x) = 0 for x ∈ �̄(0).
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Proof Obviously, ǔ = 0 is a lower solution of (2.4). Next we construct a upper solution of
(2.4). Let û(t, x) be the unique solution of the problem:

⎧
⎪⎪⎨

⎪⎪⎩

ût – d(t)�û = r(t)û(a – bûq), t > 0, x ∈ �(0),

û(t, x) = 0, t > 0, x ∈ ∂�(0),

û(0, x) = Mφ(x), x ∈ �(0),

(3.3)

where φ(x) is the corresponding eigenfunction of λ1, M is a positive constant. We choose
M so large that Mφ(x) ≥ u0(x), For any solution û(t, x) of (3.3), we can see that û(t, x) is an
upper solution of (2.4). Let u be any solution of (2.4). It follows from Lemma 3.1 that

0 ≤ u(t, x) ≤ û(t, x), t > 0, x ∈ �(0).

Since �û(0, x) = M�φ(x) = –λ1Mφ(x) ≤ 0, it follows from Lemma 3.2 that

�û(t, x) ≤ 0 for x ∈ �(0), t > 0.

On the other hand, by assumption (H1), d(t) tends decreasingly to d∞ as t → ∞, then
d(t) ≥ d∞ for t ≥ 0. By assumption (H2), r1 < r(t) ≤ r2 for t ≥ 0. Thus, û(t, x) satisfies

ût ≤ d∞�û + r2aû – r1bûq+1, t > 0, x ∈ �(0).

Now consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ūt = d∞�ū + r2aū – r1būq+1, t > 0, x ∈ �(0),

ū(t, x) = 0, t > 0, x ∈ ∂�(0),

ū(0, x) = Mφ(x), x ∈ �(0).

(3.4)

Let ū(t, x) be a solution of (3.4). By the comparison principle, for t > 0, x ∈ �(0), we have

û(t, x) ≤ ū(t, x)

and

0 ≤ u(t, x) ≤ û(t, x) ≤ ū(t, x).

Since ar2 ≤ d∞λ1, by Theorem 2.1, limt→∞ ū(t, x) = 0 for x ∈ �̄(0). Hence,

lim
t→∞ u(t, x) = 0 for x ∈ �̄(0). �

Theorem 3.2 If the assumptions (H1) and (H2) hold and a > d∞λ1
r1

, then the solution of
problem (3.14) satisfies

ǔ∗(x) ≤ u(x) ≤ ū∗(x) for x ∈ �̄(0),

where u∗(x) is a unique positive solution of (3.8), ǔ∗(x) is a unique positive solution of (3.15).
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Proof In view of assumption (H1), we have limt→∞ d(t) = d∞ and d(t) is decreasing for
t > 0, there exists a T1 > 0 such that d∞ ≤ d(t) ≤ d∞ + ε for t > T1. Let û(t, x) be the unique
solution of the problem:

⎧
⎪⎪⎨

⎪⎪⎩

ût – d(t)�û = r(t)û(a – bûq), t > T1, x ∈ �(0),

û(t, x) = 0, t > T1, x ∈ ∂�(0),

û(T1, x) = Mφ(x), x ∈ �(0),

(3.5)

where φ(x) is the corresponding eigenfunction of λ1, M is a positive constant. We choose
M so large that Mφ(x) ≥ u0(x), For any solution û(t, x) of (3.5), we can see that û(t, x) is an
upper solution of (2.4). Let u be any solution of (2.4). It follows from Lemma 3.1 that

0 ≤ u(t, x) ≤ û(t, x), t > T1, x ∈ �(0).

From �û(T1, x) ≤ 0 and Lemma 3.2, we have �û(t, x) ≤ 0 in [T1,∞) × �(0). Thus,

ût ≤ d∞�û + r2aû – r1bûq+1, t > T1, x ∈ �(0). (3.6)

Now consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut = d∞�u + r2au – r1buq+1, t > T1, x ∈ �(0),

u(t, x) = 0, t > T1, x ∈ ∂�(0),

u(T1, x) = Mφ(x), x ∈ �(0).

(3.7)

The problem (3.7) admits a unique solution ū(t, x). In view of a > d∞λ1
r1

and r1 ≤ r2, we
have a > d∞λ1

r2
. Thus, the result of Theorem 2.1 shows that

ū(t, x) → ū∗(x) as t → ∞,

where ū∗(x) is the unique positive solution of the following problem:
⎧
⎨

⎩

ut = d∞�u + r2au – r1buq+1, t > T1, x ∈ �(0),

u(x) = 0, x ∈ ∂�(0).
(3.8)

Using (3.6), (3.7) and the comparison principle yields

û(t, x) ≤ ū(t, x) for t > T1, x ∈ �(0).

This implies that

lim
t→∞ sup u(t, x) ≤ u∗(x), x ∈ �(0). (3.9)

On the other hand, let ǔ(t, x) be the unique solution of the problem:

⎧
⎪⎪⎨

⎪⎪⎩

ǔt – d(t)�ǔ = r(t)ǔ(a – bǔq), t > T1, x ∈ �(0),

ǔ(t, x) = 0, t > T1, x ∈ ∂�(0),

ǔ(T1, x) = δφ(x), x ∈ �(0),

(3.10)
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where δ is a sufficiently small constant such that δφ(x) ≤ u0. It is easy to see that ǔ(t, x) is a
lower solution of (2.4) in [T1,∞) × �̄(0). From �ǔ(T1, x) = –δλ1φ(x) ≤ 0 and Lemma 3.1,
we have �ǔ(t, x) ≤ 0 in [T1,∞) × �(0). Thus,

ǔt ≥ (d∞ + ε)�ǔ + r1aû – r2bûq+1, t > T1, x ∈ �(0). (3.11)

Now consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ǔt = (d∞ + ε)�ǔ + r1aǔ – r2bûq+1, t > T1, x ∈ �(0),

ǔ(t, x) = 0, t > T1, x ∈ ∂�(0),

ǔ(T1, x) = δφ(x), x ∈ �(0).

(3.12)

Clearly, (3.12) admits a unique positive solution, denoted by ǔε(t, x). Using the comparison
principle yields that ǔε(t, x) ≤ ǔ(t, x). Since ar1 > d∞λ1, we can choose ε > 0 sufficiently
small such that ar1 > (d∞ + ε)λ1. Thus, by Theorem 2.1 we have

lim
t→∞ ǔε(t, x) = ǔ∗

ε (x), x ∈ �̄(0),

where ǔ∗
ε (x) is the unique positive solution of the problem

⎧
⎨

⎩

–ǔt = (d∞ + ε)�ǔ + r1aǔ – r2bûq+1, x ∈ �(0),

ǔ(x) = 0, x ∈ ∂�(0).
(3.13)

From (3.11) and (3.13), it follows that

lim
t→∞ inf u(t, x) ≥ ǔ∗

ε (x), x ∈ �(0). (3.14)

By the continuous dependence of ǔ∗
ε (x) on ε, obviously,

ǔ∗
ε (x) → ǔ∗(x) as ε → 0+,

where ǔ∗(x) is a solution of the problem

⎧
⎨

⎩

–d∞�ǔ = r1aǔ – r2bûq+1, x ∈ �(0),

ǔ(x) = 0, x ∈ ∂�(0).
(3.15)

By (3.14), we have

lim
t→∞ inf u(t, x) ≥ ǔ∗(x), x ∈ �(0). (3.16)

It follows from (3.9) and (3.16) that

ǔ∗(x) ≤ u(x) ≤ ū∗(x) for x ∈ �̄(0).

This completes the proof. �
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Remark 3.1 If r(t) = r in (2.4) is a positive constant, then ǔ∗(x) = ū∗(x) := u∗(x). Hence, for
(2.4) there exists a unique positive steady state solution u∗(x). It is obvious that the results
of [33] are special results of the present paper in the case of r(t) = r in (2.4) being a positive
constant. On the other hand, by upper and lower solutions, we cannot find that for (2.4)
there exists a unique positive steady state solution u∗(x) and we only obtain the scope of
the solution to (2.4). We hope that some new methods can be developed by the researchers
for obtaining an unique positive solution of (2.4).

4 Conclusions
In this article, we study a non-autonomous reaction–diffusion system on social networks.
It is noted that the diffusion rate d and intrinsic growth rate r are not constants, which is
different from the past results [25, 26, 33, 34].

How the non-autonomous case affects information propagation and the dynamic prop-
erties of solutions over social networks is obtained by upper and lower solutions methods
and comparison principle. More importantly, we investigate the effects of the variable dif-
fusion rate and the intrinsic growth rate on the scale of information spreading in networks.
Our results show that a non-autonomous reaction–diffusion system has more complex
asymptotic stability than an autonomous reaction–diffusion system.
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